1
|
Kulus M, Farzaneh M, Sheykhi-Sabzehpoush M, Ghaedrahmati F, Mehravar F, Józkowiak M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Podhorska-Okołów M, Zabel M, Mozdziak P, Dzięgiel P, Kempisty B. Exosomes and non-coding RNAs: Exploring their roles in human myocardial dysfunction. Biomed Pharmacother 2025; 183:117853. [PMID: 39827809 DOI: 10.1016/j.biopha.2025.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Myocardial dysfunction, characterized by impaired cardiac muscle function, arises from diverse etiologies, including coronary artery disease, myocardial infarction, cardiomyopathies, hypertension, and valvular heart disease. Recent advancements have highlighted the roles of exosomes and non-coding RNAs in the pathophysiology of myocardial dysfunction. Exosomes are small extracellular vesicles released by cardiac and other cells that facilitate intercellular communication through their molecular cargo, including ncRNAs. ncRNAs are known to play critical roles in gene regulation through diverse mechanisms, impacting oxidative stress, fibrosis, and other factors associated with myocardial dysfunction. Dysregulation of these molecules correlates with disease progression, presenting opportunities for therapeutic interventions. This review explores the mechanistic interplay between exosomes and ncRNAs, underscoring their potential as biomarkers and therapeutic agents in myocardial dysfunction. Emerging evidence supports the use of engineered exosomes and modified ncRNAs to enhance cardiac repair by targeting signaling pathways associated with fibrosis, apoptosis, and angiogenesis. Despite promising preclinical results, delivery, stability, and immunogenicity challenges remain. Further research is needed to optimize clinical translation. Understanding these intricate mechanisms may drive the development of innovative strategies for diagnosing and treating myocardial dysfunction, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mehravar
- Department of Biostatistics and Epidemiology, School of Health, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Marzenna Podhorska-Okołów
- Department of Human Morphology and Embryology, Division of Ultrastructure Research, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland; Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Ding W, Gu Q, Liu M, Zou J, Sun J, Zhu J. Astrocytes-derived exosomes pre-treated by berberine inhibit neuroinflammation after stroke via miR-182-5p/Rac1 pathway. Int Immunopharmacol 2023; 118:110047. [PMID: 36996739 DOI: 10.1016/j.intimp.2023.110047] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Our previous studies have shown that berberine can improve the nerve function deficits in ischemic stroke by inhibiting inflammation. The cellular communication between astrocytes and neurons via exosomes might affect neurological function after ischemic stroke, which plays a vital role in the therapy of ischemic stroke. OBJECTIVE The present study focused on the effects of exosomes released from astrocytes induced by the glucose and oxygen deprivation model with berberine pretreatment (BBR-exos) treatment for ischemic stroke and its regulatory mechanism. METHODS Oxygen-glucose-deprivation/Reoxygenation (OGD/R)-treated primary cells were used to mimic cerebral ischemia/reperfusion conditions in vitro. With the treatment of BBR-exos and exosomes released from primary astrocytes induced by the glucose and oxygen deprivation model (OGD/R-exos), the cell viability was detected. C57BL/6J mice were used to establish middle cerebral artery occlusion/reperfusion (MCAO/R) model. The anti-neuroinflammation effects of BBR-exos and OGD/R-exos were evaluated. Subsequently, the key miRNA in BBR-exos was identified by exosomal miRNA sequencing and cell validation. miR-182-5p mimic and inhibitors were provided to verify the effects in inflammation. Finally, the binding sites between miR-182-5p and Rac1 were predicted online and verified by using a dual-luciferase reporter assay. RESULTS BBR-exos and OGD/R-exos both improved the decreased activity of OGD/R-induced neurons, and decreased the expression of IL-1β, IL-6 and TNF-α (all P < 0.05), which reduced neuronal injury and inhibited neuroinflammation in Vitro. And BBR-exos showed better effects (P < 0.05). The same effect has been verified in vivo experiments: BBR-exos and OGD/R-exos both reduced cerebral ischemic injury and inhibited neuroinflammation in MCAO/R mice (all P < 0.05). Likewise, BBR-exos showed better effects (P < 0.05). The exosomal miRNA sequencing results showed that miR-182-5p was highly expressed in BBR-exos and inhibited neuroinflammation by targeting Rac1 (P < 0.05). CONCLUSION BBR-exos can carry miR-182-5p to injured neurons and inhibit the expression of Rac1, which could inhibit neuroinflammation and improved brain injury after ischemic stroke.
Collapse
Affiliation(s)
- Wangli Ding
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiuchen Gu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Manman Liu
- Department of Pharmacy, Shanghai Children's Medical Center, Medical Department, Shanghai Jiao Tong University, Shanghai, China
| | - Junqing Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Knockdown of circRNA-Memo1 Reduces Hypoxia/Reoxygenation Injury in Human Brain Endothelial Cells Through miRNA-17-5p/SOS1 Axis. Mol Neurobiol 2022; 59:2085-2097. [PMID: 35041140 DOI: 10.1007/s12035-022-02743-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/09/2022] [Indexed: 12/23/2022]
Abstract
Circ-Memo1 has been proved to be upregulated in ischemia-reperfusion induced acute injury of kidney tissues. However, the potential role of circ-Memo1 in cerebral hypoxia/reoxygenation (H/R) injury is still unclear.Blood samples were collected from 25 ischemic stroke patients and 25 healthy controls. To construct the H/R model, human brain microvascular endothelial cells (HBMVECs) were cultured under the hypoxic condition, followed by reoxygenation. Cell viability was analyzed by MTT assay. Flow cytometry was carried out to examine cell apoptosis. The level of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured by MDA and SOD assay kits, respectively. The levels of TNF-α, IL-1β, and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter gene detection was employed to verify the binding relationships between circ-Memo1, miR-17-5p, and SOS1.Circ-Memo1 and SOS1 expressions were increased, and miR-17-5p expression was reduced in ischemic stroke patients. Circ-Memo1 silencing promoted cell viability, inhibited the activation of ERK/NF-κB signaling pathway, reduced oxidative stress and inflammatory response, and inhibited cell apoptosis. Moreover, miR-17-5p functioned as the sponge of circ-Memo1, and SOS1 was identified as the target of miR-17-5p. The protective effect of circ-Memo1 knockdown on cell injury after H/R treatment was weakened by miR-17-5p inhibition.Knockdown of circ-Memo1 alleviated H/R injury of HBMVEC cells by regulating the miR-17-5p/SOS1 axis, indicating that circ-Memo1 might be a potential treatment target for cerebral H/R injury.
Collapse
|
4
|
Yang JJ, Zhao YH, Yin KW, Zhang XQ, Liu J. Dexmedetomidine inhibits inflammatory response and oxidative stress through regulating miR-205-5p by targeting HMGB1 in cerebral ischemic/reperfusion. Immunopharmacol Immunotoxicol 2021; 43:478-486. [PMID: 34196265 DOI: 10.1080/08923973.2021.1942901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate effects of dexmedetomidine (DEX) on miR-205-5p/HMGB1 axis in cerebral ischemic/reperfusion (I/R) injury. METHODS Both in vivo I/R rat model and in vitro hypoxia/reoxygenation (H/R) cell model using rat hippocampal neurons cells were established. miR-205-5p was overexpressed or inhibited by transfection of miR-205-5p mimics or inhibitor. HMGB1 was overexpressed by transfection overexpression plasmids (OE-HMGB1). TTC staining was used for measurement of infraction volume. Oxidative stress was evaluated by measurement of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) and inflammation was evaluated by measurement of IL-1β, IL-6 and TNF-α. Dual luciferase reporter assay was performed to confirm binding between miR-205-5p and HMGB1. The expression levels of miR-205-5p, and HMGB1 were measured using RT-qPCR. Western blotting was used to test the protein expression levels of HMGB1, nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase 1 (HO-1) and catalase (CAT). RESULTS Treatment of DEX significantly reduced brain infraction volume, decreased Longa's neurological function score and inhibited oxidative stress and inflammation in brain tissues of I/R rats, which were all reversed by inhibition of miR-205-5p. Both treatment of DEX or overexpression of miR-205-5p restricted oxidative stress and inflammation in H/R rat hippocampal neurons cells. The inhibition of miR-205-5p reversed the effects of DEX, while the overexpression of HMGB1 reversed the effects of miR-205-5p overexpression in H/R rat hippocampal neurons cells. Dual luciferase reporter assay showed miR-205-5p directly targeted HMGB1. CONCLUSION DEX improved I/R injury by suppressing brain oxidative stress and inflammation DEX improved I/R injury by suppressing brain oxidative stress and inflammation through activating miR-205-5p/HMGB1 axis through activating miR-205-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Jun-Jun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yan-Hong Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Ke-Wen Yin
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xiao-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Panisello-Roselló A, Roselló-Catafau J, Adam R. New Insights in Molecular Mechanisms and Pathophysiology of Ischemia-Reperfusion Injury 2.0: An Updated Overview. Int J Mol Sci 2020; 22:ijms22010028. [PMID: 33375111 PMCID: PMC7792921 DOI: 10.3390/ijms22010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Arnau Panisello-Roselló
- Ischemia-Reperfusion Unit, Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB)-IDIBAPS, Spanish Research Council (CSIC), 08036 Barcelona, Catalonia, Spain;
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France;
| | - Joan Roselló-Catafau
- Ischemia-Reperfusion Unit, Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB)-IDIBAPS, Spanish Research Council (CSIC), 08036 Barcelona, Catalonia, Spain;
- Correspondence:
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France;
| |
Collapse
|