1
|
Avelino CMSF, de Araújo RFF. Effects of vitamin D supplementation on oxidative stress biomarkers of Iranian women with polycystic ovary syndrome: a meta-analysis study. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo37. [PMID: 38994457 PMCID: PMC11239209 DOI: 10.61622/rbgo/2024rbgo37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024] Open
Abstract
Objective To identify the impact of redox imbalance on the clinical evolution of patients with polycystic ovary syndrome and carry out a qualitative and quantitative projection of the benefits of vitamin D supplementation. Data sources Combinations of the keywords polycystic ovary syndrome, vitamin D, oxidative stress, reactive oxygen species, antioxidant, and free radicals were used in PubMed, Cochrane Library, LILACS, EMBASE, and Web of Science databases. The last search was conducted on August 22, 2023.Selection of studies: Based on the inclusion and exclusion criteria, studies were selected considering a low risk of bias, published in the last 5 years in English, which investigated the effects of vitamin D supplementation in women with PCOS, focusing on oxidative stress markers. Of the 136 articles retrieved, 6 intervention studies (445 women) were included. Data collection The risk of bias in included studies was assessed using the Jadad scale, and analysis and visualization of continuous data were performed using Review Manager 5.4.1, summarized as standardized mean differences (SMD) with confidence intervals (CI) of 95%. Data synthesis Vitamin D effectively reduced malondialdehyde (P=0.002) and total testosterone (P=0.0004) levels and increased total antioxidant capacity levels (P=0.01). Although possible improvements in the modified Ferriman-Gallwey hirsutism score, levels of sex hormone-binding globulin, and free androgen index were identified and the results were not statistically significant. Conclusion Vitamin D is a promising alternative for the treatment of PCOS with a positive influence on the oxidative, metabolic, and endocrine disorders of this syndrome.
Collapse
Affiliation(s)
- Camila Maria Sampaio Ferreira Avelino
- Laboratory of Immunopathology Keizo AsamiUniversidade Federal de PernambucoRecifeBrazilLaboratory of Immunopathology Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Rosângela Ferreira Frade de Araújo
- Laboratory of Immunopathology Keizo AsamiUniversidade Federal de PernambucoRecifeBrazilLaboratory of Immunopathology Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Department of BiochemistryUniversidade Federal de PernambucoRecifeBrazilDepartment of Biochemistry, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
2
|
He J, Deng R, Wei Y, Zhang S, Su M, Tang M, Wang J, Nong W, Lei X. Efficacy of antioxidant supplementation in improving endocrine, hormonal, inflammatory, and metabolic statuses of PCOS: a meta-analysis and systematic review. Food Funct 2024; 15:1779-1802. [PMID: 38251706 DOI: 10.1039/d3fo02824k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Background and aim: A large number of recent studies have reported on the use of antioxidants in patients with polycystic ovary syndrome (PCOS). This study aimed to evaluate the antioxidant effects on PCOS. Methods: We searched PubMed, Embase, Web of Science, and The Cochrane Library to identify randomized controlled trials investigating the use of antioxidants in treating PCOS. Statistical analysis was performed using Review Manager 5.4. Stata17.0 software was used to conduct sensitivity analyses. Results: This meta-analysis included 49 articles and 62 studies. The sample comprised 1657 patients with PCOS from the antioxidant group and 1619 with PCOS from the placebo group. The meta-analysis revealed that the fasting blood glucose levels [standardized mean difference (SMD): -0.31, 95% confidence interval (CI): -0.39 to -0.22, P < 0.00001], the homeostatic model assessment of insulin resistance (SMD: -0.68, 95% CI: -0.87 to -0.50], P < 0.00001), and insulin levels (SMD: -0.68, 95% CI: -0.79 to -0.58, P < 0.00001) were significantly lower in patients with PCOS taking antioxidants than those in the placebo group. Further, total cholesterol levels (SMD: -0.38, 95% CI: -0.56 to -0.20, P < 0.001), low-density lipoprotein cholesterol levels (SMD: -0.24, 95% CI: -0.37 to -0.10, P = 0.0008), and very low-density lipoprotein levels (SMD: -0.53, 95% CI: -0.65 to -0.41, P < 0.00001) were lower in patients with PCOS taking antioxidant supplements compared with the placebo group. Total testosterone (TT) level (SMD: -0.78, 95% CI: -1.15 to -0.42, P < 0.0001), dehydroepiandrosterone level (SMD: -0.42, 95% CI: -0.58 to -0.25, P < 0.00001), and mean standard deviation modified Ferriman-Gallway (MF-G scores) (SMD: -0.63, 95% CI: -0.98 to -0.28, P = 0.0004) were lower in patients taking antioxidant supplements. C-reactive protein (CRP) levels (SMD: -0.48, 95% CI: -0.63 to -0.34, P < 0.000001), body mass index [mean difference (MD): -0.27, 95% CI: -0.50 to -0.03, P = 0.03], weight (MD: -0.73, 95% CI: -1.35 to -0.11, P = 0.02), and diastolic blood pressure (MD: -3.78, 95% CI: -6.30 to -1.26, P = 0.003) were significantly lower. Moreover, the levels of sex hormone-binding protein (SMD: 0.23, 95% CI: 0.07-0.38, P = 0.004), high-density lipoprotein cholesterol (SMD: 0.11, 95% CI: 0.01-0.20, P = 0.03), total antioxidant capacity (SMD: 0.59, 95% CI: 0.31-0.87, P < 0.0001), and quantitative insulin sensitivity index (SMD: 0.01, 95% CI: 0.01-0.02, P < 0.00001) were higher in patients with PCOS who took antioxidant supplements compared with the placebo group. Antioxidant supplements did not affect other analyzed parameters in these patients, including follicle-stimulating hormone, free androgen index, nitric oxide, glutathione, malondialdehyde, and diastolic blood pressure. Conclusions: Antioxidants are beneficial in treating PCOS. Our study might provide a new treatment strategy for patients with clinical PCOS. We hope that more high-quality studies evaluating the effects of antioxidants on patients with PCOS will be conducted in the future. Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023448088.
Collapse
Affiliation(s)
- Junhui He
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533300, China.
| | - Renhe Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yanhong Wei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533300, China.
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Mingxuan Su
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Masong Tang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jinyuan Wang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weihua Nong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533300, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533300, China.
| |
Collapse
|
3
|
Sharifi M, Nourani N, Sanaie S, Hamedeyazdan S. The effect of Oenothera biennis (Evening primrose) oil on inflammatory diseases: a systematic review of clinical trials. BMC Complement Med Ther 2024; 24:89. [PMID: 38360611 PMCID: PMC10867995 DOI: 10.1186/s12906-024-04378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Evening primrose oil (EPO), extracted from the seeds of Oenothera biennis, has gained attention for its therapeutic effects in various inflammatory conditions. METHOD We performed a systematic search in multiple databases and defined the inclusion criteria based on the following PICOs: P: Patients with a form of inflammatory condition, I: EPO, C: Placebo or other therapeutic interventions, O: changes in inflammatory markers or patients' symptoms; S: randomized controlled trials. The quality of the RCTs was evaluated using Cochrane's RoB tool. RESULTS Several conditions were investigated in the literature. In rheumatoid arthritis, mixed results were observed, with some studies reporting significant improvements in symptoms while others found no significant impact. EPO showed some results in diabetes mellitus, atopic eczema, menopausal hot flashes, and mastalgia. However, it did not demonstrate effectiveness in chronic hand dermatitis, tardive dyskinesia, psoriatic arthritis, cystic fibrosis, hepatitis B, premenstrual syndrome, contact lens-associated dry eyes, acne vulgaris, breast cyst, pre-eclampsia, psoriasis, or primary Sjogren's syndrome. Some results were reported from multiple sclerosis after EPO consumption. Studies in healthy volunteers indicated no significant effect of EPO on epidermal atrophy, nevertheless, positive effects on the skin regarding hydration and barrier function were achieved. CONCLUSION Some evidence regarding the potential benefits of EPO in inflammatory disorders were reported however caution is due to the limitations of the current survey. Overall, contemporary literature is highly heterogeneous and fails to provide strong recommendations regarding the efficacy of EPO on inflammatory disorders. Further high-quality studies are necessitated to draw more definite conclusions and establish O. biennis oil effectiveness as an assuring treatment option in alleviating inflammatory conditions.
Collapse
Affiliation(s)
- Melika Sharifi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Nourani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanaz Hamedeyazdan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sumara A, Stachniuk A, Trzpil A, Bartoszek A, Montowska M, Fornal E. LC-MS Metabolomic Profiling of Five Types of Unrefined, Cold-Pressed Seed Oils to Identify Markers to Determine Oil Authenticity and to Test for Oil Adulteration. Molecules 2023; 28:4754. [PMID: 37375308 DOI: 10.3390/molecules28124754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The authenticity of food products marketed as health-promoting foods-especially unrefined, cold-pressed seed oils-should be controlled to ensure their quality and safeguard consumers and patients. Metabolomic profiling using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF) was employed to identify authenticity markers for five types of unrefined, cold-pressed seed oils: black seed oil (Nigella sativa L.), pumpkin seed oil (Cucurbita pepo L.), evening primrose oil (Oenothera biennis L.), hemp oil (Cannabis sativa L.) and milk thistle oil (Silybum marianum). Of the 36 oil-specific markers detected, 10 were established for black seed oil, 8 for evening primrose seed oil, 7 for hemp seed oil, 4 for milk thistle seed oil and 7 for pumpkin seed oil. In addition, the influence of matrix variability on the oil-specific metabolic markers was examined by studying binary oil mixtures containing varying volume percentages of each tested oil and each of three potential adulterants: sunflower, rapeseed and sesame oil. The presence of oil-specific markers was confirmed in 7 commercial oil mix products. The identified 36 oil-specific metabolic markers proved useful for confirming the authenticity of the five target seed oils. The ability to detect adulterations of these oils with sunflower, rapeseed and sesame oil was demonstrated.
Collapse
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Adrian Bartoszek
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Van Haren KP, Cunanan K, Awani A, Gu M, Peña D, Chromik LC, Považan M, Rossi NC, Goodman J, Sundaram V, Winterbottom J, Raymond GV, Cowan T, Enns GM, Waubant E, Steinman L, Barker PB, Spielman D, Fatemi A. A Phase 1 Study of Oral Vitamin D 3 in Boys and Young Men With X-Linked Adrenoleukodystrophy. Neurol Genet 2023; 9:e200061. [PMID: 37090939 PMCID: PMC10117697 DOI: 10.1212/nxg.0000000000200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/12/2023] [Indexed: 04/03/2023]
Abstract
Background and Objectives There are no therapies for preventing cerebral demyelination in X-linked adrenoleukodystrophy (ALD). Higher plasma vitamin D levels have been linked to lower risk of inflammatory brain lesions. We assessed the safety and pharmacokinetics of oral vitamin D dosing regimens in boys and young men with ALD. Methods In this open-label, multicenter, phase 1 study, we recruited boys and young men with ALD without brain lesions to a 12-month study of daily oral vitamin D3 supplementation. Our primary outcome was attainment of plasma 25-hydroxyvitamin D levels in target range (40-80 ng/mL) at 6 and 12 months. Secondary outcomes included safety and glutathione levels in the brain, measured with magnetic resonance spectroscopy, and blood, measured via mass spectrometry. Participants were initially assigned to a fixed dosing regimen starting at 2,000 IU daily, regardless of weight. After a midstudy safety assessment, we modified the dosing regimen, so all subsequent participants were assigned to a weight-stratified dosing regimen starting as low as 1,000 IU daily. Results Between October 2016 and June 2019, we enrolled 21 participants (n = 12, fixed-dose regimen; n = 9, weight-stratified regimen) with a median age of 6.7 years (range: 1.9-22 years) and median weight of 20 kg (range: 11.7-85.5 kg). The number of participants achieving target vitamin D levels was similar in both groups at 6 months (fixed dose: 92%; weight stratified: 78%) and 12 months (fixed dose: 67%; weight stratified: 67%). Among the 12 participants in the fixed-dose regimen, half had asymptomatic elevations in either urine calcium:creatinine or plasma 25-hydroxyvitamin D; no laboratory deviations occurred with the weight-stratified regimen. Glutathione levels in the brain, but not the blood, increased significantly between baseline and 12 months. Discussion Our vitamin D dosing regimens were well tolerated and achieved target 25-hydroxyvitamin D levels in most participants. Brain glutathione levels warrant further study as a biomarker for vitamin D and ALD. Classification of Evidence This study provides Class IV evidence that fixed or weight-stratified vitamin D supplementation achieved target levels of 25-hydroxyvitamin D in boys and young men with X-ALD without brain lesions.
Collapse
Affiliation(s)
- Keith P Van Haren
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kristen Cunanan
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Avni Awani
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Meng Gu
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dalia Peña
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lindsay C Chromik
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michal Považan
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicole C Rossi
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jordan Goodman
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vandana Sundaram
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jennifer Winterbottom
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald V Raymond
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tina Cowan
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gregory M Enns
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emmanuelle Waubant
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lawrence Steinman
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter B Barker
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel Spielman
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ali Fatemi
- Department of Neurology (K.P.V.H., A.A., D.P., L.C.C., N.C.R., J.W., L.S.), Department of Pediatrics (K.P.V.H., T.C., G.M.E., L.S.), Quantitative Sciences Unit (K.C., V.S.) and Department of Radiology (M.G., D.S.), Stanford University School of Medicine Palo Alto, CA; Russell H. Morgan Department of Radiology and Radiological Science (M.P., P.B.B.), The Johns Hopkins University School of Medicine; The Kennedy Krieger Institute (M.P., P.B.B., A.F.); Department of Genetic Medicine (G.V.R.), The Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology (T.C.), Stanford University School of Medicine, Palo Alto, CA; Department of Neurology (E.W.), University of California at San Francisco, ; and Department of Neurology (A.F.), The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Chen P, Luo Q, Lin Y, Jin J, Hu KL, Wang F, Sun J, Chen R, Wei J, Chen G, Zhang D. Arsenic exposure during juvenile and puberty significantly affected reproductive system development of female SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113857. [PMID: 35809398 DOI: 10.1016/j.ecoenv.2022.113857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Infertility affects about 10-15% couples over the world, among which a large number of cases the underlying causes are still unclear. Recent studies suggest that environmental factors may play an important role in these idiopathic infertilities. Arsenic is a heavy metal found in drinking water over the world. Its effect on the development of female reproductive system at the environmental-relevant levels is still largely unknown. To test the hypothesis that arsenic exposure during juvenile and puberty may affect sex maturation and female reproductive system development, SD rats of 3 weeks of age were exposed to arsenic with environmental-relevant levels (0, 0.02, 0.2, or 2 mg/L, n = 16/group) through drinking water for about 44 days until the rats reached adulthood (65 days of age). Arsenic exposure significantly reduced the weights of both ovary and uterus without affecting the body weight. Also, arsenic exposure disturbed estrus cycles and reduced the numbers of primordial follicles and corpora lutea while increased atretic follicles. In addition, arsenic reduced serum levels of estradiol, progesterone and testosterone but increased LH and FSH levels in dose-dependent manners. QPCR and Western blot experiments indicated arsenic selectively down-regulated ovarian steroidogenic-related proteins FSHR, STAR, CYP17A1, HSD3B1 and CYP19A1 and signaling molecules PKA-ERK-JNK-cJUN, without affecting AKT and CREB. As about reproductive capacity, arsenic-exposed dams had smaller pups, reduced litter size and lower number of male pups without a change in female pups. In conclusion, juvenile and pubertal arsenic exposures at environmental-relevant levels significantly reduced reproductive functions and capacity by adult. Since the lowest effective dose is very close to the government safety standards, the relevancy of arsenic over exposure to reproductive defects in human deserves further study.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifeng Lin
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Jin
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai-Lun Hu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feixia Wang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiwei Sun
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruixue Chen
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Wei
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Berry S, Seidler K, Neil J. Vitamin D deficiency and female infertility: A mechanism review examining the role of vitamin D in ovulatory dysfunction as a symptom of polycystic ovary syndrome. J Reprod Immunol 2022; 151:103633. [DOI: 10.1016/j.jri.2022.103633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
|
9
|
Dubey P, Reddy S, Boyd S, Bracamontes C, Sanchez S, Chattopadhyay M, Dwivedi A. Effect of Nutritional Supplementation on Oxidative Stress and Hormonal and Lipid Profiles in PCOS-Affected Females. Nutrients 2021; 13:nu13092938. [PMID: 34578816 PMCID: PMC8467908 DOI: 10.3390/nu13092938] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects several reproductive and endocrine features in females and has a poorly understood etiology. Treatment strategies for PCOS are limited and are based primarily on diet and nutrient supplementation. Recent studies have recommended some nutrients such as vitamins, minerals and vitamin-like nutrients for the therapy for PCOS. Therefore, it is claimed that the cause of PCOS could be vitamin or mineral deficiency. This review provides a narrative on the effect of nutritional supplementation on oxidative stress induced in PCOS. Oxidative stress plays a formative role in PCOS pathophysiology. This article reviews oxidative stress, its markers, nutritional supplementation and clinical studies. We also aim to show the effect of nutritional supplementation on genes affecting hormonal and glucose-mediated pathways.
Collapse
Affiliation(s)
- Pallavi Dubey
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
- Correspondence:
| | - Sireesha Reddy
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Sarah Boyd
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Christina Bracamontes
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Sheralyn Sanchez
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (S.B.); (C.B.); (S.S.)
| | - Munmun Chattopadhyay
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA; (M.C.); (A.D.)
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Alok Dwivedi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA; (M.C.); (A.D.)
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
10
|
Mehdizadehkashi A, Rokhgireh S, Tahermanesh K, Eslahi N, Minaeian S, Samimi M. The effect of vitamin D supplementation on clinical symptoms and metabolic profiles in patients with endometriosis. Gynecol Endocrinol 2021; 37:640-645. [PMID: 33508990 DOI: 10.1080/09513590.2021.1878138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To our knowledge, data on the effects of vitamin D supplementation on clinical symptoms and metabolic profiles in patients with endometriosis are limited. This study was conducted to determine the effects of vitamin D supplementation on clinical symptoms and metabolic profiles in patients with endometriosis. METHODS The current randomized, double-blind, placebo-controlled trial was conducted among 60 patients (aged 18-40 years old) with endometriosis. Participants were randomly allocated into two groups (30 participants each group) to receive either 50,000 IU vitamin D or placebo each 2 weeks for 12 weeks. RESULTS Vitamin D supplementation significantly decreased pelvic pain (β - 1.12; 95% CI, -2.1, -0.09; p=.03) and total-/HDL-cholesterol ratio (β - 0.29; 95% CI, -0.57, -0.008; p=.04) compared with the placebo. Moreover, vitamin D intake led to a significant reduction in high-sensitivity C-reactive protein (hs-CRP) (β - 0.64 mg/L; 95% CI, -0.97, -0.30; p<.001) and a significant increase in total antioxidant capacity (TAC) (β 47.54 mmol/L; 95% CI, 19.98, 75.11; p=.001) compared with the placebo. CONCLUSIONS Overall, our study demonstrated that vitamin D intake in patients with endometriosis resulted in a significant improvement of pelvic pain, total-/HDL-cholesterol ratio, hs-CRP and TAC levels, but did not affect other clinical symptoms and metabolic profiles.
Collapse
Affiliation(s)
| | - Samaneh Rokhgireh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Tahermanesh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Eslahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Mansooreh Samimi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Henning T, Weber D. Redox biomarkers in dietary interventions and nutritional observation studies - From new insights to old problems. Redox Biol 2021; 41:101922. [PMID: 33756398 PMCID: PMC8020480 DOI: 10.1016/j.redox.2021.101922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The purpose of this review is to give an overview on recently published articles investigating the associations of diet and dietary interventions with biomarkers of oxidative stress with special emphasis on different categories of redox biomarkers. Findings Intervention and observational studies both in healthy participants and patients that investigated associations of dietary habits, foodstuffs or isolated nutrients with biomarkers of oxidative stress were included in this review. Recently published observation studies confirm the inverse association between fruit and vegetable intake and oxidative stress markers. Studies investigating the effect of vitamin D and vitamin E, magnesium, zinc, chromium, selenium, probiotic supplementation and several phytochemicals reported consistent changes in redox biomarkers. Of 88 articles included in this review, only seven studies measured biomarkers from the three categories: oxidative damage, endogenous antioxidants, and exogenous antioxidants. Many studies rely on controversial assays for total antioxidant capacity, thus there is potential in many studies to improve biomarker repertoire to cover all three categories of biomarkers and to turn away from such assays. Oxidative stress can be assessed by specific biomarker categories. Three biomarker categories: oxidative damage, endogenous, exogenous antioxidants. Only seven studies performed measurements of all three biomarker categories. TAC, TRAP, FRAP, ORAC should not be used as stand-alone redox marker. Several interventions reported improvements in markers of oxidative stress.
Collapse
Affiliation(s)
- Thorsten Henning
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558, Nuthetal, Germany.
| |
Collapse
|
12
|
Câmara AB, Brandão IA. The relationship between vitamin D deficiency and oxidative stress can be independent of age and gender. INT J VITAM NUTR RES 2021; 91:108-123. [DOI: 10.1024/0300-9831/a000614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract. The active vitamin D (1,25(OH)2D) acts through a nuclear receptor to perform several functions in cellular metabolism. 1,25(OH)2D participates directly in calcium homeostasis, regulates the immune system, nervous system, blood pressure, insulin secretion, among others. Vitamin D deficiency could also be associated with several diseases and increased cellular oxidative damage. The present study aimed to investigate whether lipid peroxidation and/or protein oxidation are affected by vitamin D deficiency and whether sunlight exposure/diet, gender, and age might influence this relationship. Vitamin D concentrations were obtained from the Heart Hospital database and a questionnaire was applied among the 212 participants. We used the inactive vitamin D (25(OH)2) in the analyses since 1,25(OH)2D has a short half-life and a low blood concentration. Lipid peroxidation and protein oxidation analyses were performed using spectrophotometry. Multivariate analyses suggested the participation of vitamin D deficiency (<30 ng/mL) and sunlight/diet in oxidative stress (p <0.05; R2 MDA: 0.562; R2 CG: 0.429). Multiple linear regression test show that the age and gender of patients are not interfering in the analyses (p>0.05). Therefore, we suggest that the relationship between vitamin D deficiency and oxidative stress can be independent of age and gender.
Collapse
Affiliation(s)
- Alice Barros Câmara
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| | - Igor Augusto Brandão
- Metrópole Digital Institute, Federal University of Rio Grande do Norte, Natal/RN, Brazil
| |
Collapse
|
13
|
Hu KL, Gan K, Wang R, Li W, Wu Q, Zheng B, Zou L, Zhang S, Liu Y, Wu Y, Chen R, Cao W, Yang S, Liu FT, Tian L, Zeng H, Xu H, Qiu S, Yang L, Chen X, Pan X, Wu X, Mol BW, Li R, Zhang D. Vitamin D supplementation prior to in vitro fertilisation in women with polycystic ovary syndrome: a protocol of a multicentre randomised, double-blind, placebo-controlled clinical trial. BMJ Open 2020; 10:e041409. [PMID: 33293396 PMCID: PMC7725097 DOI: 10.1136/bmjopen-2020-041409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is one of the leading causes of female infertility, affecting around 5% of women of childbearing age in China. Vitamin D insufficiency is common in women with PCOS and is associated with lower live birth rates. However, evidence regarding the effectiveness of vitamin D supplementation in women with PCOS is inconclusive. This multicentre randomised, double-blinded, placebo-controlled trial aims to evaluate the effectiveness of vitamin D supplementation prior to in vitro fertilisation (IVF) on the live birth rate in women with PCOS. METHODS AND ANALYSIS We plan to enrol women with PCOS scheduled for IVF. After informed consent, eligible participants will be randomised in a 1:1 ratio to receive oral capsules of 4000 IU vitamin D per day or placebo for around 12 weeks until the day of triggering. All IVF procedures will be carried out routinely in each centre. The primary outcome is live birth after the first embryo transfer. The primary analysis will be by intention-to-treat analysis. To demonstrate or refute that treatment with vitamin D results in a 10% higher live birth rate than treatment with placebo, we need to recruit 860 women (48% vs 38% difference, anticipating 10% loss to follow-up and non-compliance, significance level 0.05 and power 80%). ETHICS AND DISSEMINATION This study has been approved by the Ethics Committee in Women's Hospital of Zhejiang University on 2 March 2020 (reference number: IRB-20200035-R). All participants will provide written informed consent before randomisation. The results of the study will be submitted to scientific conferences and a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04082650.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kwanghann Gan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Wang
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Wentao Li
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Qiongfang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Beihong Zheng
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Libo Zou
- Department of Reproductive Medicine, Jinhua People's Hospital, Jinhua, China
| | - Su Zhang
- Department of Obstetrics and Gynaecology, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Yifeng Liu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiqing Wu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruixue Chen
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wushuang Cao
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuo Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Fen-Ting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Lifeng Tian
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Han Zeng
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Huiling Xu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shumin Qiu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lihua Yang
- Department of Reproductive Medicine, Jinhua People's Hospital, Jinhua, China
| | - Xiao Chen
- Department of Reproductive Medicine, Jinhua People's Hospital, Jinhua, China
| | - Xiaoqin Pan
- Department of Obstetrics and Gynaecology, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Xiaoyun Wu
- Department of Obstetrics and Gynaecology, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Ben W Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Safi A, Orazov M, Kalinchenko S. The role of cholecalciferol deficiency in the pathogenesis of polycystic ovary syndrome. ACTA ACUST UNITED AC 2020; 16:1745506520969606. [PMID: 33226913 PMCID: PMC7686588 DOI: 10.1177/1745506520969606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES to evaluate and compare clinical presentations, medical history, and laboratory data of patients with polycystic ovary syndrome, including vitamin 25(OH)D3 level. METHODS In total, 81 patients were examined. The patient group included 51 patients with signs of polycystic ovary syndrome. The control group included 30 healthy women without signs of polycystic ovary syndrome, comparable according to gender and age to the patient group. Polycystic ovary syndrome was verified based on the diagnostic Rotterdam and international polycystic ovary syndrome guidelines' criteria. The levels of cholecalciferol were determined by mass spectrometry (ng/mL). At the second stage of the study, the patient group with polycystic ovary syndrome was divided into two subgroups depending on the waist circumference and compared with each other by the level of insulin, low-density lipoproteins, triglycerides, anti-Mullerian hormone, follicle-stimulating hormone, and luteinizing hormone. Statistical analysis was carried out using the parametric t-test for two-independent samples with equal or different variance. For nominal data-Pearson's chi-test, when the means are not calculated and a test is carried out for the presence of a relationship between the nominal variables. RESULTS Patients with polycystic ovary syndrome and without polycystic ovary syndrome did not have a statistically significant difference in 25(OH)D3 level. Statistically significant differences in the level of 25(OH)D3 were found in women with polycystic ovary syndrome with the waist circumference ⩾80 cm. In these subgroups, differences in insulin, low-density lipoprotein, and triglycerides levels were also revealed. CONCLUSION The correlation of the 25(OH)D3 level does not differ in the groups of patients with polycystic ovary syndrome and without polycystic ovary syndrome, but significantly correlates with the metabolic profile of patients.
Collapse
Affiliation(s)
- Aigul Safi
- Department of Obstetrics and Gynecology with a Course in Perinatology, Institute of Medicine, People's Friendship University of Russia, Moscow, Russia.,"D-Doctor" Private Clinic, Nur-Sultan, Kazakhstan
| | - Mekan Orazov
- Department of Obstetrics and Gynecology with a Course in Perinatology, Institute of Medicine, People's Friendship University of Russia, Moscow, Russia
| | - Svetlana Kalinchenko
- Department of Endocrinology, Institute of Medicine, People's Friendship University of Russia, Moscow, Russia
| |
Collapse
|
15
|
Kyei G, Sobhani A, Nekonam S, Shabani M, Ebrahimi F, Qasemi M, Salahi E, Fardin A. Assessing the effect of MitoQ 10 and Vitamin D3 on ovarian oxidative stress, steroidogenesis and histomorphology in DHEA induced PCOS mouse model. Heliyon 2020; 6:e04279. [PMID: 32760818 PMCID: PMC7393412 DOI: 10.1016/j.heliyon.2020.e04279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) continues to be one of the most complex reproductive and endocrine disorder among women of reproductive age. Recent reports have identified close interaction of Vitamin D deficiency and oxidative stress (OS) in exacerbating the pathophysiology of PCOS. This current study aims at assessing the combine effect of MitoQ10 and Vitamin D3 on dehydroepiandrosterone (DHEA) induced PCOS. Following successful induction of PCOS using DHEA, mice were organized into five groups (n = 8) namely: Negative Control (NC), Vitamin D3 Vehicle (VDV), Vitamin D3 (VD), MitoQ10 (MQ), Vitamin D3 plus MitoQ10 (V+M) and DHEA, ethanol and distilled water, Vitamin D3, MitoQ10 and Vitamin D3 plus MitoQ10 were respectively administered for 20 consecutive days. The study also included positive control (PC) group (n = 8) in which no treatment was applied. Treatment effects were assessed using hormonal assays, biochemical assays, Real-Time PCR, western blotting and histological analysis. Combination of Vitamin D3 and MitoQ10 significantly reduced levels of estradiol, progesterone, FSH, LH, LH/FSH, SOD and MDA. The expression rate of mRNAs of 3β-HSD, Cyp19a1, Cyp11a1, StAR, Keap1, HO-1 and Nrf2 were also significantly low in V+M group. Moreover, the histomorphological inspection of ovaries from this group revealed many healthy follicles at various stages of development including few atretic follicles, pre-antral and antral follicles and many corpora lutea. The characteristics observed in this group were in many ways similar to that of the PC group. The combination of MitoQ10 and Vitamin D3 may be potential candidate to ameliorate PCOS.
Collapse
Affiliation(s)
- Gordon Kyei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Salahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amidi Fardin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Shi XY, Yao J, Fan SM, Hong PP, Xia YG, Chen Q. Effects of vitamin D supplementation on serum lipid profile in women with polycystic ovary syndrome: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20621. [PMID: 32502038 PMCID: PMC7306319 DOI: 10.1097/md.0000000000020621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the commonest endocrine disorder in reproductive-aged women. In addition to the reproductive consequences, PCOS is also characterized by a metabolic disorder, which may play a part in the etiology of anovulation and has important implications for long-term health as well. Vitamin D deficiency is prevalent in PCOS and there is a close relationship between metabolic dysfunction and vitamin D status in women with PCOS. The purpose of this systematic analysis is to evaluate the effect of vitamin D supplementation on serum lipid profiles in patients with PCOS. METHODS We will search five databases for relative studies: Medline, the Cochrane Library, EMBASE, Web of Science, and ClinicalTrials.gov and identified all reports of randomized controlled trials published prior to July 2020. Two authors will independently scan the articles searched, extract the data from articles included, and assess the risk of bias by Cochrane tool of risk of bias. Disagreements will be resolved by discussion among authors. All analysis will be performed based on the Cochrane Handbook for Systematic Reviews of Interventions. Fixed-effects model or random-effects model was used to calculate pooled estimates of weighted mean difference (WMD) with 95% confidence intervals. RESULTS This review will be to assess the effect of vitamin D supplementation on serum lipid profiles in patients with PCOS. The results of the study will be published in a scientific journal after peer-review. CONCLUSIONS These findings will provide guidance to clinicians and patients on the use of vitamin D for PCOS with dyslipidemia. ETHICS AND DISSEMINATION This study is a protocol for a systematic review of vitamin D as a treatment of dyslipidemia in PCOS patients. SYSTEMATIC REVIEW REGISTRATION INPLASY202050007.
Collapse
|
17
|
Fecker R, Buda V, Alexa E, Avram S, Pavel IZ, Muntean D, Cocan I, Watz C, Minda D, Dehelean CA, Soica C, Danciu C. Phytochemical and Biological Screening of Oenothera Biennis L. Hydroalcoholic Extract. Biomolecules 2020; 10:biom10060818. [PMID: 32466573 PMCID: PMC7356052 DOI: 10.3390/biom10060818] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Oenothera biennis L. (OB), also commonly known as evening primrose, belongs to the Onagraceae family and has the best studied biological activity of all the members in the family. In therapy, the most frequently used type of extracts are from the aerial part, which are the fatty oils obtained from the seeds and have a wide range of medicinal properties. The aim of this study was to evaluate the phytochemical composition and biological activity of OB hydroalcoholic extract and to provide directions for the antimicrobial effect, antiproliferative and pro-apoptotic potential against A375 melanoma cell line, and anti-angiogenic and anti-inflammatory capacity. The main polyphenols and flavonoids identified were gallic acid, caffeic acid, epicatechin, coumaric acid, ferulic acid, rutin and rosmarinic acid. The total phenolic content was 631.496 µgGAE/mL of extract and the antioxidant activity was 7258.67 μmolTrolox/g of extract. The tested extract had a mild bacteriostatic effect on the tested bacterial strains. It was bactericidal only against Candida spp. and S. aureus. In the set of experimental conditions, the OB extract only manifested significant antiproliferative and pro-apoptotic activity against the A375 human melanoma cell line at the highest tested concentration, namely 60 μg/mL. The migration potential of A375 cells was hampered by the OB extract in a concentration-dependent manner. Furthermore, at the highest tested concentration, the OB extract altered the mitochondrial function in vitro, while reducing the angiogenic reaction, hindering compact tumor formation in the chorioallantoic membrane assay. Moreover, the OB extract elicited an anti-inflammatory effect on the experimental animal model of ear inflammation.
Collapse
Affiliation(s)
- Ramona Fecker
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
- Correspondence: (V.B.); (D.M.); Tel.: +4-0755-100-408 (V.B.)
| | - Ersilia Alexa
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului No. 119, 300641 Timişoara, Romania; (E.A.); (I.C.)
| | - Stefana Avram
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania
- Correspondence: (V.B.); (D.M.); Tel.: +4-0755-100-408 (V.B.)
| | - Ileana Cocan
- Department of Food Control, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timişoara, Calea Aradului No. 119, 300641 Timişoara, Romania; (E.A.); (I.C.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş”, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (R.F.); (S.A.); (I.Z.P.); (D.M.); (C.D.)
| |
Collapse
|
18
|
Khorshidi M, Zarezadeh M, Moradi Moghaddam O, Emami MR, Kord-Varkaneh H, Mousavi SM, Alizadeh S, Heshmati J, Olang B, Aryaeian N. Effect of evening primrose oil supplementation on lipid profile: A systematic review and meta-analysis of randomized clinical trials. Phytother Res 2020; 34:2628-2638. [PMID: 32441049 DOI: 10.1002/ptr.6716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies have shown that evening primrose oil (EPO) supplementation might be effective in improving lipid profile, however, the results are inconsistent. This study was performed to determine the direction and magnitude of the EPO effect on the lipid profile. METHODS PubMed, Scopus, Cochrane Library, Embase and Web of Science databases and Google Scholar were searched up to September-2019. Meta-analysis was performed using the random-effects model. Lipid profile including high-density lipoprotein (HDL), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) was considered as the primary outcome. RESULTS A total of 926 articles were identified through database searching, of which, six RCTs were included in the meta-analysis. There were six studies on HDL, TC, and TG and four studies on LDL. EPO supplementation had no significant effect on TC, TG, LDL, and HDL. However, in subgroup analysis, a significant reduction in TG at a dose of ≤4 g/day (weighted mean difference [WMD] = -37.28 mg/dl; 95% CI: -73.53 to -1.03, p = .044) and a significant increase in HDL in hyperlipidemic subjects (WMD = 5.468 mg/dl; 95% CI: 1.323 to 9.614, p = .010) was found. CONCLUSION Oral intake of EPO at a dose of ≤4 g/day significantly reduces serum TG levels and significantly increases HDL levels in hyperlipidemic subjects.
Collapse
Affiliation(s)
- Masoud Khorshidi
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Zarezadeh
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Moradi Moghaddam
- Trauma and Injury Research Center, Critical Care Medicine Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, Students' Scientific Research Center (SSRC), School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Javad Heshmati
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Olang
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
The controversial role of vitamin D as an antioxidant: results from randomised controlled trials. Nutr Res Rev 2018; 32:99-105. [DOI: 10.1017/s0954422418000197] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractIncreased oxidative stress has been implicated as a potential causal factor in the development of several diseases. In the last decade, an extensive literature has been produced on vitamin D, not limited to its well-known function like a steroid hormone on skeletal tissue, but for its potential pleiotropic role in human health. Several researchers have suggested relationships between vitamin D intake and health outcomes such as cancer prevention and increased immunity, or possible role in preventing diabetes, and in inflammation. Little is known about its antioxidant effect. The aim of the present review was to explore major evidence regarding the potential scavenger capacity of vitamin D in high-evidence human studies. Studies considered by the present review suggest that the potential role of vitamin D as an antioxidant could not be confirmed. Current literature showed controversial effects about the ability of cholecalciferol to prevent or ameliorate oxidative stress biomarkers, and there is need of further and high-quality studies testing the antioxidant effect of vitamin D supplementation.
Collapse
|