1
|
Idrees D, Naqvi AAT, Hassan MI, Ahmad F, Gourinath S. Insight into the Conformational Transitions of Serine Acetyl Transferase Isoforms in E. histolytica: Implications for Structural and Functional Balance. ACS OMEGA 2022; 7:24626-24637. [PMID: 35874230 PMCID: PMC9301732 DOI: 10.1021/acsomega.2c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Serine acetyl transferase (SAT) is one of the crucial enzymes in the cysteine biosynthetic pathway and an essential enzyme for the survival of Entamoeba histolytica, the causative agent of amoebiasis. E. histolytica expresses three isoforms of SAT, where SAT1 and SAT2 are inhibited by the final product cysteine, while SAT3 is not inhibited. SAT3 has a slightly elongated C-terminus compared to SAT1. To understand the stability and conformational transition between two secondary structures of proteins, we measured the effect of urea, a chemical denaturant, on two isoforms of SAT (SAT1 and SAT3) of E. histolytica. The effect of urea on the structure and stability of SAT1 and SAT3 was determined by measuring changes in their far-UV circular dichroism (CD), Trp fluorescence, and near-UV absorption spectra. The urea-induced normal transition curves suggested that the structural transition is reversible and follows a two-state process. Analysis of the urea-induced transition of all optical properties for the stability parameters ΔG D° (Gibbs free energy change (ΔG D) in the absence of urea), m (dependence of ΔG D on urea concentration), and C m (midpoint of urea transition) suggested that SAT1 is more stable than SAT3. Characterization of the end product of the urea-induced transition of both proteins by the far-UV CD and Trp-fluorescence and near-UV absorbance suggested that urea causes α-helix to β-sheet transition and burial of Trp residues, respectively. To support the in vitro findings, 100 ns molecular dynamics simulations (in silico study) were performed. Both the spectroscopic and molecular dynamics approaches clearly indicated that SAT1 is more stable than SAT3. SAT3 has evolved to escape the feedback inhibition to keep producing cysteine, but in the process, it compromises its structural stability relative to SAT1.
Collapse
Affiliation(s)
- Danish Idrees
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Faculty
of Allied Health Sciences, Shree Guru Gobind
Tricentenary University, Gurugram, Harayana 122505, India
| | | | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Department
of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Samudrala Gourinath
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Chetri PB, Shukla R, Khan JM, Padhi AK, Tripathi T. Unraveling the structural basis of urea-induced unfolding of Fasciola gigantica cytosolic malate dehydrogenase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Yousuf M, Shamsi A, Anjum F, Shafie A, Islam A, Haque QMR, Elasbali AM, Yadav DK, Hassan MI. Effect of pH on the structure and function of cyclin-dependent kinase 6. PLoS One 2022; 17:e0263693. [PMID: 35148332 PMCID: PMC8836317 DOI: 10.1371/journal.pone.0263693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth, development, cell metabolism, inflammation, and apoptosis. Its overexpression is associated with reprogramming glucose metabolism through alternative pathways and apoptosis, which ultimately plays a significant role in cancer development. In the present study, we have investigated the structural and conformational changes in CDK6 at varying pH employing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at extremely acidic conditions (pH 2.0–4.0), the secondary structure of CDK6 got significantly disrupted, leading to aggregates formation. These aggregates were further characterized by employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes were observed over the alkaline pH range (pH 7.0–11.0). Further, fluorescence and UV spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary structure remains intact over the entire alkaline range. Additionally, enzyme assay provided an insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH range of 7.0–8.0. This study will provide a platform that provides newer insights into the pH-dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased conditions, viz. different types of cancers where changes in pH contribute to cancer development.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City, South Korea
- * E-mail: (DKY); (MIH)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail: (DKY); (MIH)
| |
Collapse
|
4
|
Mutation in the CX3C Motif of G Protein Disrupts Its Interaction with Heparan Sulfate: A Calorimetric, Spectroscopic, and Molecular Docking Study. Int J Mol Sci 2022; 23:ijms23041950. [PMID: 35216066 PMCID: PMC8880246 DOI: 10.3390/ijms23041950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in children and infants. To date, there is no effective vaccine available against RSV. Heparan sulfate is a type of glycosaminoglycan that aids in the attachment of the RSV to the host cell membrane via the G protein. In the present study, the effect of amino acid substitution on the structure and stability of the ectodomain G protein was studied. Further, it was investigated whether mutation (K117A) in the CX3C motif of G protein alters the binding with heparan sulfate. The point mutation significantly affects the conformational stability of the G protein. The mutant protein showed a low binding affinity with heparan sulfate as compared to the wild-type G protein, as determined by fluorescence quenching, isothermal titration calorimetry (ITC), and molecular docking studies. The low binding affinity and decreased stability suggested that this mutation may play an important role in prevention of attachment of virion to the host cell receptors. Collectively, this investigation suggests that mutation in the CX3C motif of G protein may likely improve the efficacy and safety of the RSV vaccine.
Collapse
|
5
|
Structural Characterization of Ectodomain G Protein of Respiratory Syncytial Virus and Its Interaction with Heparan Sulfate: Multi-Spectroscopic and In Silico Studies Elucidating Host-Pathogen Interactions. Molecules 2021; 26:molecules26237398. [PMID: 34885979 PMCID: PMC8658883 DOI: 10.3390/molecules26237398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023] Open
Abstract
The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) ↔ denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host–pathogen interaction.
Collapse
|
6
|
Das Mahapatra A, Queen A, Yousuf M, Khan P, Hussain A, Rehman MT, Alajmi MF, Datta B, Hassan MI. Design and development of 5-(4H)-oxazolones as potential inhibitors of human carbonic anhydrase VA: towards therapeutic management of diabetes and obesity. J Biomol Struct Dyn 2020; 40:3144-3154. [DOI: 10.1080/07391102.2020.1845803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aarfa Queen
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Naqvi AAT, Jairajpuri DS, Hussain A, Hasan GM, Alajmi MF, Hassan MI. Impact of glioblastoma multiforme associated mutations on the structure and function of MAP/microtubule affinity regulating kinase 4. J Biomol Struct Dyn 2020; 39:1781-1794. [DOI: 10.1080/07391102.2020.1738959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Afreen S, Idrees D, Khera R, Amir M, Hassan MI, Mishra S. Investigation of the role of central metal ion of Cyathus bulleri laccase 1 using guanidinium chloride-induced denaturation. Int J Biol Macromol 2019; 132:994-1000. [DOI: 10.1016/j.ijbiomac.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/09/2023]
|
9
|
Naqvi AAT, Alajmi MF, Rehman T, Hussain A, Hassan I. Effects of Pro1266Leu mutation on structure and function of glycoprotein Ib binding domain of von Willebrand factor. J Cell Biochem 2019; 120:17847-17857. [PMID: 31135071 DOI: 10.1002/jcb.29052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both "loss as well as gain of function" mutations observed in this domain. Naturally occurring "gain of function" mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These "gain of function" mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the "gain of function" effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Tabish Rehman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
10
|
Sonkar A, Shukla H, Shukla R, Kalita J, Tripathi T. Unfolding of Acinetobacter baumannii MurA proceeds through a metastable intermediate: A combined spectroscopic and computational investigation. Int J Biol Macromol 2019; 126:941-951. [DOI: 10.1016/j.ijbiomac.2018.12.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
11
|
Beg A, Khan FI, Lobb KA, Islam A, Ahmad F, Hassan MI. High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. J Biomol Struct Dyn 2018; 37:2179-2192. [PMID: 30044185 DOI: 10.1080/07391102.2018.1479310] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (-11.6 to -10.0 kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anam Beg
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faez Iqbal Khan
- b Computational Mechanistic Chemistry and Drug Discovery , Rhodes University , Grahamstown , South Africa
| | - Kevin A Lobb
- b Computational Mechanistic Chemistry and Drug Discovery , Rhodes University , Grahamstown , South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
12
|
Implication of sulfonylurea derivatives as prospective inhibitors of human carbonic anhydrase II. Int J Biol Macromol 2018; 115:961-969. [DOI: 10.1016/j.ijbiomac.2018.04.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023]
|
13
|
Prakash A, Kumar V, Meena NK, Lynn AM. Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv 2018; 8:19835-19845. [PMID: 35548664 PMCID: PMC9088055 DOI: 10.1039/c8ra03368d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
The N-terminal domain of the RNA binding protein TDP-43 (NTD) is essential to both physiology and proteinopathy; however, elucidation of its folding/unfolding still remains a major quest. In this study, we have investigated the biophysical behavior of intermediate ensembles employing all-atom molecular dynamics simulations in 8 M urea accelerated with high temperatures to achieve unfolded states in a confined computation time. The cumulative results of the 2.75 μs simulations show that unfolding of the NTD at 350 K evolves through different stable and meta-stable intermediate states. The free-energy landscape reveals two meta-stable intermediates (IN and IU) stabilized by non-native interactions, which are largely hydrophilic and highly energetically frustrated. A single buried tryptophan residue, W80, undergoes solvent exposure to different extents during unfolding; this suggests a structurally heterogeneous population of intermediate ensembles. Furthermore, the structure properties of the IN state show a resemblance to the molten globule (MG) state with most of the secondary structures intact. The unfolding of the NTD is initiated by the loss of β-strands, and the unfolded (U) states exhibit a population of non-native α-helices. These non-native unfolded intermediate ensembles may mediate protein oligomerization, leading to the formation of pathological, irreversible aggregates, characteristics of disease pathogenesis.
Collapse
Affiliation(s)
- Amresh Prakash
- School of Computational & Integrative Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
14
|
Syed SB, Shahbaaz M, Khan SH, Srivastava S, Islam A, Ahmad F, Hassan MI. Estimation of pH effect on the structure and stability of kinase domain of human integrin-linked kinase. J Biomol Struct Dyn 2018; 37:156-165. [DOI: 10.1080/07391102.2017.1420492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sunayana Begum Syed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Shahbaaz
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Sabab Hassan Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saurabha Srivastava
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
15
|
Idrees D, Rahman S, Shahbaaz M, Haque MA, Islam A, Ahmad F, Hassan MI. Estimation of thermodynamic stability of human carbonic anhydrase IX from urea-induced denaturation and MD simulation studies. Int J Biol Macromol 2017; 105:183-189. [DOI: 10.1016/j.ijbiomac.2017.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022]
|
16
|
Prakash A, Dixit G, Meena NK, Singh R, Vishwakarma P, Mishra S, Lynn AM. Elucidation of stable intermediates in urea-induced unfolding pathway of human carbonic anhydrase IX. J Biomol Struct Dyn 2017; 36:2391-2406. [DOI: 10.1080/07391102.2017.1355847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amresh Prakash
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gunjan Dixit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Naveen Kumar Meena
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruhar Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
17
|
Khan P, Shandilya A, Jayaram B, Islam A, Ahmad F, Hassan MI. Effect of pH on the stability of hemochromatosis factor E: a combined spectroscopic and molecular dynamics simulation-based study. J Biomol Struct Dyn 2016; 35:1582-1598. [PMID: 27174123 DOI: 10.1080/07391102.2016.1189359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hereditary hemochromatosis is an iron overburden condition, which is mainly governed by hereditary hemochromatosis factor E (HFE), a member of major histocompatibility complex class I. To understand the effect of pH on the structure and stability of HFE, we have cloned, expressed, and purified the HFE in the bacterial system and performed circular dichroism, fluorescence, and absorbance measurements at a wide pH range (pH 3.0-11.0). We found that HFE remains stable in the pH range 7.5-11.0 and gets completely acid denatured at low pH values. In this work, we also analyzed the contribution of salt bridges to the stability of HFE. We further performed molecular dynamics simulations for 80 ns at different pH values. An excellent agreement was observed between results from biophysical and MD simulation studies. At lower pH, HFE undergoes denaturation and may be driven toward a degradation pathway, such as ubiquitination. Hence, HFE is not available to bind again with transferrin receptor1 to negatively regulate iron homeostasis. Further we postulated that, might be low pH of cancerous cells helps them to meet their high iron requirement.
Collapse
Affiliation(s)
- Parvez Khan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi 110025 , India
| | - Ashutosh Shandilya
- b Department of Chemistry , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - B Jayaram
- b Department of Chemistry , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi 110025 , India
| |
Collapse
|
18
|
Prakash A, Idrees D, Haque MA, Islam A, Ahmad F, Hassan MI. GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach. J Biomol Struct Dyn 2016; 35:1295-1306. [PMID: 27092977 DOI: 10.1080/07391102.2016.1179596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ]222), Trp fluorescence emission at 342 nm (F342) and difference molar absorption coefficient at 287 nm (Δε287) were used to estimate stability parameters, [Formula: see text] (Gibbs free energy change in the absence of GdmCl; Cm (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.
Collapse
Affiliation(s)
- Amresh Prakash
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Danish Idrees
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Anzarul Haque
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
19
|
Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 2016; 35:105-118. [PMID: 26727234 DOI: 10.1080/07391102.2015.1134346] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ras-related protein (Rab-5a) is primarily involved in the regulation of early endosome fusion during endocytosis and takes part in the budding process. During GTP hydrolysis, Rab5a was spotted in the cytoplasmic side of early endosomes in association with the GTP. Previous study suggested that the substitution of alanine with proline at position 30 of Rab5a reduces the GTPase activity around 12-fold, while, with arginine substitution stimulates the intrinsic GTP hydrolysis by 5-fold. Most of the other substitutions at this position show a little or no effect on the GTPase activity. In this paper, structure analysis and molecular dynamics (MD) simulation studies of human Rab5a and its mutants have been extensively carried out. The effect of binding of a non-hydrolyzable GTP analog guanosine-5'-(β, γ)-imidotriphosphate (GppNHp) with Rab5a and its mutants are described. The objective of the current study is to perform a detailed examination of structural flexibility of Rab5a and its mutants p.Ala30Pro and p.Ala30Arg using MD simulations. Our observations suggest that mutant p.Ala30Arg stabilize the protein molecule when bound to GppNHp which offers additional contacts. Despite an in silico approach, this study provides a deep insight into the impact of mutation on the structure, function, stability, and mechanism of binding of GppNHp to the Rab5a at molecular level.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Mohd Aamir
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Dong-Qing Wei
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Faizan Ahmad
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| |
Collapse
|
20
|
Idrees D, Shahbaaz M, Bisetty K, Islam A, Ahmad F, Hassan MI. Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA. J Biomol Struct Dyn 2016; 35:449-461. [PMID: 26828699 DOI: 10.1080/07391102.2016.1149097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0-pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of kcat and kcat/Km at pH 9.0 are 3.7 × 106 s-1 and 5.5 × 107 M-1 s-1, respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.
Collapse
Affiliation(s)
- Danish Idrees
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 , India
| | - Mohd Shahbaaz
- b Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Krishna Bisetty
- b Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Asimul Islam
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
21
|
Naz H, Shahbaaz M, Haque MA, Bisetty K, Islam A, Ahmad F, Hassan MI. Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies. J Biomol Struct Dyn 2016; 35:463-475. [PMID: 26835540 DOI: 10.1080/07391102.2016.1150203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a multifunctional enzyme which belongs to the Ser/Thr kinase family. CaMKIV plays important role in varieties of biological processes such as gene expression regulation, memory consolidation, bone growth, T-cell maturation, sperm motility, regulation of microtubule dynamics, cell-cycle progression, and apoptosis. To measure stability parameters, urea-induced denaturation of CaMKIV was carried out at pH 7.4 and 25°C, using three different probes, namely far-UV CD, near-UV absorption, and tryptophan fluorescence. A coincidence of normalized denaturation curves of these optical properties suggests that urea-induced denaturation is a two-state process. Analysis of these denaturation curves gave values of 4.20 ± 0.12 kcal mol-1, 2.95 ± 0.15 M, and 1.42 ± 0.06 kcal mol-1 M-1 for [Formula: see text] (Gibbs free energy change (ΔGD) in the absence of urea), Cm (molar urea concentration ([urea]) at the midpoint of the denaturation curve), and m (=∂ΔGD/∂[urea]), respectively. All these experimental observations have been fully supported by 30 ns molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Huma Naz
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Mohd Shahbaaz
- b Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Md Anzarul Haque
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Krishna Bisetty
- b Department of Chemistry , Durban University of Technology , Durban 4000 , South Africa
| | - Asimul Islam
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
22
|
Naz H, Shahbaaz M, Bisetty K, Islam A, Ahmad F, Hassan MI. Effect of pH on the structure, function, and stability of human calcium/calmodulin-dependent protein kinase IV: combined spectroscopic and MD simulation studies. Biochem Cell Biol 2016; 94:221-8. [PMID: 27032767 DOI: 10.1139/bcb-2015-0132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr protein kinase family. It is regulated by the calcium-calmodulin dependent signal through a secondary messenger, Ca(2+), which leads to the activation of its autoinhibited form. The over-expression and mutation in CAMKIV as well as change in Ca(2+) concentration is often associated with numerous neurodegenerative diseases and cancers. We have successfully cloned, expressed, and purified a functionally active kinase domain of human CAMKIV. To observe the effect of different pH conditions on the structural and functional properties of CAMKIV, we have used spectroscopic techniques such as circular diachroism (CD) absorbance and fluorescence. We have observed that within the pH range 5.0-11.5, CAMKIV maintained both its secondary and tertiary structures, along with its function, whereas significant aggregation was observed at acidic pH (2.0-4.5). We have also performed ATPase activity assays under different pH conditions and found a significant correlation between the structure and enzymatic activities of CAMKIV. In-silico validations were further carried out by modeling the 3-dimensional structure of CAMKIV and then subjecting it to molecular dynamics (MD) simulations to understand its conformational behavior in explicit water conditions. A strong correlation between spectroscopic observations and the output of molecular dynamics simulation was observed for CAMKIV.
Collapse
Affiliation(s)
- Huma Naz
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Shahbaaz
- b Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | - Krishna Bisetty
- b Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|