1
|
Rathi A, Noor S, Sulaimani MN, Ahmed S, Taiyab A, AlAjmi MF, Khan FI, Hassan MI, Haque MM. FDA-approved drugs as PIM-1 kinase inhibitors: A drug repurposed approach for cancer therapy. Int J Biol Macromol 2025; 292:139107. [PMID: 39722389 DOI: 10.1016/j.ijbiomac.2024.139107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
PIM-1 kinase, a member of the Serine/Threonine kinase family, has emerged as a promising therapeutic target in various cancers due to its role in promoting tumor growth and resistance to conventional therapies. In this study, we employed a structure-based approach to screen 3800 FDA-approved drugs to discover potential inhibitors of PIM-1. After an initial selection of 50 candidates based on high docking scores, four drugs, stanozolol, alfaxalone, rifaximin, and telmisartan, were identified as strong PIM-1 binders, interacting with key residues in the ATP-binding pocket of the kinase. To assess the stability of these interactions, we conducted all-atom molecular dynamic simulations, confirming favorable dynamics. Experimental validation via a kinase inhibition assay on recombinant PIM-1 showed that rifaximin significantly inhibited PIM-1 activity, with an IC50 of ∼26 μM. Fluorescence binding assays further demonstrated a strong binding affinity for rifaximin, with a binding constant, corroborated by isothermal titration calorimetry studies. Our findings suggest that rifaximin may serve as a potential repurposed drug for targeting PIM-1 in cancer treatment. However, further validations are required in a clinical setting before the final therapeutic implications.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faez Iqbal Khan
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Annamalai Ramalakshmi N, Thirunavukkarasu MK, Shaik F, Navami K, Golgodu Krishnamurthy R. AI-assisted computational screening and docking simulation prioritize marine natural products for small-molecule PCSK9 inhibition. Curr Res Transl Med 2025; 73:103498. [PMID: 39938184 DOI: 10.1016/j.retram.2025.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
SARS-CoV-2 infection has been associated with long-term cardiovascular complications including myocarditis and heart failure, as well as central nervous system sequelae such as cognitive dysfunction and neuropathy. Proprotein convertase subtilisin/Kexin type 9 (PCSK9), a hepatic protease involved in cholesterol regulation, has shown associations with a spectrum of diseases potentially relevant to these Covid-19 complications, such as atherosclerosis. To identify novel human PCSK9 inhibitors, a custom virtual screening pipeline was developed employing (1) a convolutional neural network-based deep learning model, (2) molecular docking using Schrödinger with Glide scoring function, and (3) molecular dynamics (MD) simulations with Gibbs Free Energy Landscape analysis. The deep learning model was trained on a dataset of known central nervous system, cardiovascular, and anti-inflammatory acting drugs and used to screen the CMNPD database. Docking simulations were performed on shortlisted candidates, followed by MD simulations and free energy landscape analysis to evaluate binding affinities and identify key interaction residues. This multi-step in-silico approach identified promising PCSK9 inhibitor candidates with favorable binding profiles, suggesting that AI-assisted virtual screening can be a powerful tool for discovering novel therapeutic agents.
Collapse
Affiliation(s)
| | | | - Fayaz Shaik
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Navami
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut 673601, India
| | | |
Collapse
|
3
|
Hussain A, Mohammad T, Gulzar M, Alajmi MF, Yadav DK, Hassan MI. Phytochemicals Withanolide N and Dryobalanolide as Potential Bioactive Leads for Developing Anticancer Drugs Targeting Tyrosine-Protein Kinase Mer. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:60-71. [PMID: 39792454 DOI: 10.1089/omi.2024.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
There is a growing interest in harnessing natural compounds and bioactive phytochemicals to accelerate drug discovery and development, including in the treatment of human cancers. Receptor tyrosine kinases (RTKs) are critical regulators of many fundamental cellular processes and have been implicated in cancer pathogenesis as well as targets for anticancer drug development. The members of TAM, Tyro3, Axl, and MERTK subfamily RTKs, especially Mer, affect immune homeostasis in the tumor microenvironment. Hence, tyrosine-protein kinase Mer has emerged as one of the key factors in cancer susceptibility and metastasis and, by extension, as a potential target of relevance for cancer drug resistance. Here, we report, using an integrated virtual screening and simulation of phytochemicals from the IMPPAT 2.0 library, phytochemicals withanolide N and dryobalanolide as potential bioactive leads for developing anticancer drugs targeting tyrosine-protein kinase Mer. The study employed an integrated design, including physicochemical property analyses, binding affinity calculations, pan-assay interference compounds filtering, absorption, distribution, metabolism, excretion, and toxicity, and PASS analyses, in silico molecular dynamics simulations, followed by principal component analysis and free energy landscape. We call for further evaluation, validation, and translational medical research on these two phytochemicals in vitro and in vivo, with an eye to their putative therapeutic efficacy and safety in the field of oncology and anticancer drug discovery and development.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Sulaimani MN, Ahmed S, Anjum F, Mohammad T, Shamsi A, Dohare R, Hassan MI. Structure-guided identification of mitogen-activated protein kinase-1 inhibitors towards anticancer therapeutics. PLoS One 2025; 20:e0311954. [PMID: 39854344 PMCID: PMC11760640 DOI: 10.1371/journal.pone.0311954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/27/2024] [Indexed: 01/26/2025] Open
Abstract
Mitogen-activated protein kinase 1 (MAPK1) is a serine/threonine kinase that plays a crucial role in the MAP kinase signaling transduction pathway. This pathway plays a crucial role in various cellular processes, including cell proliferation, differentiation, adhesion, migration, and survival. Besides, many chemotherapeutic drugs targeting the MAPK pathway are used in clinical practice, and novel inhibitors of MAPK1 with improved specificity and efficacy are required. Hence, targeting MAPK1 can be crucial to control metastasis in cancer therapeutics. In this study, we utilized a structure-guided virtual screening approach to screen a library of thousands of natural compounds from the ZINC database. The Lipinski rule of five (RO5) was used as a criterion for the primary selection of natural compounds. The screened compounds were prioritized based on their binding affinity, docking scores, and specificity towards the kinase domain of MAPK1 during the molecular docking process. Subsequently, the selected hits underwent rigorous screening that included the identification of potential pan-assay interference compounds (PAINS), ADMET evaluation, and prediction of pharmacological activities using PASS analysis. Afterwards, we performed a comprehensive interaction analysis to explore the binding prototypes of the screened molecules with the key residues within the MAPK1 kinase domain. Finally, selected molecules underwent extensive all-atom molecular dynamics (MD) simulations for a time duration of 200 nanoseconds. The study pinpointed three natural compounds with ZINC database IDs ZINC0209285, ZINC02130647, and ZINC02133691 as potential inhibitors of MAPK1. The study highlights that these compounds could be explored further in preclinical and clinical investigations to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shazia Ahmed
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Majumdar S, Pramanik A. Exploring the efficacy of some biologically active compounds as anti-hypertensive drugs: an insightful evaluation through DFT, molecular docking and molecular dynamics simulations. In Silico Pharmacol 2024; 13:4. [PMID: 39726903 PMCID: PMC11668705 DOI: 10.1007/s40203-024-00291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Among different anti-hypertensive drugs, calcium channel blockers and human angiotensin-converting enzyme (ACE) inhibitors are the two main types. Herein, we took 25 biologically active ligands with potent anti-hypertensive activities and performed molecular docking studies with the human ACE receptor (PDB ID 1O8A) and human leukocyte antigens (HLA) complex, human voltage-dependent calcium channel alpha1 subunit (PDB ID 3LV3). Beforehand, we had performed density functional theory (DFT) studies to find out their structure-property relationships. In-silico ADMET studies were conducted, and we found that all 25 ligands follow Lipinski's Rule of 5, which confirms their oral bioavailability and high gastrointestinal absorption as a drug. Finally, molecular dynamics (MD) simulation studies were performed for the two top-scored drugs for 100 ns which reveal that a strong influence of the ligand (flunarizine) is there over the respective proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00291-4.
Collapse
Affiliation(s)
- Sourav Majumdar
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104 India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104 India
| |
Collapse
|
6
|
Aziz M, Ejaz SA, Channar PA, Alkhathami AG, Qadri T, Hussain Z, Hussaain M, Ujan R. Identification of dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4) as antagonist of NEK-Family: a future for potential drug discovery. BMC Cancer 2024; 24:1521. [PMID: 39696038 DOI: 10.1186/s12885-024-13269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
The purpose of the current study was to analyze and validate the existing gap in knowledge, by conducting a differential expression analysis and validation of NEK6, NEK7, and NEK9 in breast, cervical, and glioblastoma cancer and targeting these proteins through development of novel site specific inhibitor with favorable pharmacokinetic and safety profile, using open-source databases. The analysis revealed that the targeted kinases were overexpressed in all three types of cancer. Their expression was significantly linked to overall survival rates, which suggests that they play a major role in the development and progression of these cancers. After, having the prognostic importance of These findings provided a rationale for synthesizing novel compound i.e., dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4)), capable of effectively targeting these proteins using in-vitro cytotoxicity assays and comprehensive computational approaches. Then the inhibitory potential of TAJ4 was evaluated against cell lines of the respective cancers (HeLa cells, MCF-7 cells, and Vero cells). The growth inhibitory values (GI50) suggested that TAJ4 exhibited strong inhibitory potential towards MCF-7 cells (GI50 = 3.18 ± 0.11 µM) in comparison to the HeLa cell line (GI50 = 8.12 ± 0.43 µM), surpassing that of standard drugs. Furthermore, in-silico investigations, including density functional theory (DFT) calculations and molecular docking studies, revealed a substantial reactivity profile of TAJ4, with promising molecular interactions against NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins. Further investigation using in-vitro and in-vivo approaches is recommended to fully establish the therapeutic efficacy and safety profile of TAJ4.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi, Karachi, 74800, Pakistan
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O.Box 61413, Abha, 9088, Saudi Arabia
| | - Tahir Qadri
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Mumtaz Hussaain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
7
|
Almufarriji FM, Alotaibi BS, Alamri AS, Alkhalil SS, Alkhorayef N. Structure-guided identification of potential inhibitors of MurB from S. typhimurium LT2 strain: towards therapeutic development against multidrug resistance. Mol Divers 2024:10.1007/s11030-024-11069-3. [PMID: 39673564 DOI: 10.1007/s11030-024-11069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
MurB or UDP-N-acetylenolpyruvoylglucosamine reductase (EC 1.3.1.98) is involved in the synthesis of bacterial cell walls of Salmonella typhimurium LT2 as it catalyzes one of the reactions in the formation of peptidoglycan. Since the enzyme is required for bacterial survival and is not present in humans, this makes it an ideal drug target, for multidrug resistance (MDR) strains. Thus, we proceeded with the identification of novel inhibitors of MurB that could overcome the existing resistance. The potential leads were identified from the PubChem library by selecting compounds with high structural similarity to the known inhibitors of MurB. These compounds were then taken through molecular docking studies and were further assessed based on physicochemical and ADMET characteristics. Regarding binding efficiency and drug-likeliness, two hit molecules with PubChem CID:10416900 and CID:14163894 were identified against MurB. Both compounds were closely bound to the MurB active site and did not induce any substantial structural changes in the MurB structure during all-atom molecular dynamics (MD) simulations and MM-PBSA studies. These compounds showed higher potential than the existing inhibitors and stood out as promising leads for the development of therapeutic inhibitors of MurB. The findings of the study, therefore, point to the viability of these compounds in the treatment of bacterial infections, thus enhancing the quality of patient care and disease management. More studies and experimental validation are required to explore their clinical use to the optimum.
Collapse
Affiliation(s)
- Fawaz M Almufarriji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia.
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Ahlam Saleh Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Zainulabidin AA, Sufyan AJ, Thirunavukkarasu MK. Triple-Action Therapy: Combining Machine Learning, Docking, and Dynamics to Combat BRCA1-Mutated Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01328-x. [PMID: 39589461 DOI: 10.1007/s12033-024-01328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Breast cancer dominates women's mortality, and among other factors, mutations in the BRCA1 gene are significant risk factors. Several approaches are followed to treat the BRCA1 affected cancer patients. However, specific BRCA1 inhibitors are not available till date due to its structural complexity. In addition, there are several limitations associated with the existing drugs used to treat BRCA1-related breast cancer and some side effects. The side effects include symptoms such as hot flashes, joint pain, nausea, fatigue, hair loss, diarrhea, chills, fever, and others. Therefore, advanced approaches needed that can overcome all the limitations and side effects of the current inhibitors. In this study, we adopted a multistep approach to identify potential inhibitors for BRCA1-mutated breast cancer. We used our developed machine learning models to screen potential inhibitors. Molecular docking approach was carried out for the screened hit compounds with BRCA1 and its mutated forms. Two ligands, β-amyrin and Narirutin, has shown significant performance in multiple scoring schemes such as molecular docking and RF score calculations. Molecular dynamics simulations demonstrated the stability of the complexes formed by β-amyrin and Narirutin with BRCA1, with lower RMSD values and less RMSF fluctuations at the binding site locations. Principal component analysis (PCA) and free energy landscape (FEL) further confirmed the compactness and favorable binding of β-Amyrin and Narirutin to BRCA1. These findings suggest that β-amyrin and Narirutin have potential as therapeutic agents against BRCA1-mutated breast cancer.
Collapse
Affiliation(s)
| | - Aminu Jibril Sufyan
- School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India
| | | |
Collapse
|
9
|
Alotaibi BS, Hakami MA, Jawaid T, Alshammari N, Binsuwaidan R, Adnan M. Identification of potential Escherichia coli DNA gyrase B inhibitors targeting antibacterial therapy: an integrated docking and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:8885-8896. [PMID: 37608545 DOI: 10.1080/07391102.2023.2249117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
The alarming rise in the rate of antibiotic resistance is a matter of significant concern. DNA gyrase B (GyrB), a critical bacterial enzyme involved in DNA replication, transcription, and recombination, has emerged as a promising target for antibacterial agents. Inhibition of GyrB disrupts bacterial DNA replication, leading to cell death, making it an attractive candidate for antibiotic development. Although several classes of antibiotics targeting GyrB are currently in clinical use, the emergence of antibiotic resistance necessitates the exploration of novel inhibitors. In this study, we aimed to identify potential Escherichia coli GyrB inhibitors from a database of phytoconstituents sourced from Indian medicinal plants. Utilizing virtual screening, we performed a rigorous search to identify compounds with the most promising inhibitory properties against GyrB. Two compounds, namely Zizogenin and Cucurbitacin S, were identified based on their favorable drug likeliness and pharmacokinetic profiles. Employing advanced computational techniques, we analyzed the binding interactions of Zizogenin and Cucurbitacin S with the ATP-binding site of GyrB through molecular docking simulations. Both compounds exhibited robust binding interactions, evidenced by their high docking energy scores. To assess the stability of these interactions, we conducted extensive 100 ns molecular dynamics (MD) simulations, which confirmed the stability of Zizogenin and Cucurbitacin S when bound to GyrB. In conclusion, our study highlights Zizogenin and Cucurbitacin S as promising candidates for potential antibacterial agents targeting GyrB. Experimental validation of these compounds is warranted to further explore their efficacy and potential as novel antibiotics to combat antibiotic-resistant bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Hail, Saudi Arabia
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Hail, Saudi Arabia
| |
Collapse
|
10
|
Basu T, Upadhyay AK. In silico study of novel alpha tocopheroids as effective inhibitors of aldo-keto reductase 1c3 (AKR1C3) enzyme. J Biomol Struct Dyn 2024; 42:7715-7729. [PMID: 37534497 DOI: 10.1080/07391102.2023.2241543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a monomeric enzyme expressed in steroidogenic tissues such as the testis, prostate, uterus, and breast. Overexpression of this AKR1C3 is associated with vast cancers such as breast, colon, colorectal, endometrial, prostate, and acute myeloid leukaemia. Regarding the treatment of castration-resistant prostate cancer, breast cancer, and acute myeloid leukaemia, AKR1C3 inhibitors may offer clear advantages over currently available therapies. Thus, discovering novel and specific AKR1C3 inhibitors is a promising way to obstruct drug resistance in cancer. Derivatives of alpha-tocopherol and alpha-tocopheroids were selected as possible therapeutics to act as AKR1C3 inhibitors. The precise targets of several ligands were determined using computational screening methods. The molecular structure of AKR1C3 and its ligands were used as the foundation for in silico predictions, modelling, and dynamic simulations. Compounds were selected based on their biological properties and filtered according to their ADMET and drug-likeness properties. Additionally, simulations of all-atom molecular dynamics on AKR1C3 with the cleared compounds revealed stability over the simulated trajectories of 100 ns. When seen collectively, alpha-tocospiro A may be considered prospective AKR1C3 inhibitors for creating anticancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanmayee Basu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
11
|
Brankiewicz-Kopcinska W, Kallingal A, Krzemieniecki R, Baginski M. Targeting shelterin proteins for cancer therapy. Drug Discov Today 2024; 29:104056. [PMID: 38844065 DOI: 10.1016/j.drudis.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.
Collapse
Affiliation(s)
- Wioletta Brankiewicz-Kopcinska
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
12
|
Elasbali AM, Al-Soud WA, Elfaki EM, Alanazi HH, Alharbi B, Alharethi SH, Anwer K, Mohammad T, Hassan MI. Identification of novel c-Kit inhibitors from natural sources using virtual screening and molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:5982-5994. [PMID: 37403288 DOI: 10.1080/07391102.2023.2231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
The Mast/Stem cell growth factor receptor Kit (c-Kit), a Proto-oncogene c-Kit, is a tyrosine-protein kinase involved in cell differentiation, proliferation, migration, and survival. Its role in developing certain cancers, particularly gastrointestinal stromal tumors (GISTs) and acute myeloid leukemia (AML), makes it an attractive therapeutic target. Several small molecule inhibitors targeting c-Kit have been developed and approved for clinical use. Recent studies have focused on identifying and optimizing natural compounds as c-Kit inhibitors employing virtual screening. Still, drug resistance, off-target side effects, and variability in patient response remain significant challenges. From this perspective, phytochemicals could be an important resource for discovering novel c-Kit inhibitors with less toxicity, improved efficacy, and high specificity. This study aimed to uncover possible c-Kit inhibitors by utilizing a structure-based virtual screening of active phytoconstituents from Indian medicinal plants. Through the screening stages, two promising candidates, Anilinonaphthalene and Licoflavonol, were chosen based on their drug-like features and ability to bind to c-Kit. These chosen candidates were subjected to all-atom molecular dynamics (MD) simulations to evaluate their stability and interaction with c-Kit. The selected compounds Anilinonaphthalene from Daucus carota and Licoflavonol from Glycyrrhiza glabra showed their potential to act as selective binding partners of c-Kit. Our results suggest that the identified phytoconstituents could serve as a starting point to develop novel c-Kit inhibitors for developing new and effective therapies against multiple cancers, including GISTs and AML. The use of virtual screening and MD simulations provides a rational approach to discovering potential drug candidates from natural sources.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakakah, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakakah, Saudi Arabia
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Bandar Alharbi
- Department of Clinical Laboratory, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Khalid Anwer
- Department of Botany, C. M. Science College, L. N. Mithila University, Darbhanga, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Almoyad MAA, Wahab S, Ansari MN, Ahmad W, Hani U, Chandra S. Predictive insights into plant-based compounds as fibroblast growth factor receptor 1 inhibitors: a combined molecular docking and dynamics simulation study. J Biomol Struct Dyn 2024:1-10. [PMID: 38669200 DOI: 10.1080/07391102.2024.2335297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The discovery of novel therapeutic agents with potent anticancer activity remains a critical challenge in drug development. Natural products, particularly bioactive phytoconstituents derived from plants, have emerged as promising sources for anticancer drug discovery. In this study, we used virtual screening techniques to explore the potential of bioactive phytoconstituents as inhibitors of fibroblast growth factor receptor 1 (FGFR1), a key signaling protein implicated in cancer progression. We used virtual screening techniques to analyze phytoconstituents extracted from the IMPPAT 2.0 database. Our primary objective was to discover promising inhibitors of FGFR1. To ensure the selection of promising candidates, we initially filtered the molecules based on their physicochemical properties. Subsequently, we performed binding affinity calculations, PAINS, ADMET, and PASS filters to identify nontoxic and highly effective hits. Through this screening process, one phytocompound, namely Mundulone, emerged as a potential lead. This compound demonstrated an appreciable affinity for FGFR1 and exhibited specific interactions with the ATP-binding site residues. To gain further insights into the conformational dynamics of Mundulone and the reference FGFR1 inhibitor, Lenvatinib, we conducted time-evolution analyses employing 200 ns molecular dynamics simulations (MDS) and essential dynamics. These analyses provided valuable information regarding the dynamic behavior and stability of the compounds in complexes with FGFR1. Overall, the findings indicate that Mundulone exhibits promising binding affinity, specific interactions, and favorable drug profiles, making it a promising lead candidate. Further experimental analysis will be necessary to confirm its effectiveness and safety profiles for therapeutic advancement in the cancer field.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Subhash Chandra
- Department of Botany, Soban Singh Jeena University, Almora, India
| |
Collapse
|
14
|
Ali T, Anjum F, Choudhury A, Shafie A, Ashour AA, Almalki A, Mohammad T, Hassan MI. Identification of natural product-based effective inhibitors of spleen tyrosine kinase (SYK) through virtual screening and molecular dynamics simulation approaches. J Biomol Struct Dyn 2024; 42:3459-3471. [PMID: 37261484 DOI: 10.1080/07391102.2023.2218938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an essential role in signal transduction across different cell types. In the context of allergy and autoimmune disorders, it is a crucial regulator of immune receptor signaling in inflammatory cells such as B cells, mast cells, macrophages, and neutrophils. Developing SYK kinase inhibitors has gained significant interest for potential therapeutic applications in neurological and cancer-related conditions. The clinical use of the most advanced SYK inhibitor, Fostamatinib, has been limited due to its unwanted side effects. Thus, a more targeted approach to SYK inhibition would provide a more comprehensive treatment window. In this study, we used a virtual screening approach to identify potential SYK inhibitors from natural compounds from the IMPPAT database. We identified two compounds, Isolysergic acid and Michelanugine, which showed strong affinity and specificity for the SYK binding pocket. All-atom molecular dynamics (MD) simulations were also performed to explore the stability, conformational changes, and interaction mechanism of SYK in complexes with the identified compounds. The identified compounds might have the potential to be developed into promising SYK inhibitors for the treatment of various diseases, including autoimmune disorders, cancer, and inflammatory diseases. This work aims to identify potential phytochemicals to develop a new protein kinase inhibitor for treating advanced malignancies by providing an updated understanding of the role of SYK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abdulraheem Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Hakami MA, Alotaibi BS, Hazazi A, Shafie A, Alsaiari AA, Ashour AA, Anjum F. Identification of potential inhibitors of tropomyosin receptor kinase B targeting CNS-related disorders and cancers. J Biomol Struct Dyn 2024; 42:2965-2975. [PMID: 37184150 DOI: 10.1080/07391102.2023.2212786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
16
|
Alharbi B, Alharethi SH, Al-Soud WA, Ahmed Al-Keridis L, Aljohani AA, Jairajpuri DS, Alshammari N, Adnan M. Exploring the potential of phytochemicals as inhibitors of 3'-phosphoadenosine 5'-phosphosulfate synthase 1 targeting cancer therapy. J Biomol Struct Dyn 2024; 42:3193-3203. [PMID: 37184152 DOI: 10.1080/07391102.2023.2212810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) is an enzyme that critically synthesises the biologically active form of sulfate (PAPS) for all sulfation reactions. The discovery of PAPSS1 as a possible drug target for cancer therapy, specifically in non-small cell lung cancer, has prompted us to investigate potential small-molecule inhibitors of PAPSS1. Here, a structure-based virtual screening method was used to search for phytochemicals in the IMPPAT database to find potential inhibitors of PAPSS1. The primary hits were selected based on their physicochemical, ADMET, and drug-like properties. Then, the binding affinities were calculated and analyzed the interactions to identify safer and more effective hits. The research identified two phytochemicals, Guggulsterone and Corylin, that exhibited significant affinity and specific interaction with the ATP-binding pocket of PAPSS1. Structural observations made by molecular docking were further accompanied by molecular dynamics (MD) simulations and principal component analysis (PCA) to examine the conformational changes and stability of PAPSS1 with the elucidated compounds Guggulsterone and Corylin. MD simulation results suggested that the binding of Guggulsterone and Corylin stabilizes the PAPSS1 structure, leading to fewer conformational changes. This implies that these compounds may be useful in developing PAPSS1 inhibitors for the therapeutic development against non-small cell lung cancer (NSCLC). This study highlights the potential of phytochemicals as PAPSS1 inhibitors and the utility of computational approaches in drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah A Aljohani
- Department of Clinical laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
17
|
Priyadarshinee M, Dehury B, Mishra S, Jena C, Patra M, Mishra NK, Samanta L, Mallick BC. Spectroscopic insights with molecular docking and molecular dynamic simulation studies of anticancer drug 5-Fluorouracil targeting human pyruvate kinase m2. J Biomol Struct Dyn 2024:1-13. [PMID: 38345048 DOI: 10.1080/07391102.2024.2313158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
This study was conducted to test the efficacy of 5-fluorouracil (5-FU) as an anticancer drug against the human pyruvate kinase isozyme M2 (PKM2) using spectroscopic, molecular docking and molecular dynamic simulation studies. PKM2 fluorescence quenching studies in the presence of 5-FU performed at three different temperatures indicates dynamic quenching processes with single-set of binding (n ≈ 1) profile. The biomolecular quenching constants (kq) and the effective binding constants (Kb) obtained are shown to increase with temperature. The calculated enthalpy (ΔH) and entropy changes (ΔS) are estimated to be -118.06 kJ/mol and 146.14 kJ/mol/K respectively, which suggest the possible mode of interaction as electrostatic and hydrogen bonding. Further, these values were used to estimate the free energy changes (ΔG) and that increases with temperature. The negative ΔG values clearly indicates spontaneous binding process that stabilizes the complex formed between 5-FU and PKM2. Far-UV CD spectra of PKM2 in the presence of 5-FU shows decrease in α-helix contents which point towards the destabilization of secondary structure that weakens the biological activity of PKM2. The intrinsic fluorescence study and circular dichroism (CD) spectra showed minor conformational changes of PKM2 in the presence of 5-FU. Additionally, the results obtained from molecular docking and all-atom molecular dynamic simulation study supports the insight of the spectroscopic binding studies, and strengthens the dynamic stability of the complex between 5-FU and PKM2 through H-bonding. This study establishes a paradigm of 5-FU-PKM2 complexation and the efficacy of 5-FU that compromises the biological activity of the targeted PKM2.
Collapse
Affiliation(s)
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | | | | | - Neeraj K Mishra
- Department of Biotechnology, GITAM University, Vishakhapatnam, India
| | - Luna Samanta
- Department of Zoology, Ravenshaw University, Cuttack, India
| | - Bairagi C Mallick
- Department of Chemistry, Ravenshaw University, Cuttack, India
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| |
Collapse
|
18
|
Verma A, Jakhar R, Kumar D, Kumar V, Dhillon T, Dangi M, Chhillar AK. A computational approach to discover antioxidant and anti-inflammatory attributes of silymarin derived from Silybum marianum by comparison with hydroxytyrosol. J Biomol Struct Dyn 2023; 41:11101-11121. [PMID: 36546728 DOI: 10.1080/07391102.2022.2159879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Medicinal plants possess therapeutic potential for reducing reactive oxygen species (ROS)-mediated cellular damage. Hydroxytyrosol is one of the most potent antioxidants that served as control in the current study, including other synthetic antioxidants to computationally identify the antioxidant properties of Silymarin. The sequences of the receptors IκB kinase (IKK), Kelch-like ECH-associated protein 1 (Keap-1) and mitochondrial transcription factor A (Tfam) were retrieved from UniProtKB and homology modeling was performed using Swiss-Model server. Thereof the molecular docking and dynamic simulation studies were performed using Schrödinger's software version 11.5. From the current study, it was reported that on comparison of the binding energy of silymarin, hydroxytyrosol, α-tocopherol, ascorbic acid, butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT), Silymarin exhibited better affinities with IKK receptor followed by Hydroxytyrosol suggesting it as the best or comparable of all other known antioxidants that could potentially suppress inflammation and other diseases. Also, Silymarin exhibited poorest binding affinity with Tfam promoting mitochondrial biogenesis, thereby scavenging ROS. However, with Keap-1, Silymarin is ranked 4th in the list, whereas hydroxytyrosol exhibited highest binding affinity to release oxidative stress. The stability of docked complexes made us conclude that Silymarin has comparable antioxidant properties to hydroxytyrosol, better anti-inflammatory potential and mitochondrial biogenesis enhancing properties to ultimately reduce oxidative stress. Now it can be tested further for in vitro or in vivo studies as potential drug against oxidative insult.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Annu Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Ritu Jakhar
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | - Dev Kumar
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Twinkle Dhillon
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Mehak Dangi
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | | |
Collapse
|
19
|
Qadri T, Aziz M, Channar PA, Ejaz SA, Hussain M, Attaullah HM, Ujan R, Hussain Z, Zehra T, Saeed A, Shah MR, Ogaly HA, Al-Zahrani FAM. Synthesis, biological evaluation and in silico investigations of benzotriazole derivatives as potential inhibitors of NIMA related kinase. RSC Adv 2023; 13:33826-33843. [PMID: 38020022 PMCID: PMC10655664 DOI: 10.1039/d3ra06149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
In the current study, a novel compound, bis(3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-(prop-2-yn-1-yloxy)-5-(2,4,4-trimethylpentan-2-yl)phenyl)methane (TAJ1), has been synthesized by the reaction of 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol) (1), propargyl bromide (2) and potassium carbonate. Spectroscopic (FTIR, 1H-NMR, 13C-NMR) and single-crystal assays proved the structure of the synthesized sample. XRD analysis confirmed the structure of the synthesized compound, showing that it possesses two aromatic parts linked via a -CH2 carbon with a bond angle of 108.40°. The cell line activity reported a percent growth reduction for different cell types (HeLa cells, MCF-7 cells, and Vero cells) under various treatment conditions (TAJ1, cisplatin, and doxorubicin) after 24 hours and 48 hours. The percent growth reduction represents a decrease in cell growth compared to a control condition. Furthermore, density functional theory (DFT) calculations were utilized to examine the frontier molecular orbitals (FMOs) and overall chemical reactivity descriptors of TAJ1. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap. TAJ1 displayed a HOMO energy level of -0.224 eV, a LUMO energy level of -0.065 eV, and a HOMO-LUMO gap of 0.159 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of TAJ1 with various proteins. The compound TAJ1 showed potent interactions with NEK2, exhibiting -10.5 kcal mol-1 binding energy. Although TAJ1 has demonstrated interactions with NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins, suggesting its potential as a therapeutic agent, it is important to evaluate the conformational stability of the protein-ligand complex. Hence, molecular dynamics simulations were conducted to assess this stability. To analyze the complex, root mean square deviation (RMSD) and root mean square fluctuation analyses were performed. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective NEK2 inhibitors. Therefore, further investigation of the inhibitory potential of these identified compounds using in vitro and in vivo approaches is recommended.
Collapse
Affiliation(s)
- Tahir Qadri
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi 74800 Karachi Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Rabail Ujan
- Dr M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Tasneem Zehra
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi 74800 Karachi Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - M R Shah
- H.E.J.Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 7527 Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Fatimah A M Al-Zahrani
- Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| |
Collapse
|
20
|
Atiya A, Shahidi H, Mohammad T, Sharaf SE, Abdulmonem WA, Ashraf GM, Elasbali AM, Alharethi SH, Alhumaydhi FA, Baeesa SS, Rehan M, Shamsi A, Shahwan M. A virtual screening investigation to identify bioactive natural compounds as potential inhibitors of cyclin-dependent kinase 9. J Biomol Struct Dyn 2023; 41:10202-10213. [PMID: 36562191 DOI: 10.1080/07391102.2022.2153921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a transcription-associated protein involved in controlling the cell cycle and is often deregulated in stress conditions. CDK9 is being studied as a well-known druggable target for developing effective therapeutics against a wide range of cancer, cardiac dysfunction and inflammatory diseases. Owing to the significance of CDK9 in the etiology of hematological and solid malignancies, its structure, biological activity, regulation and its pharmacological inhibition are being explored for therapeutic management of cancer. We employed a structure-based virtual high-throughput screening of bioactive compounds from the IMPPAT database to discover potential bioactive inhibitors of CDK9. The preliminary results were obtained from the Lipinski criteria, ADMET parameters and sorting compounds without any PAINS patterns. Subsequently, binding affinity and selectivity analyses were used to find effective CDK9 hits. This screening resulted in the identification of two natural compounds, Glabrene and Guggulsterone with high affinity and specificity for the CDK9 binding site. Both compounds exhibit drug-like characteristics, as projected by ADMET analysis, physicochemical data and PASS evaluation. Both compounds preferentially bind to the ATP-binding pocket of CDK9 and interact with functionally important residues. Further, the dynamics and consistency of CDK9 interaction with Glabrene and Guggulsteron were evaluated through all-atom molecular dynamic (MD) simulations which suggested the stability of both complexes. The results might be deployed to introduce novel CDK9 inhibitors that may treat life-threatening diseases, including cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Habiba Shahidi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University Makkah, Saudi Arabia
- Clinical Research Adminstration Executive Adminstration of Research and Innovation King Abdullah Medical City in the Holy Capital Makkah, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudia Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Saleh Salem Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- College of Pharmacy, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
21
|
Alrouji M, Benjamin LS, Alhumaydhi FA, Al Abdulmonem W, Baeesa SS, Rehan M, Shahwan M, Shamsi A, Akhtar A. Unlocking potential inhibitors for Bruton's tyrosine kinase through in-silico drug repurposing strategies. Sci Rep 2023; 13:17684. [PMID: 37848584 PMCID: PMC10582150 DOI: 10.1038/s41598-023-44956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a non-receptor protein kinase that plays a crucial role in various biological processes, including immune system function and cancer development. Therefore, inhibition of BTK has been proposed as a therapeutic strategy for various complex diseases. In this study, we aimed to identify potential inhibitors of BTK by using a drug repurposing approach. To identify potential inhibitors, we performed a molecular docking-based virtual screening using a library of repurposed drugs from DrugBank. We then used various filtrations followed by molecular dynamics (MD) simulations, principal component analysis (PCA), and Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA) analysis to further evaluate the binding interactions and stability of the top-ranking compounds. Molecular docking-based virtual screening approach identified several repurposed drugs as potential BTK inhibitors, including Eltrombopag and Alectinib, which have already been approved for human use. All-atom MD simulations provided insights into the binding interactions and stability of the identified compounds, which will be helpful for further experimental validation and optimization. Overall, our study demonstrates that drug repurposing is a promising approach to identify potential inhibitors of BTK and highlights the importance of computational methods in drug discovery.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia
| | - Lizy Sonia Benjamin
- College of Nursing, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Saleh Salem Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE.
| | - Atiya Akhtar
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., 62529, Abha, Saudi Arabia.
| |
Collapse
|
22
|
Alotaibi BS. Targeting Filamenting temperature-sensitive mutant Z (FtsZ) with bioactive phytoconstituents: An emerging strategy for antibacterial therapy. PLoS One 2023; 18:e0290852. [PMID: 37647309 PMCID: PMC10468062 DOI: 10.1371/journal.pone.0290852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The rise and widespread occurrence of bacterial resistance has created an evident need for novel antibacterial drugs. Filamenting temperature-sensitive mutant Z (FtsZ) is a crucial bacterial protein that forms a ring-like structure known as the Z-ring, playing a significant role in cell division. Targeting FtsZ is an effective approach for developing antibiotics that disrupt bacterial cell division and halt growth. This study aimed to use a virtual screening approach to search for bioactive phytoconstituents with the potential to inhibit FtsZ. The screening process proceeded with the filtering compounds from the IMPPAT library of phytochemicals based on their physicochemical properties using the Lipinski rule of five. This was followed by molecular docking, Pan-assay interference compounds (PAINS) filter, absorption, distribution, metabolism, excretion, and toxicity (ADMET), prediction of activity spectra for biologically active substances (PASS), and molecular dynamics (MD) simulations. These filters ensured that any adverse effects that could impede the identification of potential inhibitors of FtsZ were eliminated. Following this, two phytocompounds, Withaperuvin C and Trifolirhizin, were selected after the screening, demonstrating noteworthy binding potential with FtsZ's GTP binding pocket, acting as potent GTP-competitive inhibitors of FtsZ. The study suggested that these compounds could be further investigated for developing a novel class of antibiotics after required studies.
Collapse
Affiliation(s)
- Bader Saud Alotaibi
- Department of Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Saudi Arabia
| |
Collapse
|
23
|
Bhale AS, Venkataraman K. Delineating the impact of pathogenic mutations on the conformational dynamics of HDL's vital protein ApoA1: a combined computational and molecular dynamic simulation approach. J Biomol Struct Dyn 2023; 41:15661-15681. [PMID: 36943736 DOI: 10.1080/07391102.2023.2191131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Apolipoprotein A1 (ApoA1), is the important component of high-density lipoproteins (HDL), that has key role in HDL biogenesis, cholesterol trafficking, and reverse cholesterol transport (RCT). Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in ApoA1 have been linked to cardiovascular diseases and amyloidosis as they alter the protein's native structure and function. Therefore in this study, we attempted to understand the molecular pathogenicity profile of nsSNPs of ApoA1 using various computational approaches. We used state-of-the-art computational methods to thoroughly investigate the 295 ApoA1 nsSNPs at sequence and structural levels. Seven nsSNPs (L13R, L84R, L84P, L99P, R173P, L187P, and L238P) out of 295 were classified as the most deleterious and destabilizing. In order to estimate the effect of such destabilizing mutations on the protein conformation, all-atom molecular dynamics simulations (MDS) of ApoA1 wild-type (WT), L99P and R173P for 100 ns, was carried out using GROMACS 5.0.1 package. The MD simulation investigation revealed significant structural alterations in L99P and R173P. In addition, they had changed principal component analysis and electrostatic surface potential, decreased structural compactness, and intramolecular hydrogen bonds, which supported the rationale underpinning ApoA1 dysfunction with such mutations. This work sheds light on ApoA1 dysfunction due to single amino acid alterations, and offers new insight into the molecular basis of ApoA1-related diseases progression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
24
|
Patel M, Bazaid AS, Azhar EI, Gattan HS, Binsaleh NK, Patel M, Surti M, Adnan M. Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:13679-13695. [PMID: 36852556 DOI: 10.1080/07391102.2023.2179547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
Due to the rapid spread of the monkeypox virus and rise in the number of cases, there is an urgent need for the development of effective drugs against the infection. Serine/threonine protein kinase (Ser/Thr kinase) and Thymidine Kinase (TK) plays an imperative role in the replication and virulence of monkeypox virus and thus is deliberated as an attractive target in anti-viral drug development. In the present study, the 3D structure of monkeypox virus Ser/Thr kinase and TK was generated via molecular modeling techniques and performed their thorough structural analysis. We have screened potent anti-viral phytochemicals from the literature to inhibit Ser/Thr kinase and TK. As part of the initial screening, the physicochemical properties of the compounds were examined. Following this, a structure-based molecular docking technique was used to select compounds based on their binding affinity towards Ser/Thr kinase and TK. In order to find more potent hits against Ser/Thr kinase and TK, further examinations of ADMET properties, PAINS patterns and blood-brain barrier permeability were conducted. As a result, thalimonine and galanthamine were identified from the screening process bearing appreciable binding affinity towards Ser/Thr kinase and TK respectively, which showed a worthy set of drug-like properties. In the end, molecular dynamics simulations were performed for 100 ns, which showed decent stability of both protein-ligand complex throughout the trajectory. Due to the possibility that both monkeypox virus target proteins may be inhibited by thalimonine and galanthamine, our study highlights the need to investigate in vivo effects of thalimonine and galanthamine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Esam I Azhar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd Adnan
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
25
|
Elfaki EM, Alhassan HH, Kamal M, Al-Enazi MM, Rub MA, Asiri AM, Ali M, Marwani HM, Alharethi SH, Alotaibi MM, Azum N. Identifying bioactive phytoconstituents as C-terminal Src kinase inhibitors: a virtual screening and molecular simulation approach. J Biomol Struct Dyn 2023; 41:13415-13424. [PMID: 36752377 DOI: 10.1080/07391102.2023.2176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
Tyrosine-protein kinase CSK otherwise known as C-terminal Src kinase (CSK), is involved in multiple pathways and processes, including regulating cell growth, differentiation, migration, and immune responses. Altered expression of CSK has been associated with various complexities, including cancer, CD45 deficiency, Osteopetrosis and lupus erythematosus. Important auxiliary roles of CSK in cancer progression make it a crucial target in developing novel anticancer therapy. Thus, CSK inhibitors are of concern as potent immuno-oncology agents. In this perspective, phytochemicals can be a significant source for unraveling novel CSK inhibitors. In this study, we carried out a systematic structure-based virtual screening of bioactive phytoconstituents against CSK to identify its potential inhibitors. After a multi-step screening process, two hits (Shinpterocarpin and Justicidin B) were selected based on their druglike properties and binding affinity towards CSK. The selected hits were further analyzed for their stability and interaction via all-atom molecular dynamics (MD) simulations. The selected hits indicated their potential as selective binding partners of CSK, which can further be used for therapeutic development against CSK-associated malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Qurayyat, Jouf University, Qurayyat, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maher M Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maroof Ali
- Chemistry Department, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Maha Moteb Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Alrouji M, Majrashi TA, Alhumaydhi FA, Zari A, Zari TA, Al Abdulmonem W, Sharaf SE, Shahwan M, Anwar S, Shamsi A, Atiya A. Unveiling Phytoconstituents with Inhibitory Potential Against Tyrosine-Protein Kinase Fyn: A Comprehensive Virtual Screening Approach Targeting Alzheimer's Disease. J Alzheimers Dis 2023; 96:827-844. [PMID: 37899058 DOI: 10.3233/jad-230828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND Tyrosine-protein kinase Fyn (Fyn) is a critical signaling molecule involved in various cellular processes, including neuronal development, synaptic plasticity, and disease pathogenesis. Dysregulation of Fyn kinase has been implicated in various complex diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as different cancer types. Therefore, identifying small molecule inhibitors that can inhibit Fyn activity holds substantial significance in drug discovery. OBJECTIVE The aim of this study was to identify potential small-molecule inhibitors among bioactive phytoconstituents against tyrosine-protein kinase Fyn. METHODS Through a comprehensive approach involving molecular docking, drug likeliness filters, and molecular dynamics (MD) simulations, we performed a virtual screening of a natural compounds library. This methodology aimed to pinpoint compounds potentially interacting with Fyn kinase and inhibiting its activity. RESULTS This study finds two potential natural compounds: Dehydromillettone and Tanshinone B. These compoundsdemonstrated substantial affinity and specific interactions towards the Fyn binding pocket. Their conformations exhibitedcompatibility and stability, indicating the formation of robust protein-ligand complexes. A significant array of non-covalentinteractions supported the structural integrity of these complexes. CONCLUSION Dehydromillettone and Tanshinone B emerge as promising candidates, poised for further optimization as Fynkinase inhibitors with therapeutic applications. In a broader context, this study demonstrates the potential of computationaldrug discovery, underscoring its utility in identifying compounds with clinical significance. The identified inhibitors holdpromise in addressing a spectrum of cancer and neurodegenerative disorders. However, their efficacy and safety necessitatevalidation through subsequent experimental studies.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ali Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal A Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University Makkah, Saudi Arabia
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences, Ajman University, Ajman, UAE
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences, Ajman University, Ajman, UAE
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha, Saudi Arabia
| |
Collapse
|
27
|
Adnan M, Shamsi A, Elasbali AM, Siddiqui AJ, Patel M, Alshammari N, Alharethi SH, Alhassan HH, Bardakci F, Hassan MI. Structure-Guided Approach to Discover Tuberosin as a Potent Activator of Pyruvate Kinase M2, Targeting Cancer Therapy. Int J Mol Sci 2022; 23:13172. [PMID: 36361954 PMCID: PMC9655700 DOI: 10.3390/ijms232113172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 08/25/2023] Open
Abstract
Metabolic reprogramming is a key attribute of cancer progression. An altered expression of pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers. PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database of Indian medicinal plants to identify potential activators of PKM2. The initial screening was carried out for the physicochemical properties of the compounds, and then structure-based molecular docking was performed to select compounds based on their binding affinity towards PKM2. Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed decent stability of the protein-ligand complex and relatival conformational dynamics throughout the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive approach in treating human malignancy after required validation.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 72388, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran P.O. Box 11001, Saudi Arabia
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Sakaka, Jouf University, Sakaka P.O. Box 72388, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
28
|
Atiya A, Alhumaydhi FA, Sharaf SE, Al Abdulmonem W, Elasbali AM, Al Enazi MM, Shamsi A, Jawaid T, Alghamdi BS, Hashem AM, Ashraf GM, Shahwan M. Identification of 11-Hydroxytephrosin and Torosaflavone A as Potential Inhibitors of 3-Phosphoinositide-Dependent Protein Kinase 1 (PDPK1): Toward Anticancer Drug Discovery. BIOLOGY 2022; 11:1230. [PMID: 36009858 PMCID: PMC9405294 DOI: 10.3390/biology11081230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The 3-phosphoinositide-dependent protein kinase 1 (PDPK1) has a significant role in cancer progression and metastasis as well as other inflammatory disorders, and has been proposed as a promising therapeutic target for several malignancies. In this work, we conducted a systematic virtual screening of natural compounds from the IMPPAT database to identify possible PDPK1 inhibitors. Primarily, the Lipinski rules, ADMET, and PAINS filter were applied and then the binding affinities, docking scores, and selectivity were carried out to find effective hits against PDPK1. Finally, we identified two natural compounds, 11-Hydroxytephrosin and Torosaflavone A, bearing substantial affinity with PDPK1. Both compounds showed drug-likeness as predicted by the ADMET analysis and their physicochemical parameters. These compounds preferentially bind to the ATP-binding pocket of PDPK1 and interact with functionally significant residues. The conformational dynamics and complex stability of PDPK1 with the selected compounds were then studied using interaction analysis and molecular dynamics (MD) simulations for 100 ns. The simulation results revealed that PDPK1 forms stable docked complexes with the elucidated compounds. The findings show that the newly discovered 11-Hydroxytephrosin and Torosaflavone A bind to PDPK1 in an ATP-competitive manner, suggesting that they could one day be used as therapeutic scaffolds against PDPK1-associated diseases including cancer.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University, Makkah 21961, Saudi Arabia
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in the Holy Capital, Makkah 21955, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Maher M. Al Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdelaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
29
|
Alotaibi BS, Joshi J, Hasan MR, Khan MS, Alharethi SH, Mohammad T, Alhumaydhi FA, Elasbali AM, Hassan MI. Identifying Isoononin and Candidissiol as Rho-associated protein kinase 1 (ROCK1) inhibitors: a combined virtual screening and MD simulation approach. J Biomol Struct Dyn 2022:1-10. [DOI: 10.1080/07391102.2022.2111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Bader Saud Alotaibi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Jatin Joshi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Raghibul Hasan
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
30
|
Shahwan M, Alhumaydhi FA, Sharaf SE, Alghamdi BS, Baeesa S, Tayeb HO, Ashraf GM, Shamsi A. Computational insight into the binding of bryostatin 1 with ferritin: implication of natural compounds in Alzheimer's disease therapeutics. J Biomol Struct Dyn 2022:1-11. [PMID: 35787781 DOI: 10.1080/07391102.2022.2092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal damage in iron-sensitive brain regions occurs as a result of iron dyshomeostasis. Increased iron levels and iron-related pathogenic triggers are associated with neurodegenerative diseases, including Alzheimer's disease (AD). Ferritin is a key player involved in iron homeostasis. Major pathological hallmarks of AD are amyloid plaques, neurofibrillary tangles (NFTs) and synaptic loss that lead to cognitive dysfunction and memory loss. Natural compounds persist in being the most excellent molecules in the area of drug discovery because of their different range of therapeutic applications. Bryostatins are naturally occurring macrocyclic lactones that can be implicated in AD therapeutics. Among them, Bryostatin 1 regulates protein kinase C, a crucial player in AD pathophysiology, thus highlighting the importance of bryostatin 1 in AD management. Thus, this study explores the binding mechanism of Bryotstain 1 with ferritin. In this work, the molecular docking calculations revealed that bryostatin 1 has an appreciable binding potential towards ferritin by forming stable hydrogen bonds (H-bonds). Molecular dynamics simulation studies deciphered the binding mechanism and conformational dynamics of ferrritin-bryostatin 1 system. The analyses of root mean square deviation, root mean square fluctuations, Rg, solvent accessible surface area, H-bonds and principal component analysis revealed the stability of the ferritin-bryostatin 1 docked complex throughout the trajectory of 100 ns. Moreover, the free energy landscape analysis advocated that the ferritin-bryostatin 1 complex stabilized to the global minimum. Altogether, the present work delineated the binding of bryostatin 1 with ferritin that can be implicated in the management of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moyad Shahwan
- College of Pharmacy & Health sciences, Ajman University, Ajman, United Arab Emirates.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
31
|
Adnan M, Jairajpuri DS, Chaddha M, Khan MS, Yadav DK, Mohammad T, Elasbali AM, Abu Al-Soud W, Hussain Alharethi S, Hassan MI. Discovering Tuberosin and Villosol as Potent and Selective Inhibitors of AKT1 for Therapeutic Targeting of Oral Squamous Cell Carcinoma. J Pers Med 2022; 12:jpm12071083. [PMID: 35887580 PMCID: PMC9322152 DOI: 10.3390/jpm12071083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major cause of death in developing countries because of high tobacco consumption. RAC-alpha serine-threonine kinase (AKT1) is considered as an attractive drug target because its prolonged activation and overexpression are associated with cancer progression and metastasis. In addition, several AKT1 inhibitors are being developed to control OSCC and other associated forms of cancers. We performed a screening of the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database to discover promising AKT1 inhibitors which pass through various important filters such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, physicochemical properties, PAINS (pan-assay interference compounds) filters, PASS (prediction of activity spectra for substances) analysis, and specific interactions with AKT1. Molecules bearing admirable binding affinity and specificity towards AKT1 were selected for further analysis. Initially, we identified 30 natural compounds bearing appreciable affinity and specific interaction with AKT1. Finally, tuberosin and villosol were selected as potent and selective AKT1 inhibitors. To obtain deeper insights into binding mechanism and selectivity, we performed an all-atom molecular dynamics (MD) simulation and principal component analysis (PCA). We observed that both tuberosin and villosol strongly bind to AKT1, and their complexes were stable throughout the simulation trajectories. Our in-depth structure analysis suggested that tuberosin and villosol could be further exploited in the therapeutic targeting of OSCC and other cancers after further clinical validations.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Bahrain;
| | - Muskan Chaddha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
- Health Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66252, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.C.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
32
|
Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. J Mol Liq 2022; 354:118901. [PMID: 35309259 PMCID: PMC8916543 DOI: 10.1016/j.molliq.2022.118901] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/11/2023]
Abstract
Since the commencement of the novel Coronavirus, the disease has quickly turned into a worldwide crisis so that there has been growing attention in discovering possible hit compounds for tackling this pandemic. Discovering standard treatment strategies is a serious challenge because little information is available about this emerged infectious virus. Regarding the high impact of time, applying computational procedures to choose promising drugs from a catalog of licensed medications provides a precious chance for combat against the life-threatening disorder of COVID-19. Molecular dynamics (MD) simulation is a promising approach for assessing the binding affinity of ligand-receptor as well as observing the conformational trajectory of docked complexes over time. Given that many computational studies are performed using MD along with the molecular docking on various candidates as antiviral inhibitors of COVID-19 protease, there is a demand to conduct a comprehensive review of the most important studies to reveal and compare the potential introduced agents that this study covers this defect. In this context, the present review intends to prepare an overview of these studies by considering RMSD, RMSF, radius of gyration, binding free energy, and Solvent-Accessible Surface Area (SASA) as effective parameters for evaluation. The outcomes will offer a road map for adjusting antiviral inhibitors, which can facilitate the selection and development of drug candidates for use in the medical therapy. Finally, the molecular modeling approaches rendered by this study may be valuable for future computational studies.
Collapse
Affiliation(s)
- Shabnam Ghahremanian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Mohammad Mehdi Rashidi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
- Faculty of Mechanical and Industrial Engineering, Quchan University of Technology, Quchan, Iran
| | - Kimai Raeisi
- Department of Basic Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| |
Collapse
|
33
|
Yang C, Alam A, Alhumaydhi FA, Khan MS, Alsagaby SA, Al Abdulmonem W, Hassan MI, Shamsi A, Bano B, Yadav DK. Bioactive Phytoconstituents as Potent Inhibitors of Tyrosine-Protein Kinase Yes (YES1): Implications in Anticancer Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103060. [PMID: 35630545 PMCID: PMC9147520 DOI: 10.3390/molecules27103060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Tyrosine-protein kinase Yes (YES1) belongs to the Tyrosine-protein kinase family and is involved in several biological activities, including cell survival, cell–cell adhesion, cell differentiation, and cytoskeleton remodeling. It is highly expressed in esophageal, lung, and bladder cancers, and thus considered as an attractive drug target for cancer therapy. In this study, we performed a virtual screening of phytoconstituents from the IMPPAT database to identify potential inhibitors of YES1. Initially, the molecules were retrieved on their physicochemical properties following the Lipinski rule of five. Then binding affinities calculation, PAINS filter, ADMET, and PASS analyses followed by an interaction analysis to select safe and clinically better hits. Finally, two compounds, Glabrene and Lupinisoflavone C (LIC), with appreciable affinities and a specific interaction towards the AlphaFold predicted structure of YES1, were identified. Their time-evolution analyses were carried out using an all-atom molecular dynamics (MD) simulation, principal component analysis, and free energy landscapes. Altogether, we propose that Glabrene and LIC can be further explored in clinical settings to develop anticancer therapeutics targeting YES1 kinase.
Collapse
Affiliation(s)
- Chunmin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China;
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 52571, Saudi Arabia;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.I.H.); (A.S.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.I.H.); (A.S.)
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bilqees Bano
- Department of Biochemistry, f/O Life Science, Aligarh Muslim University, Aligarh 202002, India
- Correspondence: (B.B.); (D.K.Y.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (B.B.); (D.K.Y.)
| |
Collapse
|
34
|
Khan S, Fakhar Z, Hussain A, Ahmad A, Jairajpuri DS, Alajmi MF, Hassan MI. Structure-based identification of potential SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2022; 40:3595-3608. [PMID: 33210561 PMCID: PMC7682383 DOI: 10.1080/07391102.2020.1848634] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023]
Abstract
To address coronavirus disease (COVID-19), currently, no effective drug or vaccine is available. In this regard, molecular modeling approaches are highly useful to discover potential inhibitors of the main protease (Mpro) enzyme of SARS-CoV-2. Since, the Mpro enzyme plays key roles in mediating viral replication and transcription; therefore, it is considered as an attractive drug target to control SARS-CoV-2 infection. By using structure-based drug design, pharmacophore modeling, and virtual high throughput drug screening combined with docking and all-atom molecular dynamics simulation approach, we have identified five potential inhibitors of SARS-CoV-2 Mpro. MD simulation studies revealed that compound 54035018 binds to the Mpro with high affinity (ΔGbind -37.40 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. We have identified promising leads to fight COVID-19 infection as these compounds fulfill all drug-likeness properties. However, experimental and clinical validations are required for COVID-19 therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shama Khan
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Zeynab Fakhar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
35
|
Vertecchi E, Rizzo A, Salvati E. Telomere Targeting Approaches in Cancer: Beyond Length Maintenance. Int J Mol Sci 2022; 23:ijms23073784. [PMID: 35409143 PMCID: PMC8998427 DOI: 10.3390/ijms23073784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Telomeres are crucial structures that preserve genome stability. Their progressive erosion over numerous DNA duplications determines the senescence of cells and organisms. As telomere length homeostasis is critical for cancer development, nowadays, telomere maintenance mechanisms are established targets in cancer treatment. Besides telomere elongation, telomere dysfunction impinges on intracellular signaling pathways, in particular DNA damage signaling and repair, affecting cancer cell survival and proliferation. This review summarizes and discusses recent findings in anticancer drug development targeting different “telosome” components.
Collapse
Affiliation(s)
- Eleonora Vertecchi
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy;
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy;
| | - Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy;
- Correspondence:
| |
Collapse
|
36
|
Anjum F, Sulaimani MN, Shafie A, Mohammad T, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Alsagaby SA, Yadav DK, Hassan MI. Bioactive phytoconstituents as potent inhibitors of casein kinase-2: dual implications in cancer and COVID-19 therapeutics. RSC Adv 2022; 12:7872-7882. [PMID: 35424745 PMCID: PMC8982221 DOI: 10.1039/d1ra09339h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a conserved serine/threonine-protein kinase involved in hematopoietic cell survival, cell cycle control, DNA repair, and other cellular processes. It plays a significant role in cancer progression and viral infection. CK2 is considered a potential drug target in cancers and COVID-19 therapy. In this study, we have performed a virtual screening of phytoconstituents from the IMPPAT database to identify some potential inhibitors of CK2. The initial filter was the physicochemical properties of the molecules following the Lipinski rule of five. Then binding affinity calculation, PAINS filter, ADMET, and PASS analyses followed by interaction analysis were carried out to discover nontoxic and better hits. Finally, two compounds, stylopine and dehydroevodiamines with appreciable affinity and specific interaction towards CK2, were identified. Their time-evolution analyses were carried out using all-atom molecular dynamics simulation, principal component analysis and free energy landscape. Altogether, we propose that stylopine and dehydroevodiamines can be further explored in in vitro and in vivo settings to develop anticancer and antiviral therapeutics. Showing protein–ligands interactions, electrostatic potential of CK2 bound to selected compounds, free energy landscapes of CK2-stylopine, and CK2-dehydroevodiamines complexes.![]()
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia 21589
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
37
|
Shafie A, Khan S, Zehra, Mohammad T, Anjum F, Hasan GM, Yadav DK, Hassan MI. Identification of Phytoconstituents as Potent Inhibitors of Casein Kinase-1 Alpha Using Virtual Screening and Molecular Dynamics Simulations. Pharmaceutics 2021; 13:2157. [PMID: 34959438 PMCID: PMC8707374 DOI: 10.3390/pharmaceutics13122157] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Casein kinase-1 alpha (CK1α) is a multifunctional protein kinase that belongs to the serine/threonine kinases of the CK1α family. It is involved in various signaling pathways associated with chromosome segregation, cell metabolism, cell cycle progression, apoptosis, autophagy, etc. It has been known to involve in the progression of many diseases, including cancer, neurodegeneration, obesity, and behavioral disorders. The elevated expression of CK1α in diseased conditions facilitates its selective targeting for therapeutic management. Here, we have performed virtual screening of phytoconstituents from the IMPPAT database seeking potential inhibitors of CK1α. First, a cluster of compounds was retrieved based on physicochemical parameters following Lipinski's rules and PAINS filter. Further, high-affinity hits against CK1α were obtained based on their binding affinity score. Furthermore, the ADMET, PAINS, and PASS evaluation was carried out to select more potent hits. Finally, following the interaction analysis, we elucidated three phytoconstituents, Semiglabrinol, Curcusone_A, and Liriodenine, posturing considerable affinity and specificity towards the CK1α binding pocket. The result was further evaluated by molecular dynamics (MD) simulations, dynamical cross-correlation matrix (DCCM), and principal components analysis (PCA), which revealed that binding of the selected compounds, especially Semiglabrinol, stabilizes CK1α and leads to fewer conformational fluctuations. The MM-PBSA analysis suggested an appreciable binding affinity of all three compounds toward CK1α.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa;
| | - Zehra
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| |
Collapse
|
38
|
Thirunavukkarasu MK, Shin WH, Karuppasamy R. Exploring safe and potent bioactives for the treatment of non-small cell lung cancer. 3 Biotech 2021; 11:241. [PMID: 33968584 DOI: 10.1007/s13205-021-02797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
Activating and suppressing mutations in the MAPK pathway receptors are the primary causes of NSCLC. Of note, MEK inhibition is considered a promising strategy because of the diverse structures and harmful effects of upstream receptors in MAPK pathway. Thus, we explore a total of 1574 plant-based bioactive compounds activity against MEK using an energy-based virtual screening strategy. Molecular docking, binding free energy, and drug-likeness analysis were performed through GLIDE, Prime MM-GBSA, and QikProp module, respectively. The findings indicate that 5-O-caffeoylshikimic acid has an increased binding affinity to MEK protein. Further, molecular dynamic simulations and MM-PBSA analysis were performed to explore the ligand activity in real-life situations. In essence, compounds inhibitory activity was validated across 77 lung cancer cell lines using multimodal attention-based neural network algorithm. Eventually, our analysis highlight that 5-O-caffeoylshikimic acid obtained from the bark of Rhizoma smilacis glabrae would be developed as a potential compound for treating NSCLC.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014 India
| | - Woong-Hee Shin
- Department of Chemical Science Education, College of Education, Sunchon National University, Suncheon, Republic of Korea
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014 India
| |
Collapse
|
39
|
POT1 stability and binding measured by fluorescence thermal shift assays. PLoS One 2021; 16:e0245675. [PMID: 33784306 PMCID: PMC8009405 DOI: 10.1371/journal.pone.0245675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
The protein POT1 (Protection of Telomeres 1) is an integral part of the shelterin complex that protects the ends of human chromosomes from degradation or end fusions. It is the only component of shelterin that binds single-stranded DNA. We describe here the application of two separate fluorescent thermal shift assays (FTSA) that provide quantitative biophysical characterization of POT1 stability and its interactions. The first assay uses Sypro Orange™ and monitors the thermal stability of POT1 and its binding under a variety of conditions. This assay is useful for the quality control of POT1 preparations, for biophysical characterization of its DNA binding and, potentially, as an efficient screening tool for binding of small molecule drug candidates. The second assay uses a FRET-labeled human telomeric G-quadruplex structure that reveals the effects of POT1 binding on thermal stability from the DNA frame of reference. These complementary assays provide efficient biophysical approaches for the quantitative characterization of multiple aspects of POT1 structure and function. The results from these assays provide thermodynamics details of POT1 folding, the sequence selectivity of its DNA binding and the thermodynamic profile for its binding to its preferred DNA binding sequence. Most significantly, results from these assays elucidate two mechanisms for the inhibition of POT1 -DNA interactions. The first is by competitive inhibition at the POT1 DNA binding site. The second is indirect and is by stabilization of G-quadruplex formation within the normal POT1 single-stranded DNA sequence to prevent POT1 binding.
Collapse
|
40
|
Wu Y, Poulos RC, Reddel RR. Role of POT1 in Human Cancer. Cancers (Basel) 2020; 12:cancers12102739. [PMID: 32987645 PMCID: PMC7598640 DOI: 10.3390/cancers12102739] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The segmentation of eukaryotic genomes into discrete linear chromosomes requires processes to solve several major biological problems, including prevention of the chromosome ends being recognized as DNA breaks and compensation for the shortening that occurs when linear DNA is replicated. A specialized set of six proteins, collectively referred to as shelterin, is involved in both of these processes, and mutations in several of these are now known to be involved in cancer. Here, we focus on Protection of Telomeres 1 (POT1), the shelterin protein that appears to be most commonly involved in cancer, and consider the clinical significance of findings about its biological functions and the prevalence of inherited and acquired mutations in the POT1 gene. Abstract Telomere abnormalities facilitate cancer development by contributing to genomic instability and cellular immortalization. The Protection of Telomeres 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex. It directly binds to single-stranded telomeric DNA, protecting chromosomal ends from an inappropriate DNA damage response, and plays a role in telomere length regulation. Alterations of POT1 have been detected in a range of cancers. Here, we review the biological functions of POT1, the prevalence of POT1 germline and somatic mutations across cancer predisposition syndromes and tumor types, and the dysregulation of POT1 expression in cancers. We propose a framework for understanding how POT1 abnormalities may contribute to oncogenesis in different cell types. Finally, we summarize the clinical implications of POT1 alterations in the germline and in cancer, and possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Yangxiu Wu
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Rebecca C. Poulos
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Roger R. Reddel
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- Correspondence: ; Tel.: +61-2-8865-2901
| |
Collapse
|