1
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
2
|
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:577-593. [PMID: 35144750 PMCID: PMC8983019 DOI: 10.1016/j.jacc.2021.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.
Collapse
Affiliation(s)
- Jacqueline T Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Arash Nayeri
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA; UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
3
|
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, van Tiel C, Ta Megens R, Nitz K, Baardman J, Kusters P, Seijkens T, Buerger C, Janjic A, Riccardi C, Edsfeldt A, Monaco C, Daemen M, de Winther MPJ, Nilsson J, Weber C, Gerdes N, Gonçalves I, Lutgens E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J 2021; 41:2938-2948. [PMID: 32728688 DOI: 10.1093/eurheartj/ehaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.
Collapse
Affiliation(s)
- Annelie Shami
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Laura A Bosmans
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Svenja Meiler
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Claudia van Tiel
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Remco Ta Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jeroen Baardman
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pascal Kusters
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Seijkens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christina Buerger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Aleksandar Janjic
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, München, Martinsried, Germany
| | - Carlo Riccardi
- Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Mat Daemen
- Department of Pathology, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
4
|
Gao J, Wang S, Liu S. The involvement of protein TNFSF18 in promoting p-STAT1 phosphorylation to induce coronary microcirculation disturbance in atherosclerotic mouse model. Drug Dev Res 2021; 82:115-122. [PMID: 32820830 DOI: 10.1002/ddr.21735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/06/2022]
Abstract
The inflammation of coronary endothelium was critically involved in the pathogenesis of atherosclerosis. The purpose of the study was to reveal the roles of TNFSF18 in promoting p-STAT1 phosphorylation to induce disturbance of coronary microcirculation in atherosclerotic mouse model. This study was dividedly transfected TNFSF18 inhibitor, small interfering-TNFSF18 plasmid (si-TNFSF18) and a blank vector plasmid into atherosclerotic mouse model. Results showed that the coronary vascular lumen was narrowed and crescent plaques were adhered to the coronary vessel wall in atherosclerotic mouse model. However, the accumulation of microthrombus in coronary artery and vascular crescent plaques were evidently reduced with the antagonistic TNFSF18. Besides, the inflammatory cytokines TNF-α, TNF-β and IL-1β were abundant in mouse model, and TNFSF18 inhibition decreased the secretion of cytokines. Meanwhile, the amount of Th1 cells were also reduced after transfected with TNFSF18 inhibitor and si-TNFSF18 plasmid compared with the mouse model transfected with blank vector plasmid. Moreover, the protein TNFSF18 was highly expressed in the cytoplasm and p-STAT1 was located in cell nucleus of the mouse model coronary vascular tissues. Consistently, the proteins TNFSF18, p-STAT1, VCAM1, ICAM1, ITGAD and ITGB3 were significantly expressed in atherosclerotic mouse model, while antagonistic TNFSF18, conversely, decreased the proteins' expression. Taken together, this study indicated that the coronary endothelial inflammation triggered TNFSF18 expression, which promoted p-STAT1 phosphorylation to activate the proteins VCAM1, ICAM1, ITGAD and ITGB3, thus exacerbating coronary microcirculation disorder in atherosclerotic mouse model.
Collapse
Affiliation(s)
- Jing Gao
- Internal Medicine-Cardiovascular Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Sai Wang
- Internal Medicine-Cardiovascular Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Shilei Liu
- Internal Medicine-Cardiovascular Department, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
5
|
Manini A, Pantoni L. CADASIL from Bench to Bedside: Disease Models and Novel Therapeutic Approaches. Mol Neurobiol 2021; 58:2558-2573. [PMID: 33464533 PMCID: PMC8128844 DOI: 10.1007/s12035-021-02282-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic disease caused by NOTCH3 mutations and characterized by typical clinical, neuroradiological, and pathological features. NOTCH3 belongs to a family of highly conserved transmembrane receptors rich of epidermal growth factor repeats, mostly expressed in vascular smooth muscle cells and pericytes, which perform essential developmental functions and are involved in tissues maintenance and renewal. To date, no therapeutic option for CADASIL is available except for few symptomatic treatments. Novel in vitro and in vivo models are continuously explored with the aim to investigate underlying pathogenic mechanisms and to test novel therapeutic approaches. In this scenario, knock-out, knock-in, and transgenic mice studies have generated a large amount of information on molecular and biological aspects of CADASIL, despite that they incompletely reproduce the human phenotype. Moreover, the field of in vitro models has been revolutionized in the last two decades by the introduction of induced pluripotent stem cells (iPSCs) technology. As a consequence, novel therapeutic approaches, including immunotherapy, growth factors administration, and antisense oligonucleotides, are currently under investigation. While waiting that further studies confirm the promising results obtained, the data reviewed suggest that our therapeutic approach to the disease could be transformed, generating new hope for the future.
Collapse
Affiliation(s)
- Arianna Manini
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy
| | - Leonardo Pantoni
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy.
| |
Collapse
|
6
|
Chen X, Guo Y, Lai L, Zhang S, Li Z. Intracoronary and peripheral blood levels of TNF-like Cytokine 1A (TL1A) in patients with acute coronary syndrome. Medicine (Baltimore) 2020; 99:e20305. [PMID: 32481400 PMCID: PMC7447486 DOI: 10.1097/md.0000000000020305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND TNF-like cytokine 1A (TL1A) is a subgroup of the tumor necrosis factor superfamily that exerts pleiotropic effects on cell proliferation, inflammation, activation, and differentiation of immune cells. The purpose of the current study is to investigate the clinical significance of TL1A expression in coronary and peripheral blood of patients with acute coronary syndrome (ACS) to determine if TL1A levels can serve as an accurate prognostic indicator. METHODS A total of 141 patients undergoing coronary angiography were divided into 4 groups: Control (n = 35), Unstable Angina (UA) (n = 35), acute non-ST segment elevation myocardial infarction (NSTEMI) (n = 37), and acute ST segment elevation myocardial infarction (STEMI) (n = 34). The levels of TL1A, MPO, hs-CRP, and IL-10 were detected in coronary and peripheral blood using enzyme linked immunosorbent assay (ELISA), and the MACE incidence rates were compared during 26.3 months of follow-up. RESULTS TL1A levels were not significantly different between the UA group and control group. In the UA group, TL1A levels were not significantly different between coronary blood and peripheral blood. However, TL1A levels were higher in the STEMI and NSTEMI groups than in the control group (P < .05). Moreover, TL1A levels in the coronary blood of the STEMI and NSTEMI groups were higher than in the peripheral blood (P < .05). The expression of TL1A in the coronary blood was the highest in the STEMI group. In addition, TL1A level in the coronary blood was highly correlated with levels in the peripheral blood (correlation coefficient: 0.899, P < .001). The hs-CRP and MPO levels in the coronary and peripheral blood of all the UA, NSTEMI, and STEMI groups were higher than the control group. Plasma IL-10 levels in all the UA, NSTEMI and STEMI groups were lower than those in the control group. Plasma TL1A level was positively correlated with the cTnI level, degree of coronary thrombus burden, occurrence of slow coronary flow / no coronary reflow and MACE, but negatively correlated with the IL-10 level or non-correlated with the Syntax score. CONCLUSION Plasma TL1A concentration levels can be used as a predictor of inflammatory response and prognosis in patients with ACS. TRIAL REGISTRATION ClinicalTrials.gov, number: NCT02430025; Unique Protocol ID: FJPH20150101; Brief Title: Fujian Province Cardiovascular Diseases Study (FJCVD).
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong
- Department of Cardiology
| | | | - Li Lai
- Fujian Key Laboratory of Cardiovascular Disease, Fujian Provincial Hospital, Fujian Medical University
| | - Shengli Zhang
- School of Humanities and Management, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiliang Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong
| |
Collapse
|
7
|
Fasihi A, Pourhamedi S, Zahedi M, Goudarzian M, Ramazi S, Kafashzadeh M, Heydari-Zarnagh H. Association of lymphotoxin-alpha gene polymorphisms (rs909253, rs1800683 and rs2229094) and risk of large-artery atherosclerosis stroke in Iranian population. J Gene Med 2020; 22:e3229. [PMID: 32415894 DOI: 10.1002/jgm.3229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lymphotoxin-alpha (LTA), a proinflammatory cytokine, is significantly associated with the progression of atherosclerosis as an independent hazard factor for stroke. According to new genetic studies, polymorphisms in the LTA gene that influence its expression or biological function may play a role in the progress of stroke; thus, the present case-control study investigated LTA gene polymorphisms (rs909253, rs1800683 and rs2229094) and the risk of large artery atherosclerosis stroke (LAA) in an Iranian population. METHODS For 211 large artery atherosclerosis patients and 186 ischemic stroke-free controls, genotypes were determined using the tetra-primer amplification-refractory mutation system polymerase chain reaction method. Linkage disequilibrium and estimated haplotypes were analyzed using SNP Analyzer 2 software. The strength of the link between LTA gene polymorphisms (rs1800683, rs909253, and rs2229094) and the risk of stroke was determined using conditional logistic regression. RESULTS Analysis revealed that the patterns of the rs1800683, rs909253 and rs2229094 genotypes showed no significant difference between the LAA and control group, although the distribution of the GAT (rs1800683G, rs909253A and rs2229094T) haplotype was significantly higher in the control group (odds ratio = 0.707, 95% confidence interval = 0.53-0.942, p = 0.0355). CONCLUSIONS Our results indicate that the GAT haplotype in LTA gene is associated with a decreased risk of LAA incidence in a northeastern Iranian population.
Collapse
Affiliation(s)
- Ali Fasihi
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeede Pourhamedi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohmmadsaeid Zahedi
- Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Goudarzian
- Iranian Research Center on Healthy Aging, Sabzevar of Medical Sciences, Sabzevar, Iran
| | - Shahin Ramazi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehrnoosh Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari-Zarnagh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
8
|
Skeate JG, Otsmaa ME, Prins R, Fernandez DJ, Da Silva DM, Kast WM. TNFSF14: LIGHTing the Way for Effective Cancer Immunotherapy. Front Immunol 2020; 11:922. [PMID: 32499782 PMCID: PMC7243824 DOI: 10.3389/fimmu.2020.00922] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor superfamily member 14 (LIGHT) has been in pre-clinical development for over a decade and shows promise as a modality of enhancing treatment approaches in the field of cancer immunotherapy. To date, LIGHT has been used to combat cancer in multiple tumor models where it can be combined with other immunotherapy modalities to clear established solid tumors as well as treat metastatic events. When LIGHT molecules are delivered to or expressed within tumors they cause significant changes in the tumor microenvironment that are primarily driven through vascular normalization and generation of tertiary lymphoid structures. These changes can synergize with methods that induce or support anti-tumor immune responses, such as checkpoint inhibitors and/or tumor vaccines, to greatly improve immunotherapeutic strategies against cancer. While investigators have utilized multiple vectors to LIGHT-up tumor tissues, there are still improvements needed and components to be found within a human tumor microenvironment that may impede translational efforts. This review addresses the current state of this field.
Collapse
Affiliation(s)
- Joseph G Skeate
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mikk E Otsmaa
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel J Fernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Diane M Da Silva
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Yang Q, Han L, Li J, Xu H, Liu X, Wang X, Pan C, Lei C, Chen H, Lan X. Activation of Nrf2 by Phloretin Attenuates Palmitic Acid-Induced Endothelial Cell Oxidative Stress via AMPK-Dependent Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:120-131. [PMID: 30525573 DOI: 10.1021/acs.jafc.8b05025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phloretin, a dihydrochalcone structural flavonoid compound, possesses antioxidant activity. In this study, we conducted studies to explore the function of phloretin on high palmitic acid-induced oxidative stress in human umbilical vein endothelial cells and investigated the potential mechanism using ribonucleic acid sequencing (RNA-Seq). Our findings reveal that phloretin significantly decreased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione peroxidase-1 (Gpx-1) activity, and restored the loss of mitochondrial membrane potential (MMP). Next, whole transcriptome analysis was performed using RNA-Seq The results indicated more than 3000 differentially expressed genes (DEGs). Gene Ontology analysis revealed that the DEGs were categorized functionally, mainly by the biological processes, cell metabolism, and cellular response to chemical stimulus. The Kyoto Encyclopedia of Genes and Genomes indicated that they were mainly enriched in cAMP, apoptosis, and cytoskeletal regulation signaling pathways. Furthermore, on the basis of the results of RNA-Seq and Western blotting, our study verified that phloretin upregulated the expression of p-Nrf2 and HO-1 by promoting the phosphorylation of AMPK at Thr172 through activation of liver kinase B1. In conclusion, phloretin attenuates PA-induced oxidative stress in HUVECs via the AMPK/Nrf2 antioxidative pathway.
Collapse
Affiliation(s)
- Qing Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Lin Han
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , P. R. China
| | - Jie Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Han Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Xinfeng Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Xinyu Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Chuanying Pan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling 712100 , P. R. China
| |
Collapse
|
11
|
Farsky PS, Hirata MH, Arnoni RT, Almeida AFS, Issa M, Lima PHO, Higuchi MDL, Lin-Wang HT. Persistent Inflammatory Activity in Blood Cells and Artery Tissue from Patients with Previous Bare Metal Stent. Arq Bras Cardiol 2018; 111:134-141. [PMID: 30020327 PMCID: PMC6122910 DOI: 10.5935/abc.20180119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 02/23/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Studies have pointed out a higher mortality after coronary artery bypass surgery (CABG) in patients with stent. OBJECTIVE To evaluate inflammatory markers in peripheral blood cells and in coronary artery tissue samples obtained during CABG in patients with stent compared to controls. METHODS The case series consisted of two groups, one with previous stent implantation (n = 41) and one control (n = 26). The expression of the LIGHT, IL-6, ICAM, VCAM, CD40, NFKB, TNF, IFNG genes was analyzed in peripheral blood cells collected preoperatively. The coronary artery was evaluated for: interleukin-6, ICAM, VCAM, CD40, NFKB, TNF-alpha and IFN-gamma by immunohistochemistry. A total of 176 tissue samples were grouped for analysis in: A1- arteries with stent (n = 38); A2- native arteries from patients with stent in another artery (n = 68); and A3- arteries without stent from controls undergoing routinely CABG surgery (n = 70). A significance level of 0.05 was adopted. RESULTS Patients with stent showed higher TNF (p = 0.03) and lower CD40 gene expression (p = 0.01) in peripheral blood cells than controls without stent. In coronary artery samples, the TNF-alpha protein staining was higher in the group A1, not only in the intima-media layer (5.16 ± 5.05 vs 1.90 ± 2.27; p = 0.02), but also in the adipose tissue (6.69 ± 3.87 vs 2.27 ± 4.00; p < 0.001). Furthermore, group A1 had a higher interleukin-6 protein staining in adipose tissue than group A3 (p = 0.04). CONCLUSION We observed a persistently higher systemic TNF expression associated with exacerbated TNF-alpha and interleukin-6 local production in patients with stents. This finding may contribute to a worse clinical outcome.
Collapse
Affiliation(s)
| | - Mario H Hirata
- Laboratório de Investigação Molecular em Cardiologia, Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
| | | | | | - Mario Issa
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
| | | | - Maria de Lourdes Higuchi
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brazil
| | - Hui T Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
| |
Collapse
|
12
|
Gerdes N, Zirlik A. Co-stimulatory molecules in and beyond co-stimulation – tipping the balance in atherosclerosis? Thromb Haemost 2017; 106:804-13. [DOI: 10.1160/th11-09-0605] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryA plethora of basic laboratory and clinical studies has uncovered the chronic inflammatory nature of atherosclerosis. The adaptive immune system with its front-runner, the T cell, drives the atherogenic process at all stages. T cell function is dependent on and controlled by a variety of either co-stimulatory or co-inhibitory signals. In addition, many of these proteins enfold T cell-independent pro-atherogenic functions on a variety of cell types. Accordingly they represent potential targets for immune- modulatory and/or anti-inflammatory therapy of atherosclerosis. This review focuses on the diverse role of co-stimulatory molecules of the B7 and tumour necrosis factor (TNF)-superfamily and their downstream signalling effectors in atherosclerosis. In particular, the contribution of CD28/CD80/CD86/CTLA4, ICOS/ICOSL, PD-1/PDL-1/2, TRAF, CD40/CD154, OX40/OX40L, CD137/CD137L, CD70/CD27, GITR/GITRL, and LIGHT to arterial disease is reviewed. Finally, the potential for a therapeutic exploitation of these molecules in the treatment of atherosclerosis is discussed.
Collapse
|
13
|
Foks AC, Kuiper J. Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 2017; 174:3940-3955. [PMID: 28369782 DOI: 10.1111/bph.13802] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
The immune system provides a large variety of immune checkpoint proteins, which involve both costimulatory and inhibitory proteins. Costimulatory proteins can promote cell survival, cell cycle progression and differentiation to effector and memory cells, whereas inhibitory proteins terminate these processes to halt ongoing inflammation. Immune checkpoint proteins play a pivotal role in atherosclerosis by regulating the activation and proliferation of various immune and non-immune cells, such as T-cells, macrophages and platelets. Upon activation within the atherosclerotic lesions or in secondary lymphoid organs, these cells produce large amounts of pro-atherogenic cytokines that contribute to the growth and destabilization of lesions, which can result in rupture of the lesion causing acute coronary syndromes, such as a myocardial infarction. Given the presence and regulatory capacity of immune checkpoint proteins in the circulation and atherosclerotic lesions of cardiovascular patients, modulation of these proteins by, for example, the use of monoclonal antibodies, offers unique opportunities to regulate pro-inflammatory immune responses in atherosclerosis. In this review, we highlight the latest advances on the role of immune checkpoint proteins, such as OX40-OX40L, CTLA-4 and TIM proteins, in atherosclerosis and discuss their therapeutic potential as promising immunotherapies to treat or prevent cardiovascular disease. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- A C Foks
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| | - J Kuiper
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
14
|
Jabir NR, Firoz CK, Ahmed F, Kamal MA, Hindawi S, Damanhouri GA, Almehdar HA, Tabrez S. Reduction in CD16/CD56 and CD16/CD3/CD56 Natural Killer Cells in Coronary Artery Disease. Immunol Invest 2017; 46:526-535. [DOI: 10.1080/08820139.2017.1306866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nasimudeen R. Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Chelapram K. Firoz
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa Hindawi
- Department of Haematology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussein A. Almehdar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
YU MIAO, LU GUIHUA, ZHU XUN, HUANG ZHIBIN, FENG CHONG, FANG RONG, WANG YESONG, GAO XIUREN. Downregulation of VEGF and upregulation of TL1A expression induce HUVEC apoptosis in response to high glucose stimuli. Mol Med Rep 2016; 13:3265-72. [DOI: 10.3892/mmr.2016.4924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/30/2015] [Indexed: 11/05/2022] Open
|
16
|
Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 2015; 98:333-45. [PMID: 26188076 PMCID: PMC4763597 DOI: 10.1189/jlb.3ri0315-095r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Originally described in 2002 as a T cell-costimulatory cytokine, the tumor necrosis factor family member TNF-like factor 1A (TL1A), encoded by the TNFSF15 gene, has since been found to affect multiple cell lineages through its receptor, death receptor 3 (DR3, encoded by TNFRSF25) with distinct cell-type effects. Genetic deficiency or blockade of TL1A-DR3 has defined a number of disease states that depend on this cytokine-receptor pair, whereas excess TL1A leads to allergic gastrointestinal inflammation through stimulation of group 2 innate lymphoid cells. Noncoding variants in the TL1A locus are associated with susceptibility to inflammatory bowel disease and leprosy, predicting that the level of TL1A expression may influence host defense and the development of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Arianne C Richard
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John R Ferdinand
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Françoise Meylan
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Erika T Hayes
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Odile Gabay
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Richard M Siegel
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
17
|
Stamatelopoulos K, Georgiou S, Kanakakis I, Papamichael C, Oikonomidis N, Mantzou A, Samouilidou E, Loizos S, Zakopoulos N, Sfikakis PP. Circulating levels of TNF-like cytokine 1A correlate with reflected waves and atherosclerosis extent and may predict cardiac death in patients with stable coronary artery disease. Cytokine 2015; 72:102-4. [PMID: 25563533 DOI: 10.1016/j.cyto.2014.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/05/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND TNF-like cytokine 1A (TL1A)-mediated interactions are involved in atheromatic plaque formation. In stable coronary artery disease (CAD) we examined whether circulating TL1A levels correlate with coronary and/or peripheral atherosclerosis extent and predict future cardiovascular events. METHODS In this cross-sectional study, peripheral vascular studies and TL1A serum measurements were performed in 122 consecutive patients with angiographically confirmed CAD who were followed for a median of 41.9 months. TL1A levels were compared against controls (n = 63) and 20 patients with acute coronary syndrome (ACS). RESULTS TL1A was higher in ACS than the 2 other groups (p < 0.001). In stable CAD, after adjustment for traditional risk factors independent positive correlations between TL1A serum levels and reflected waves (p = 0.049), and carotid atheromatic plaque score (p = 0.049) were evident. In stable patients with a history of ACS, TL1A levels correlated with worse endothelial function (p = 0.006), extent of CAD assessed by Gensini score (p = 0.042), and cardiac mortality (p = 0.051). CONCLUSIONS This pilot study suggests that serum TL1A measurements are of clinical value in CAD. Studies on the pathogenetic role of TL1A in atherosclerosis and its sequelae are warranted.
Collapse
Affiliation(s)
- Kimon Stamatelopoulos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece.
| | - Stylianos Georgiou
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Ioannis Kanakakis
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Christos Papamichael
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Nikolaos Oikonomidis
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Aimilia Mantzou
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Elizabeth Samouilidou
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Savvas Loizos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Nikolaos Zakopoulos
- Vascular Laboratory, Department of Clinical Therapeutics, Alexandra Hospital, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, Athens University Medical School, Athens, Greece
| |
Collapse
|
18
|
Bamias G, Stamatelopoulos K, Zampeli E, Protogerou A, Sigala F, Papamichael C, Christopoulos P, Kitas GD, Sfikakis PP. Circulating levels of TNF-like cytokine 1A correlate with the progression of atheromatous lesions in patients with rheumatoid arthritis. Clin Immunol 2013; 147:144-50. [PMID: 23598291 DOI: 10.1016/j.clim.2013.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 02/07/2023]
Abstract
Interactions between TNF-like Cytokine 1A (TL1A) and its receptors, death receptor-3 (DR3) and decoy receptor-3 (DcR3) may be important in atherogenesis. We hypothesized that dysregulation of this system predicts formation of new atheromatic plaques in rheumatoid arthritis (RA). Forty-five patients were prospectively followed up for 40.5 ± 3.6 months. Serum concentrations of TL1A and DcR3 were measured at baseline and carotid and femoral arteries examined by ultrasound at baseline and at the end of follow-up. Individual serum levels of TL1A correlated with the progression of carotid atheromatic plaque height (Spearman rho = 0.550, p = 0.003). Patients with low TL1A and undetectable DcR3 serum levels at baseline showed significantly fewer newly formed carotid plaques during the next 3.5 years than the remaining patients (P = 0.016). Univariate analysis showed that a "low TL1A/DcR3" immunophenotype predicted a preserved atherosclerosis profile in carotid (P = 0.026), or carotid and/or femoral arteries (P = 0.022). Dysregulated TL1A-induced signaling may be associated with risk for accelerated atherosclerosis in RA.
Collapse
Affiliation(s)
- G Bamias
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, Medical School, Ethnikon and Kapodistriakon Univesity, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Inhibitors of tumour necrosis factor (TNF) are among the most successful protein-based drugs (biologics) and have proven to be clinically efficacious at reducing inflammation associated with several autoimmune diseases. As a result, attention is focusing on the therapeutic potential of additional members of the TNF superfamily of structurally related cytokines. Many of these TNF-related cytokines or their cognate receptors are now in preclinical or clinical development as possible targets for modulating inflammatory diseases and cancer as well as other indications. This Review focuses on the biologics that are currently in clinical trials for immune-related diseases and other syndromes, discusses the successes and failures to date as well as the expanding therapeutic potential of modulating the activity of this superfamily of molecules.
Collapse
Affiliation(s)
- Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
20
|
Wei SD, Li JZ, Liu ZJ, Chen Q, Chen Y, Chen M, Gong JP. Dexamethasone attenuates lipopolysaccharide-induced liver injury by downregulating glucocorticoid-induced tumor necrosis factor receptor ligand in Kupffer cells. Hepatol Res 2011; 41:989-99. [PMID: 21951872 DOI: 10.1111/j.1872-034x.2011.00852.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIM Glucocorticoid-induced tumor necrosis factor receptor ligand (GITRL) plays pro-inflammatory roles in immune response. Thus, our aim was to assess if dexamethasone attenuates lipopolysaccharide (LPS)-induced liver injury by affecting GITRL in Kupffer cells (KC). METHODS A BALB/c mouse model of liver injury was established by i.p. injecting with LPS (10 mg/kg) co-treated with or without dexamethasone (3 mg/kg). Blood and liver samples were obtained for analysis of liver morphology, GITRL expression, hepatocellular function and cytokine levels at 24 h after injection. KC were isolated and challenged by LPS (1 µg/mL), with or without dexamethasone (10 µM) co-treatment, or with GITRL siRNA pre-transfection. The GITRL expression and cytokine levels were assayed at 24 h after challenge. RESULTS Dexamethasone treatment significantly improved the survival rate of endotoxemic mice (P < 0.05), whereas serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and γ-interferon levels were significantly decreased (P < 0.05, respectively). Concurrently, LPS-induced hepatic tissue injury was attenuated as indicated by morphological analysis; and expression of GITRL in liver tissue and KC was downregulated (P < 0.05). Consistent with these in vivo experiments, inhibited expression of GITRL, TNF-α and IL-6 caused by dexamethasone treatment were also observed in LPS-stimulated KC. The GITRL, TNF-α and IL-6 expression was also significantly inhibited by GITRL gene silencing. CONCLUSION The TNF-α and IL-6 expression of LPS-stimulated KC was inhibited by GITRL gene silencing. Dexamethasone attenuates LPS-induced liver injury, at least proportionately, by downregulating GITRL in KC.
Collapse
Affiliation(s)
- Si D Wei
- Key Laboratory of Chongqing Hepatobiliary Surgery Key Laboratory of Molecular Biology for Infectious Diseases, People's Republic of China Ministry of Education, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee SM, Kim EJ, Suk K, Lee WH. BAFF and APRIL induce inflammatory activation of THP-1 cells through interaction with their conventional receptors and activation of MAPK and NF-κB. Inflamm Res 2011; 60:807-15. [PMID: 21505913 DOI: 10.1007/s00011-011-0336-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/05/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND BAFF and APRIL, as closely related members of the TNF superfamily, are important regulators of B-cell survival. They share two receptors, TACI and BCMA, and BAFF can stimulate an additional receptor, BAFF-R. Although these molecules have been under intense investigation in order to identify their role in immune reactions, the effect of BAFF and APRIL on macrophage function has not been tested. METHODS The human macrophage-like cell line THP-1, which expresses BAFF/APRIL and all three of their receptors, was stimulated with recombinant human BAFF or APRIL or monoclonal antibodies against the receptors and the resulting cellular responses were investigated. Treatment of the cells with these agents induced the expression of pro-inflammatory mediators such as matrix metalloproteinase (MMP)-9 and IL-8. Suppression of the expression of these receptors using specific siRNAs resulted in the blocking of the response, confirming that these responses require specific interaction between BAFF/APRIL and their receptors. Inhibitors of MAPK and NF-κB blocked the expression of IL-8. Furthermore, inhibitors of MAPK blocked the BAFF-induced specific DNA binding activity of NF-κB. CONCLUSION These data indicate that BAFF and APRIL can induce inflammatory activation of THP-1 cells through the activation of MAPK, which leads to the subsequent activation of NF-κB.
Collapse
Affiliation(s)
- Sang-Min Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | |
Collapse
|
22
|
Lee SM, Jeon ST, Suk K, Lee WH. Macrophages express membrane bound form of APRIL that can generate immunomodulatory signals. Immunology 2011; 131:350-6. [PMID: 20518823 DOI: 10.1111/j.1365-2567.2010.03306.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the tumour necrosis factor superfamily play an essential role in inducing various biological responses including proliferation, differentiation, survival and cell death. A proliferation-inducing ligand (APRIL), first identified as a stimulant of tumour proliferation, is now known as a regulator of B-cell-mediated immune responses through the modulation of B-cell survival and activation. However, the role of APRIL in macrophage function has not been explored. High level expression of APRIL was detected on the surface of cells of the monocytic lineage including the human macrophage-like cell line, THP-1. To identify the role of APRIL in macrophage functions, THP-1 cells were stimulated with either its counterpart (TACI : Fc fusion protein) or a monoclonal antibody that is specific to APRIL. Stimulation of APRIL resulted in the expression of pro-inflammatory mediators such as interleukin-8 and matrix metalloproteinase-9 through the activation of mitogen-activated protein kinase and nuclear factor-κB. In contrast, stimulation of APRIL had an inhibitory effect on processes that require cytoskeletal movement such as phagocytosis of opsonized zymosan and chemotaxis through an inhibition of phosphatidylinositol 3-kinase activity. These observations demonstrate that macrophages express a membrane-bound form of APRIL which, upon stimulation, modulates the activities of macrophages through stimulation or inhibition of processes associated with inflammation.
Collapse
Affiliation(s)
- Sang-Min Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
23
|
Lee SM, Kim EJ, Suk K, Lee WH. Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-κB in THP-1 cells. Cell Immunol 2011; 271:157-62. [DOI: 10.1016/j.cellimm.2011.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/23/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
24
|
Mück C, Herndler-Brandstetter D, Micutkova L, Grubeck-Loebenstein B, Jansen-Dürr P. Two functionally distinct isoforms of TL1A (TNFSF15) generated by differential ectodomain shedding. J Gerontol A Biol Sci Med Sci 2010; 65:1165-80. [PMID: 20675618 PMCID: PMC2954241 DOI: 10.1093/gerona/glq129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor–like cytokine 1A (TL1A) is expressed in endothelial cells and contributes to T-cell activation, via an extracellular fragment TL1AL72-L251, generated by ectodomain shedding. Fragments of TL1A, referred to as vascular endothelial growth inhibitor, were found to induce growth arrest and apoptosis in endothelial cells; however, the underlying mechanisms remained obscure. Here, we show that full-length TL1A is the major detectable gene product in both human umbilical vein endothelial cells and circulating endothelial progenitor cells. TL1A expression was significantly enhanced in senescent circulating endothelial progenitor cells, and knockdown of TL1A partially reverted senescence. TL1A overexpression induced premature senescence in both circulating endothelial progenitor cells and human umbilical vein endothelial cells. We also identified a novel extracellular fragment of TL1A, TL1AV84-L251, resulting from differential ectodomain shedding, which induced growth arrest and apoptosis in human umbilical vein endothelial cells. These findings suggest that TL1A is involved in the regulation of endothelial cell senescence, via a novel fragment produced by differential ectodomain shedding.
Collapse
Affiliation(s)
- Christoph Mück
- Department of Molecular and Cell Biology, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
25
|
Engel D, Seijkens T, Poggi M, Sanati M, Thevissen L, Beckers L, Wijnands E, Lievens D, Lutgens E. The immunobiology of CD154-CD40-TRAF interactions in atherosclerosis. Semin Immunol 2009; 21:308-12. [PMID: 19616449 DOI: 10.1016/j.smim.2009.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 11/25/2022]
Abstract
Atherosclerosis is a chronic disease of the large arteries that is responsible for the majority of cardiovascular events. In its pathogenesis, the immune system plays a pivotal role. The effectuation of the immune response through interactions between immune cells that is mediated by co-stimulatory molecules, determine atherosclerosis severity. This review will highlight the role of one of the most powerful co-stimulatory dyads, the CD154 (also known as CD40 ligand, CD40L)-CD40 dyad, in atherosclerosis. Its cell-type specific actions, signal transduction cascades and its therapeutic potentials will be discussed.
Collapse
Affiliation(s)
- David Engel
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|