1
|
Mandal S, Biswakarma D, Bhattacharyya AJ. Operando spectroscopy investigations of the redox reactions in heme and heme-proteins. Phys Chem Chem Phys 2024; 26:27131-27140. [PMID: 39431750 DOI: 10.1039/d4cp03341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Operando spectroscopic investigations during molecular redox processes provide unique insights into complex molecular structures and their transformations. Herein, a combination of a potentiodynamic method with spectroscopy has been employed to holistically investigate the structural transformations during Fe-redox (Fe3+ ↔ Fe2+) of hemin vis á vis heme-proteins, e.g. myoglobin (Mb), hemoglobin (Hb) and cytochrome-C (Cyt-C). The UV-vis findings reveal the formation of hemozoin (≈heme-dimer), which can be selectively prevented via a high concentration of strongly interacting ligands, e.g. histidine (the fifth coordinating ligand in the heme-based protein). On the other hand, methionine does not prevent the formation of hemozoin. In Mb, Hb, and Cyt-C, as the fifth coordination site is occupied by histidine, hemozoin formation is inhibited. During Fe3+→ Fe2+, operando circular dichroism exhibits a decrease in the initial helical component in Hb from nearly 40% to 28%, which is close to the initial helix component of Mb (≈25%), strongly indicating denaturation of the protein in the redox pathway. The rate of change of the helices versus potential is almost identical for Mb and Hb, but comparatively faster than Cyt-C. In addition, from the Raman bands of M-N dynamics and protein agglomeration, it is concluded that Cyt-C prefers to agglomerate in the 2+ state, whereas Mb/Hb in the 3+ state. In this report, the power of operando spectroscopy is utilized to unearth the dynamics of hemin and heme-based proteins for comprehending the underlying complexities associated with the molecular redox, which have deep implications in electrocatalysis, energy storage, and sensing.
Collapse
Affiliation(s)
- Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Dipen Biswakarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Aninda J Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
- Interdisciplinary Center for Energy Research, Indian Institute of Science, Bengaluru: 560012, Karnataka, India.
| |
Collapse
|
2
|
Kumar M, Haque MA, Kaur P. Computational and Biophysical Approaches to Identify Cell Wall-Associated Modulators in Salmonella enterica serovar Typhi. Methods Mol Biol 2024; 2727:35-55. [PMID: 37815707 DOI: 10.1007/978-1-0716-3491-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
An increase in the number of antibiotic-resistant bacterial pathogens, in recent times, has posed a great challenge for treating the affected patients. This has paved the way for the development and design of antibiotics against the previously less explored newer targets. Among these, peptidoglycan (PG) biosynthesis serves as a promising target for the design and development of novel drugs. The peptidoglycan cell wall synthesis in bacteria is essential for its viability. The enzyme class, Mur ligases, plays a key role in PG biosynthesis. Therefore, compounds with the ability to inhibit these enzymes (Mur ligase) can serve as potential candidates for developing small modulators. The enzyme, UDP-N-acetyl pyruvyl-glucosamine reductase (MurB), is essential for PG biosynthesis, a crucial part of the bacterial cell wall. The development of novel drugs to treat infections may thus focus on inhibiting MurB function. Understanding the mechanism of action of Mur B is central to developing efficient inhibitors. For the treatment of S. typhi infections, it is also critical to find therapeutic drugs that specifically target MurB. The enzyme Mur B from Salmonella enterica serovar Typhi (stMurB) was expressed and purified for biophysical characterization to gauge the molecular interactions and estimate thermodynamic stability, for determining attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism (CD) and validated by performing differential scanning calorimetry (DSC). An in silico virtual screening of various natural inhibitors was conducted with modelled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) obtained from in silico screening were validated for complex stability through molecular dynamics (MD) simulation. Further, fluorescence binding studies were undertaken for the selected natural inhibitors with stMurB alone and with its NADPH-bound form. The natural inhibitors, scopoletin and berberine, displayed lesser binding to stMurB compared to quercetin. Also, a stronger binding affinity was exhibited between quercetin and stMurB compared to NADPH and stMurB. Based on the above two findings, quercetin can be developed as an inhibitor of stMurB enzyme.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Unraveling the thermodynamics, enzyme activity and denaturation studies of Triprolidine hydrochloride binding with model transport protein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Naiyer A, Khan B, Hussain A, Islam A, Alajmi MF, Hassan MI, Sundd M, Ahmad F. Stability of uniformly labeled ( 13C and 15N) cytochrome c and its L94G mutant. Sci Rep 2021; 11:6804. [PMID: 33762670 PMCID: PMC7990917 DOI: 10.1038/s41598-021-86332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c (cyt c) is widely used as a model protein to study (i) folding and stability aspects of the protein folding problem and (ii) structure-function relationship from the evolutionary point of view. Databases of cyts c now contain 285 cyt c sequences from different organisms. A sequence alignment of all these proteins with respect to horse cyt c led to several important conclusions. One of them is that Leu94 is always conserved in all 30 mammalian cyts c. It is known that mutation L94G of the wild type (WT) horse cyt c is destabilizing and mutant exists as molten globule under the native condition (buffer pH 6 and 25 °C). We have expressed and purified uniformly labeled (13C and 15N) and unlabeled WT horse cyt c and its L94G mutant. We report that labeling does not affect the thermodynamic stability of proteins. To support this conclusion, the secondary and tertiary structure of each protein in labeled and unlabeled forms was determined by conventional techniques (UV-Vis absorption and circular dichroism spectroscopy).
Collapse
Affiliation(s)
- Abdullah Naiyer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Bushra Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Monica Sundd
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
5
|
Banerjee A, Kumar A, Ghosh KK, Mitra P. Estimating Change in Foldability Due to Multipoint Deletions in Protein Structures. J Chem Inf Model 2020; 60:6679-6690. [PMID: 33225697 DOI: 10.1021/acs.jcim.0c00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insertions/deletions of amino acids in the protein backbone potentially result in altered structural/functional specifications. They can either contribute positively to the evolutionary process or can result in disease conditions. Despite being the second most prevalent form of protein modification, there are no databases or computational frameworks that delineate harmful multipoint deletions (MPD) from beneficial ones. We introduce a positive unlabeled learning-based prediction framework (PROFOUND) that utilizes fold-level attributes, environment-specific properties, and deletion site-specific properties to predict the change in foldability arising from such MPDs, both in the non-loop and loop regions of protein structures. In the absence of any protein structure dataset to study MPDs, we introduce a dataset with 153 MPD instances that lead to native-like folded structures and 7650 unlabeled MPD instances whose effect on the foldability of the corresponding proteins is unknown. PROFOUND on 10-fold cross-validation on our newly introduced dataset reports a recall of 82.2% (86.6%) and a fall out rate (FR) of 14.2% (20.6%), corresponding to MPDs in the protein loop (non-loop) region. The low FR suggests that the foldability in proteins subject to MPDs is not random and necessitates unique specifications of the deleted region. In addition, we find that additional evolutionary attributes contribute to higher recall and lower FR. The first of a kind foldability prediction system owing to MPD instances and the newly introduced dataset will potentially aid in novel protein engineering endeavors.
Collapse
Affiliation(s)
- Anupam Banerjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kushal Kanti Ghosh
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Naiyer A, Khan B, Islam A, Hassan MI, Sundd M, Ahmad F. Heme-iron ligand (M80-Fe) in cytochrome c is destabilizing: combined in vitro and in silico approaches to monitor changes in structure, stability and dynamics of the protein on mutation. J Biomol Struct Dyn 2020; 40:4122-4139. [PMID: 34043488 DOI: 10.1080/07391102.2020.1853607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Structure, stability and dynamics properties of horse cytochrome c (cyt c) and its genetically engineered M80G mutant have been investigated. The nature of the Met80 axial ligation to heme iron is believed to be the major determinant of the oxidation-reduction reactions inside and outside the cell of a particular cytochrome. This ligation has played an important role in the studies of protein structure, stability and protein folding/unfolding. To understand this ligation better, Met80 of horse cyt c has been mutated to Gly that is unable to bind to the heme iron. We have examined the effect of the M80G mutation on the structure and stability of the WT (wild type) protein by using absorbance spectroscopy, far-UV, near-UV and Soret circular dichroism, fluorescence spectroscopy and differential scanning calorimetry. We have observed that mutation caused a partial loss of secondary and tertiary structure with slightly increased overall stability of the protein. We have also measured the dynamic behavior of WT cyt c and its M80G mutant in the oxidized form (Fe3+) using the essential dynamics (ED) method. A 400 ns MD simulations were run for WT cyt c and its mutant M80G in water using GROMOS96 force field. MD results revealed that the stability and flexibility increased in mutant M80G (Fe…S (Met80) bond removed). Essential dynamics analysis revealed that the first five eigenvectors were mainly involved in overall motions of WT cyt c and its M80G mutant but the amplitude of concerted motions decreased in M80G mutant relative to WT cyt c.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah Naiyer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Bushra Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Monica Sundd
- NMR-II Lab, National Institute of Immunology, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
He L, Zhang R, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Removal of N-terminal tail changes the thermostability of the low-temperature-active exo-inulinase InuAGN25. Bioengineered 2020; 11:921-931. [PMID: 32865156 PMCID: PMC8291819 DOI: 10.1080/21655979.2020.1809921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90–95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation–π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus–function relationships that are useful for rational design of thermostability of exo-inulinases.
Collapse
Affiliation(s)
- Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| |
Collapse
|
8
|
Devi S, Tarique KF, Ali MF, Abdul Rehman SA, Gourinath S. Identification and characterization of Helicobacter pylori O-acetylserine-dependent cystathionine β-synthase, a distinct member of the PLP-II family. Mol Microbiol 2019; 112:718-739. [PMID: 31132312 DOI: 10.1111/mmi.14315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 02/02/2023]
Abstract
O-acetylserine sulfhydrylase (OASS) and cystathionine β-synthase (CBS) are members of the PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these polar residues for selecting substrate L-serine, however, did show activity with OAS.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Public Health Research Institute, Rutgers, Newark, NJ, USA
| | - Mohammad Farhan Ali
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Arif Abdul Rehman
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
9
|
Banerjee A, Levy Y, Mitra P. Analyzing Change in Protein Stability Associated with Single Point Deletions in a Newly Defined Protein Structure Database. J Proteome Res 2019; 18:1402-1410. [PMID: 30735617 DOI: 10.1021/acs.jproteome.9b00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein backbone alternation due to insertion/deletion or mutation operation often results in a change of fundamental biophysical properties of proteins. The proposed work intends to encode the protein stability changes associated with single point deletions (SPDs) of amino acids in proteins. The encoding will help in the primary screening of detrimental backbone modifications before opting for expensive in vitro experimentations. In the absence of any benchmark database documenting SPDs, we curate a data set containing SPDs that lead to both folded conformations and unfolded state. We differentiate these SPD instances with the help of simple structural and physicochemical features and eventually classify the foldability resulting out of SPDs using a Random Forest classifier and an Elliptic Envelope based outlier detector. Adhering to leave one out cross validation, the accuracy of the Random Forest classifier and the Elliptic Envelope is of 99.4% and 98.1%, respectively. The newly defined database and the delineation of SPD instances based on its resulting foldability provide a head start toward finding a solution to the given problem.
Collapse
Affiliation(s)
| | - Yaakov Levy
- Department of Structural Biology , Weizmann Institute of Science , Rehovot 76100 , Israel
| | | |
Collapse
|
10
|
Khan SH, Prakash A, Pandey P, Lynn AM, Islam A, Hassan MI, Ahmad F. Protein folding: Molecular dynamics simulations and in vitro studies for probing mechanism of urea- and guanidinium chloride-induced unfolding of horse cytochrome-c. Int J Biol Macromol 2019; 122:695-704. [DOI: 10.1016/j.ijbiomac.2018.10.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 11/26/2022]
|
11
|
Khan SH, Islam A, Hassan MI, Sharma S, Singh TP, Ahmad F. Effect of conservative mutations (L94V and L94I) on the structure and stability of horse cytochrome c. Arch Biochem Biophys 2017; 633:40-49. [DOI: 10.1016/j.abb.2017.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
12
|
Structural and thermodynamic characterisation of L94F mutant of horse cytochrome c. Int J Biol Macromol 2016; 92:202-212. [DOI: 10.1016/j.ijbiomac.2016.06.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
|
13
|
Khan FI, Bisetty K, Singh S, Permaul K, Hassan MI. Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremophiles 2016; 19:1055-66. [PMID: 26462798 DOI: 10.1007/s00792-015-0792-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/03/2015] [Indexed: 12/30/2022]
Abstract
Chitinases are ubiquitous class of extracellular enzymes, which have gained attention in the past few years due to their wide biotechnological applications. The effectiveness of conventional insecticides is increasingly compromised by the occurrence of resistance; thus, chitinase offers a potential alternative to the use of chemical fungicides. The thermostable enzymes from thermophilic microorganisms have numerous industrial, medical, environmental and biotechnological applications due to their high stability for temperature and pH. Thermomyces lanuginosus produced a large number of chitinases, of which chitinase I and II are successfully cloned and purified recently. Molecular dynamic simulations revealed that the stability of these enzymes are maintained even at higher temperature. In this review article we have focused on chitinases from different sources, mainly fungal chitinase of T. lanuginosus and its industrial application.
Collapse
|
14
|
Zaidi S, Haque MA, Ubaid-ullah S, Prakash A, Hassan MI, Islam A, Batra JK, Ahmad F. Denatured states of yeast cytochrome c induced by heat and guanidinium chloride are structurally and thermodynamically different. J Biomol Struct Dyn 2016; 35:1420-1435. [DOI: 10.1080/07391102.2016.1185039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sobia Zaidi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Anzarul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shah Ubaid-ullah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir (CUK), Sonwar Campus, Srinagar 190004, India
| | - Amresh Prakash
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Janendra K. Batra
- Immunochemistry Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
15
|
Prakash A, Idrees D, Haque MA, Islam A, Ahmad F, Hassan MI. GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach. J Biomol Struct Dyn 2016; 35:1295-1306. [PMID: 27092977 DOI: 10.1080/07391102.2016.1179596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ]222), Trp fluorescence emission at 342 nm (F342) and difference molar absorption coefficient at 287 nm (Δε287) were used to estimate stability parameters, [Formula: see text] (Gibbs free energy change in the absence of GdmCl; Cm (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.
Collapse
Affiliation(s)
- Amresh Prakash
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Danish Idrees
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Anzarul Haque
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
16
|
Anwer K, Rahman S, Sonani RR, Khan FI, Islam A, Madamwar D, Ahmad F, Hassan MI. Probing pH sensitivity of αC-phycoerythrin and its natural truncant: A comparative study. Int J Biol Macromol 2016; 86:18-27. [DOI: 10.1016/j.ijbiomac.2016.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/09/2016] [Accepted: 01/13/2016] [Indexed: 12/13/2022]
|
17
|
Naz H, Shahbaaz M, Haque MA, Bisetty K, Islam A, Ahmad F, Hassan MI. Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies. J Biomol Struct Dyn 2016; 35:463-475. [PMID: 26835540 DOI: 10.1080/07391102.2016.1150203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a multifunctional enzyme which belongs to the Ser/Thr kinase family. CaMKIV plays important role in varieties of biological processes such as gene expression regulation, memory consolidation, bone growth, T-cell maturation, sperm motility, regulation of microtubule dynamics, cell-cycle progression, and apoptosis. To measure stability parameters, urea-induced denaturation of CaMKIV was carried out at pH 7.4 and 25°C, using three different probes, namely far-UV CD, near-UV absorption, and tryptophan fluorescence. A coincidence of normalized denaturation curves of these optical properties suggests that urea-induced denaturation is a two-state process. Analysis of these denaturation curves gave values of 4.20 ± 0.12 kcal mol-1, 2.95 ± 0.15 M, and 1.42 ± 0.06 kcal mol-1 M-1 for [Formula: see text] (Gibbs free energy change (ΔGD) in the absence of urea), Cm (molar urea concentration ([urea]) at the midpoint of the denaturation curve), and m (=∂ΔGD/∂[urea]), respectively. All these experimental observations have been fully supported by 30 ns molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Huma Naz
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Mohd Shahbaaz
- b Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Md Anzarul Haque
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Krishna Bisetty
- b Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Asimul Islam
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
18
|
Idrees D, Prakash A, Haque MA, Islam A, Ahmad F, Hassan MI. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea. J Biomol Struct Dyn 2016; 34:1987-97. [PMID: 26421381 DOI: 10.1080/07391102.2015.1100552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.
Collapse
Affiliation(s)
- Danish Idrees
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Amresh Prakash
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Anzarul Haque
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
19
|
Naz H, Shahbaaz M, Bisetty K, Islam A, Ahmad F, Hassan MI. Effect of pH on the structure, function, and stability of human calcium/calmodulin-dependent protein kinase IV: combined spectroscopic and MD simulation studies. Biochem Cell Biol 2016; 94:221-8. [PMID: 27032767 DOI: 10.1139/bcb-2015-0132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr protein kinase family. It is regulated by the calcium-calmodulin dependent signal through a secondary messenger, Ca(2+), which leads to the activation of its autoinhibited form. The over-expression and mutation in CAMKIV as well as change in Ca(2+) concentration is often associated with numerous neurodegenerative diseases and cancers. We have successfully cloned, expressed, and purified a functionally active kinase domain of human CAMKIV. To observe the effect of different pH conditions on the structural and functional properties of CAMKIV, we have used spectroscopic techniques such as circular diachroism (CD) absorbance and fluorescence. We have observed that within the pH range 5.0-11.5, CAMKIV maintained both its secondary and tertiary structures, along with its function, whereas significant aggregation was observed at acidic pH (2.0-4.5). We have also performed ATPase activity assays under different pH conditions and found a significant correlation between the structure and enzymatic activities of CAMKIV. In-silico validations were further carried out by modeling the 3-dimensional structure of CAMKIV and then subjecting it to molecular dynamics (MD) simulations to understand its conformational behavior in explicit water conditions. A strong correlation between spectroscopic observations and the output of molecular dynamics simulation was observed for CAMKIV.
Collapse
Affiliation(s)
- Huma Naz
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Shahbaaz
- b Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | - Krishna Bisetty
- b Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
20
|
Amir M, Wahiduzzaman, Dar MA, Haque MA, Islam A, Ahmad F, Hassan MI. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. Int J Biol Macromol 2016; 82:471-9. [DOI: 10.1016/j.ijbiomac.2015.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
|
21
|
Purification and characterization of oligonucleotide binding (OB)-fold protein from medicinal plant Tinospora cordifolia. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1008:38-44. [PMID: 26613539 DOI: 10.1016/j.jchromb.2015.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
The oligonucleotide binding fold (OB-fold) is a small structural motif present in many proteins. It is originally named for its oligonucleotide or oligosaccharide binding properties. These proteins have been identified as essential for replication, recombination and repair of DNA. We have successfully purified a protein contains OB-fold from the stem of Tinospora cordifolia, a medicinal plants of north India. Stems were crushed and centrifuged, and fraction obtained at 60% ammonium sulphate was extensively dialyzed and applied to the weak anion exchange chromatography on Hi-Trap DEAE-FF in 50mM Tris-HCl buffer at pH 8.0. Eluted fractions were concentrated and applied to gel filtration column to get pure protein. We observed a single band of 20-kDa on SDS-PAGE. Finally, the protein was identified as OB-fold by MALDI-TOF. The purified OB-fold protein was characterized for its secondary structural elements using circular dichroism (CD) in the far-UV region. Generally the OB-fold has a characteristic feature as five-stranded beta-sheet coiled to form a closed beta- barrel. To estimate its chemical stability, guanidinium chloride-induced denaturation curve was followed by observing changes in the far-UV CD as a function of the denaturant concentration. Analysis of this denaturation curve gave values of 8.90±0.25kcalmol(-1) and 3.78±0.18M for ΔGD° (Gibbs free energy change at 25°C) and Cm (midpoint of denaturation), respectively. To determine heat stability parameters of OB-fold protein, differential scanning calorimetry was performed. Calorimetric values of ΔGD°, Tm (midpoint of denaturation), ΔHm (enthalpy change at Tm), and ΔCp (constant-pressure heat capacity change) are 9.05±0.27kcalmol(-1), 85.2±0,3°C, 105±4kcalmol(-1) and 1.6±0.08kcalmol(-1)K(-1). This is the first report on the isolation, purification and characterization of OB-fold protein from a medicinal plant T. cordifolia.
Collapse
|
22
|
Naz F, Singh P, Islam A, Ahmad F, Imtaiyaz Hassan M. Human microtubule affinity-regulating kinase 4 is stable at extremes of pH. J Biomol Struct Dyn 2015. [PMID: 26208600 DOI: 10.1080/07391102.2015.1074942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of adenosine monophosphate-activated protein kinases, directly associated with cancer and neurodegenerative diseases. Here, we have cloned, expressed, and purified two variants of MARK4 [the kinase domain (MARK4-F2), and kinase domain along with 59 N-terminal residues (MARK4-F1)] and compared their stability at varying pH range. Structural and functional changes were observed by incubating both forms of MARK4 in buffers of different pH. We measured the secondary structure of MARK4 using circular dichroism and tertiary structure by measuring intrinsic fluorescence and absorbance properties along with the size of proteins by dynamic light scattering. We observed that at extremes of pH (below pH 3.5 and above pH 9.0), MARK4 is quite stable. However, a remarkable aggregate formation was observed at intermediate pH (between pH 3.5 and 9.0). To further validate this result, we have modeled both forms of MARK4 and performed molecular dynamics simulation for 15 ns. The spectroscopic observations are in excellent agreement with the findings of molecular dynamics simulation. We also performed ATPase activity at varying pH and found a significant correlation of structure of MARK4 with its enzyme activity. It is interesting to note that both forms of MARK4 are showing a similar pattern of structure changes with reference to pH.
Collapse
Affiliation(s)
- Farha Naz
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Parvesh Singh
- b School of Chemistry and Physics , University of Kwa-Zulu Natal , Chiltern Hill, Durban 4000 , South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
23
|
Rahaman H, Alam Khan MK, Hassan MI, Islam A, Moosavi-Movahedi AA, Ahmad F. Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition. PLoS One 2015; 10:e0120465. [PMID: 25849212 PMCID: PMC4388492 DOI: 10.1371/journal.pone.0120465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022] Open
Abstract
While many proteins are recognized to undergo folding via intermediate(s), the heterogeneity of equilibrium folding intermediate(s) along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD), ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS) were used to study the structural and thermodynamic characteristics of the native (N), denatured (D) and intermediate state (X) of goat cytochorme c (cyt-c) induced by weak salt denaturants (LiBr, LiCl and LiClO4) at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400) and CD ([θ]409), is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG) state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1) that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III) axial bond and Trp59-propionate interactions; (2) that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3) that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1), classical (X2) and disordered (X3), i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.
Collapse
Affiliation(s)
- Hamidur Rahaman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md. Khurshid Alam Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
- * E-mail:
| |
Collapse
|
24
|
Naiyer A, Hassan MI, Islam A, Sundd M, Ahmad F. Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. J Biomol Struct Dyn 2015; 33:2267-84. [PMID: 25586676 DOI: 10.1080/07391102.2014.999354] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR.
Collapse
Affiliation(s)
- Abdullah Naiyer
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi - 110025 , India
| | | | | | | | | |
Collapse
|
25
|
Haque MA, Ubaid-ullah S, Zaidi S, Hassan MI, Islam A, Batra JK, Ahmad F. Characterization of pre-molten globule state of yeast iso-1-cytochrome c and its deletants at pH 6.0 and 25 °C. Int J Biol Macromol 2015; 72:1406-18. [DOI: 10.1016/j.ijbiomac.2014.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
26
|
Haque MA, Zaidi S, Ubaid-ullah S, Prakash A, Hassan MI, Islam A, Batra JK, Ahmad F. In vitro and in silico studies of urea-induced denaturation of yeast iso-1-cytochromecand its deletants at pH 6.0 and 25 °C. J Biomol Struct Dyn 2014; 33:1493-502. [DOI: 10.1080/07391102.2014.958760] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|