1
|
Lian Y, Zhang M, Zhu Y, Wu M, Huang B, Xiao L, Shi K, Li P, Cong F, Wang H. The establishment of a recombinase polymerase amplification technique for the detection of mouse poxvirus. BMC Vet Res 2023; 19:256. [PMID: 38053140 DOI: 10.1186/s12917-023-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/23/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Ectromelia virus (ECTV) is the causative agent of mousepox in mice. In the past century, ECTV was a serious threat to laboratory mouse colonies worldwide. Recombinase polymerase amplification (RPA), which is widely used in virus detection, is an isothermal amplification method. RESULTS In this study, a probe-based RPA detection method was established for rapid and sensitive detection of ECTV.Primers were designed for the highly conserved region of the crmD gene, the main core protein of recessive poxvirus, and standard plasmids were constructed. The lowest detection limit of the ECTV RT- RPA assay was 100 copies of DNA mol-ecules per reaction. In addition, the method showed high specificity and did not cross-react with other common mouse viruses.Therefore, the practicability of the RPA method in the field was confirmed by the detection of 135 clinical samples. The real-time RPA assay was very similar to the ECTV real-time PCR assay, with 100% agreement. CONCLUSIONS In conclusion, this RPA assay offers a novel alternative for the simple, sensitive, and specific identification of ECTV, especially in low-resource settings.
Collapse
Affiliation(s)
- Yuexiao Lian
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Mengdi Zhang
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Yujun Zhu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Miaoli Wu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Bihong Huang
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Li Xiao
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Kehang Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peide Li
- Wenzhou Engineering Research Center of Pet, Department of Animal Science, Wenzhou Vocational College of Science & Technology, Wenzhou, 325006, China.
| | - Feng Cong
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China.
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Orthopoxvirus Zoonoses—Do We Still Remember and Are Ready to Fight? Pathogens 2023; 12:pathogens12030363. [PMID: 36986285 PMCID: PMC10052541 DOI: 10.3390/pathogens12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses’ zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections.
Collapse
|
3
|
Forsyth KS, Roy NH, Peauroi E, DeHaven BC, Wold ED, Hersperger AR, Burkhardt JK, Eisenlohr LC. Ectromelia-encoded virulence factor C15 specifically inhibits antigen presentation to CD4+ T cells post peptide loading. PLoS Pathog 2020; 16:e1008685. [PMID: 32745153 PMCID: PMC7425992 DOI: 10.1371/journal.ppat.1008685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/13/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.
Collapse
Affiliation(s)
- Katherine S. Forsyth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Peauroi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. DeHaven
- Department of Biology, La Salle University, Philadelphia, Pennsylvania, United States of America
| | - Erik D. Wold
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam R. Hersperger
- Department of Biology, Albright College, Reading, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Bossowska-Nowicka M, Mielcarska MB, Struzik J, Jackowska-Tracz A, Tracz M, Gregorczyk-Zboroch KP, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Deficiency of Selected Cathepsins Does Not Affect the Inhibitory Action of ECTV on Immune Properties of Dendritic Cells. Immunol Invest 2019; 49:232-248. [PMID: 31240969 DOI: 10.1080/08820139.2019.1631843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells. Our results showed that cDCs treated with siRNA against cathepsin B, L and S synthesize similar amounts of pro-inflammatory cytokines and exhibit comparable ability to mature and stimulate alloreactive CD4+ T cells, as untreated wild type (WT) cells. Moreover, ECTV inhibitory effect on cDC innate and adaptive immune functions, observed especially after LPS treatment, was comparable in both cathepsin-silenced and WT cells. Taken together, the absence of cathepsins B, L and S has minimal, if any, impact on the inhibitory effect of ECTV on cDC immune functions. We assume that the virus-mediated inhibition of cathepsin expression in cDCs represents more a survival mechanism than an immune evasion strategy.
Collapse
Affiliation(s)
- Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Michał Tracz
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, St. Kitts & Nevis, West Indies
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
5
|
Zhou Z, Lin W, Li X, Huang Y, Ren J, Gao Y, Li J. Aberrant Phenotype and Function of Dendritic Cells in Adult B Lineage Acute Lymphoblastic Leukemia. Immunol Invest 2019; 48:781-793. [PMID: 31062637 DOI: 10.1080/08820139.2019.1610428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) play a major role in regulating immune responses, but the aberrant phenotype and function of defective DCs in adult acute lymphoblastic leukemia (ALL) remain unclear. Here, B lineage ALL (B-ALL) patients were divided into groups according to different standards. By course of disease: newly diagnosed (ND), complete remission (CR), consolidation (CONS). By stratification: high risk (HR), standard risk (SR). By minimal residual disease (MRD): MRD positive(MRD+), MRD negative (MRD-). The proportion of plasmacytoid DC(pDC) and myeloid DC(mDC) were compared within these standards. The costimulatory molecule levels of pDC, mDC in ND and CR were measured and the function of peripheral blood monocyte-derived DC(MoDC)s were examined. We found proportions of pDC and mDC in ND were both lower compared to control group and gradually increased after CR. In HR and MRD+, the proportions were also lower compared to SR and MRD- at CR stage, respectively; but there were no difference between these comparisons when newly diagnosed. In ND, both CD80, CD86 levels in pDC, mDC were higher while the levels in activated MoDCs were lower when compared to control and CR group, respectively. The dextran uptake of MoDCs, T cell proliferation promoting ability, IL-12, BAFF, INF-α levels in supernatant and their mRNA relative expression in activated MoDCs in ND were also lower than those in control and CR group. So, DCs in B-ALL display suppressed status in phenotype and function,which would be gradually restored after effective chemotherapy. pDC and mDC could respond to patient condition, DCs proportion may be useful for monitoring disease progression.
Collapse
Affiliation(s)
- Zhenhai Zhou
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Wanyi Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Xiaoyin Li
- Department of Radiology Intervention, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Yuling Huang
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Jun Ren
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Yixin Gao
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong , P.R. China
| |
Collapse
|