1
|
Zhang Z, Zeng Z, Wang L, Xiong B, Zheng B, Zhang Y, Pan L. Dictyophora indusiata polysaccharide attenuated LPS-induced intestinal inflammation of mice via the TLR4/JNK signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:974-981. [PMID: 39268777 DOI: 10.1002/jsfa.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Dictyophora indusiata polysaccharide is an important bioactive component of D. indusiata, playing an important role in alleviating inflammation. The present study aimed to investigate the anti-inflammatory effect and mechanism of D. indusiata polysaccharide on lipopolysaccharide (LPS)-induced intestinal inflammation in mice. RESULTS Our results indicated that D. indusiata polysaccharide ameliorated intestinal inflammation of mice by increasing the body weight, the number of goblet cells and decreasing inflammatory cell infiltration. In addition, D. indusiata polysaccharide significantly up-regulated expression of ZO-1, Occuldin mRNA, which were 2.55-fold and 2.28-fold higher than the LPS group, respectively. In particular, D. indusiata polysaccharide effectively inhibited the Toll-like receptor 4 (TLR4)/ c-Jun NH2-terminal kinase (JNK) signalling pathway which was 0.34-fold and 0.49-fold of gene expression and 0.41-fold and 0.39-fold of protein expression in the LPS group, respectively. CONCLUSION The results of the present study suggested that D. indusiata polysaccharide exerted anti-inflammatory and intestinal protective effects by inhibiting the TLR4/JNK signaling pathway, which will provide a basis for the potential value of D. indusiata polysaccharide as prebiotics in food applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| |
Collapse
|
2
|
Zhang M, Han W, Qiao L, Li D, Ding Y, Sun Y, Li L, Wang P, Wang X. Enzymatically extracted ulvans restrict viruses via STING signaling and type I interferon after cellular entry. Carbohydr Polym 2025; 348:122778. [PMID: 39562059 DOI: 10.1016/j.carbpol.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Ulvans, abundant natural polysaccharides produced by Ulvales, have been recognized for antiviral activities, though the underlying mechanisms are not fully understood. In this study, we focused on two polysaccharides and one oligosaccharide, which were extracted enzymatically from Ulva prolifera and named as PR1 (13.5 kDa), PR2 (7.1 kDa) and PR3 (0.6 kDa), respectively. Comprehensive analyses of structures and monosaccharide composition revealed a primary composition of L-rhamnose, D-glucuronic acid and D-xylose. Of particular interest, PR1 showed a pronounced ability to inhibit vesicular stomatitis virus (VSV) in macrophages, demonstrated by an IC50 value of 179.1 ± 29.8 ng/mL. In A549 cells, a human lung carcinoma line, PR1 displayed moderate antiviral activity. However, in IFN-deficient Vero cells, PR1 proved ineffective, suggesting that PR1 might exert antiviral effects through type I interferon. A significant finding of this study is that PR1 is capable of entering cells in an energy-dependent manner, a characteristic previously undocumented. Moreover, PRs were observed to activate the intracellular STING signaling pathway, leading to the phosphorylation and subsequent nuclear translocation of p65 and IRF3. This novel discovery enhances our understanding of ulvan's role in immune modulation, highlighting the importance of considering intracellular proteins and pathways when investigating the mechanisms of polysaccharides.
Collapse
Affiliation(s)
- Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wenwei Han
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266001, China.
| | - Leke Qiao
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Dewei Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanli Ding
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Ge S, Wu S, Yin Q, Tan M, Wang S, Yang Y, Chen Z, Xu L, Zhang H, Meng C, Xia Y, Asakawa N, Wei W, Gong K, Pan X. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118612. [PMID: 39047883 DOI: 10.1016/j.jep.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata (Linn.) is a traditional medicinal Chinese herb that displays multiple biological activities, such as encompassing immunomodulatory, anti-inflammatory, anti-tumor, liver-protective, antioxidant, and lipid-lowering effects. Ecliptasaponin A (ESA), a pentacyclic triterpenoid saponin isolated from Eclipta prostrata (Linn.), has been demonstrated to exert superior anti-inflammatory activity against many inflammatory disorders. AIM OF THE STUDY Inflammation plays a critical role in acute myocardial infarction (AMI). This study aims to explore the treatment effects of ESA in AMI, as well as the underlying mechanism. METHODS An AMI mouse model was established in mice via left anterior descending coronary artery (LAD) ligation. After surgery, ESA was injected at doses of 0.5, 1.25, and 2.5 mg/kg, respectively. Myocardial infarction size, cardiomyocyte apoptosis and cardiac echocardiography were studied. The potential mechanism of action of ESA was investigated by RNA-seq, Western blot, surface plasmon resonance (SPR), molecular docking, and immunofluorescence staining. RESULTS ESA treatment not only significantly reduced myocardial infarct size, decreased myocardial cell apoptosis, and inhibited inflammatory cell infiltration, but also facilitated to improve cardiac function. RNA-seq and Western blot analysis proved that ESA treatment-induced differential expression genes mainly enriched in HMGB1/TLR4/NF-κB pathway. Consistently, ESA treatment resulted into the down-regulation of IL-1β, IL-6, and TNF-α levels after AMI. Furthermore, SPR and molecular docking results showed that ESA could bind directly to HMGB1, thereby impeding the activation of the downstream TLR4/NF-κB pathway. The immunofluorescence staining and Western blot results at the cellular level also demonstrated that ESA inhibited the activation of the HMGB1/TLR4/NF-κB pathway in H9C2 cells. CONCLUSION Our study was the first to demonstrate a cardiac protective role of ESA in AMI. Mechanism study indicated that the treatment effects of ESA are mainly attributed to its anti-inflammatory activity that was mediated by the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Sumin Ge
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sihua Wu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qin Yin
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Meng Tan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yonghao Yang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zixuan Chen
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Lei Xu
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Hui Zhang
- School of Medicine, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Wenping Wei
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Kaizheng Gong
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Xin Pan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
4
|
Wang J, Gao M, Wang J, Zeng Y, Wang C, Cao X. LGG promotes activation of intestinal ILC3 through TLR2 receptor and inhibits salmonella typhimurium infection in mice. Virulence 2024; 15:2384553. [PMID: 39080852 PMCID: PMC11296546 DOI: 10.1080/21505594.2024.2384553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Salmonella is a foodborne pathogen that causes disruption of intestinal mucosal immunity, leading to acute gastroenteritis in the host. In this study, we found that Salmonella Typhimurium (STM) infection of the intestinal tract of mice led to a significant increase in the proportion of Lacticaseibacillus, while the secretion of IL-22 from type 3 innate lymphoid cells (ILC3) increased significantly. Feeding Lacticaseibacillus rhamnosus GG (LGG) effectively alleviated the infection of STM in the mouse intestines. TLR2-/- mice experiments found that TLR2-expressing dendritic cells (DCs) are crucial for LGG's activation of ILC3. Subsequent in vitro experiments showed that heat-killed LGG (HK-LGG) could promote DCs to secrete IL-23, which in turn further promotes the activation of ILC3 and the secretion of IL-22. Finally, organoid experiments further verified that IL-22 secreted by ILC3 can enhance the intestinal mucosal immune barrier and inhibit STM infection. This study demonstrates that oral administration of LGG is a potential method for inhibiting STM infection.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiarui Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Guo S, Zeng M, Wang Z, Zhang C, Fan Y, Ran M, Shi Q, Song Z. Single-cell transcriptome landscape of the kidney reveals potential innate immune regulation mechanisms in hybrid yellow catfish after Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109866. [PMID: 39214264 DOI: 10.1016/j.fsi.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas hydrophila, the pathogen that is the causative agent of motile Aeromonas septicemia (MAS) disease, commonly attacks freshwater fishes, including yellow catfish (Pelteobagrus fulvidraco). Although the kidney is one of the most important organs involved in immunity in fish, its role in disease progression has not been fully elucidated. Understanding the cellular composition and innate immune regulation mechanisms of the kidney of yellow catfish is important for the treatment of MAS. In this study, single-cell RNA sequencing (scRNA-seq) was performed on the kidney of hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) after A. hydrophila infection. Nine types of kidney cells were identified using marker genes, and a transcription module of marker genes in the main immune cells of hybrid yellow catfish kidney tissue was constructed using in-situ hybridization. In addition, the single-cell transcriptome data showed that the differentially expressed genes of macrophages were primarily enriched in the Toll-like receptor and Nod-like receptor signaling pathways. The expression levels of genes involved in these pathways were upregulated in macrophages following A. hydrophila infection. Transmission electron microscopy and TUNEL analysis revealed the cellular characteristics of macrophages before and after A. hydrophila infection. These data provide empirical support for in-depth research on the role of the kidney in the innate immune response of hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chenhao Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Shetty S, Pappachan JM, Fernandez CJ. Diabetes and tuberculosis: An emerging dual threat to healthcare. World J Diabetes 2024; 15:1409-1416. [PMID: 39099826 PMCID: PMC11292341 DOI: 10.4239/wjd.v15.i7.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 07/08/2024] Open
Abstract
Tuberculosis (TB) remains a huge global healthcare challenge even in the 21st century though the prevalence has dropped in developed countries in recent decades. Diabetes mellitus (DM) is an important risk factor for the development and perpetuation of TB owing to the immune dysfunction in patients with DM. The coexistence of both diseases in the same individual also aggravates disease severity, complications, and chance of treatment failure because of gross immune alterations posed by DM as well as TB. Various complex cellular and humoral immunological factors are involved in the dangerous interaction between TB and DM, some of which remain unknown even today. It is highly important to identify the risk factors for TB in patients with DM, and vice versa, to ensure early diagnosis and management to prevent complications from this ominous coexistence. In their research study published in the recent issue of the World Journal of Diabetes, Shi et al elaborate on the factors associated with the development of TB in a large cohort of DM patients from China. More such research output from different regions of the world is expected to improve our knowledge to fight the health devastation posed by TB in patients with diabetes.
Collapse
Affiliation(s)
- Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| |
Collapse
|
7
|
Banesh S, Gupta N, Reddy CV, Mallikarjunachari U, Patil N, Uddhavesh S, Saudagar P. A novel approach to design chimeric multi epitope vaccine against Leishmania exploiting infected host cell proteome. Heliyon 2024; 10:e31306. [PMID: 38813178 PMCID: PMC11133825 DOI: 10.1016/j.heliyon.2024.e31306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Leishmaniasis is a major infectious disease having high mortality which could be attributed to lack of a suitable vaccine candidate. We propose a novel approach to design multiepitope vaccine to leishmaniasis exploiting specific membrane proteome from infected macrophage from host. The MHC-I, MHC-II and BC epitopes predicted for unique proteins from the infected macrophages and Leishmania and a MEV designed in various combinations (1a-1m). The epitope arrangements 1a, 1k, 1l, and 1 m showed a strong antigenicity profile and immune response. The molecular dynamics simulation indicate the 1k, 1l, and 1 m constructs have strong affinity toward TLR-2, TLR-3, and TLR-4. Overall the structural and immunogenicity profile suggests 1k is top candidate. Further, a computational model system with TLR-2, TLR-3, TLR-4, BCR, MHC-I and MHC-II was generated for 1k construct to understand the MEV interactions with immune components. Dihedral distribution and distance was enumerated to understand the movement of immune components towards 1k. The results indicate 1k has strong affinity for the immune response molecules especially TLR-3, BCR and MHC-II are coming in close contact with the MEV through the simulation. The study suggests that designed multi-epitope vaccine 1k has potential to induce proper immune response but warrants further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Neharika Gupta
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Chethireddy Vihadhar Reddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Uppuladinne Mallikarjunachari
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Sonavane Uddhavesh
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
8
|
Yaseen AR, Suleman M, Jabeen A, Nezami L, Qadri AS, Arif A, Arshad I, Iqbal K, Yaqoob T, Khan Z. Design and computational evaluation of a novel multi-epitope hybrid vaccine against monkeypox virus: Potential targets and immunogenicity assessment for pandemic preparedness. Biologicals 2024; 86:101770. [PMID: 38749079 DOI: 10.1016/j.biologicals.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Monkeypox is a type of DNA-enveloped virus that belongs to the orthopoxvirus family, closely related to the smallpox virus. It can cause an infectious disease in humans known as monkeypox disease. Although there are multiple drugs and vaccines designed to combat orthopoxvirus infections, with a primary focus on smallpox, the recent spread of the monkeypox virus to over 50 countries have ignited a mounting global concern. This unchecked viral proliferation has raised apprehensions about the potential for a pandemic corresponding to the catastrophic impact of COVID-19. This investigation explored the structural proteins of monkeypox virus as potential candidates for designing a novel hybrid multi-epitope vaccine. The epitopes obtained from the selected proteins were screened to ensure their non-allergenicity, non-toxicity, and antigenicity to trigger T and B-cell responses. The interaction of the vaccine with toll-like receptor-3 (TLR-3) and major histocompatibility complexes (MHCs) was assessed using Cluspro 2.0. To establish the reliability of the docked complexes, a comprehensive evaluation was conducted using Immune and MD Simulations and Normal Mode Analysis. However, to validate the computational results of this study, additional in-vitro and in-vivo research is essential.
Collapse
Affiliation(s)
- Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Aqsa Jabeen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Laiba Nezami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| | - Abdul Salam Qadri
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan; Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Ayesha Arif
- Centre for Applied Molecular biology (CAMB), University of the Punjab, Lahore, 54590, Pakistan.
| | - Iram Arshad
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Khadija Iqbal
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Tasuduq Yaqoob
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
9
|
Chen PK, Tang KT, Chen DY. The NLRP3 Inflammasome as a Pathogenic Player Showing Therapeutic Potential in Rheumatoid Arthritis and Its Comorbidities: A Narrative Review. Int J Mol Sci 2024; 25:626. [PMID: 38203796 PMCID: PMC10779699 DOI: 10.3390/ijms25010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by chronic synovitis and the progressive destruction of cartilage and bone. RA is commonly accompanied by extra-articular comorbidities. The pathogenesis of RA and its comorbidities is complex and not completely elucidated. The assembly of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activates caspase-1, which induces the maturation of interleukin (IL)-1β and IL-18 and leads to the cleavage of gasdermin D with promoting pyroptosis. Accumulative evidence indicates the pathogenic role of NLRP3 inflammasome signaling in RA and its comorbidities, including atherosclerotic cardiovascular disease, osteoporosis, and interstitial lung diseases. Although the available therapeutic agents are effective for RA treatment, their high cost and increased infection rate are causes for concern. Recent evidence revealed the components of the NLRP3 inflammasome as potential therapeutic targets in RA and its comorbidities. In this review, we searched the MEDLINE database using the PubMed interface and reviewed English-language literature on the NLRP3 inflammasome in RA and its comorbidities from 2000 to 2023. The current evidence reveals that the NLRP3 inflammasome contributes to the pathogenesis of RA and its comorbidities. Consequently, the components of the NLRP3 inflammasome signaling pathway represent promising therapeutic targets, and ongoing research might lead to the development of new, effective treatments for RA and its comorbidities.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
| | - Kuo-Tung Tang
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112304, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan;
- College of Medicine, China Medical University, Taichung 40447, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
10
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
11
|
Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol 2023; 14:1257024. [PMID: 37965539 PMCID: PMC10642725 DOI: 10.3389/fmicb.2023.1257024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Mosquito-borne flaviviruses include many viruses that are important human pathogens, including Yellow fever virus, Dengue virus, Zika virus and West Nile virus. While these viruses have long been confined to tropical regions, they now pose a global public health concern, as the geographical distribution of their mosquito vectors has dramatically expanded. The constant threat of flavivirus emergence and re-emergence underlines the need for a better understanding of the relationships between these viruses and their hosts. In particular, unraveling how these viruses manage to bypass antiviral immune mechanisms could enable the design of countermeasures to limit their impact on human health. The body's first line of defense against viral infections is provided by the interferon (IFN) response. This antiviral defense mechanism takes place in two waves, namely the induction of type I IFNs triggered by viral infection, followed by the IFN signaling pathway, which leads to the synthesis of interferon-stimulated genes (ISGs), whose products inhibit viral replication. In order to spread throughout the body, viruses must race against time to replicate before this IFN-induced antiviral state hinders their dissemination. In this review, we summarize our current knowledge on the multiple strategies developed by mosquito-borne flaviviruses to interfere with innate immune detection and signaling pathways, in order to delay, if not prevent, the establishment of an antiviral response.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Liu Y, Zhou Q, Ye F, Yang C, Jiang H. Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. Neoplasia 2023; 43:100928. [PMID: 37579688 PMCID: PMC10429288 DOI: 10.1016/j.neo.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
We have previously demonstrated abnormal gut microbial composition in castration-resistant prostate cancer (CRPC) patients, here we revealed the mechanism of gut microbiota-derived short-chain fatty acids (SCFAs) as a mediator linking CRPC microbiota dysbiosis and prostate cancer (PCa) progression. By using transgenic TRAMP mouse model, PCa patient samples, in vitro PCa cell transwell and macrophage recruitment assays, we examined the effects of CRPC fecal microbiota transplantation (FMT) and SCFAs on PCa progression. Our results showed that FMT with CRPC patients' fecal suspension increased SCFAs-producing gut microbiotas such as Ruminococcus, Alistipes, Phascolarctobaterium in TRAMP mice, and correspondingly raised their gut SCFAs (acetate and butyrate) levels. CRPC FMT or SCFAs supplementation significantly accelerated mice's PCa progression. In vitro, SCFAs enhanced PCa cells migration and invasion by inducing TLR3-triggered autophagy that further activated NF-κB and MAPK signalings. Meanwhile, autophagy of PCa cells released higher level of chemokine CCL20 that could reprogramme the tumor microenvironment by recruiting more macrophage infiltration and simultaneously polarizing them into M2 type, which in turn further strengthened PCa cells invasiveness. Finally in a cohort of 362 PCa patients, we demonstrated that CCL20 expression in prostate tissue was positively correlated with Gleason grade, pre-operative PSA, neural/seminal vesical invasion, and was negatively correlated with post-operative biochemical recurrence-free survival. Collectively, CRPC gut microbiota-derived SCFAs promoted PCa progression via inducing cancer cell autophagy and M2 macrophage polarization. CCL20 could become a biomarker for prediction of prognosis in PCa patients. Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | - Quan Zhou
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chen Yang
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
13
|
Bisht MK, Dahiya P, Ghosh S, Mukhopadhyay S. The cause-effect relation of tuberculosis on incidence of diabetes mellitus. Front Cell Infect Microbiol 2023; 13:1134036. [PMID: 37434784 PMCID: PMC10330781 DOI: 10.3389/fcimb.2023.1134036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/25/2023] [Indexed: 07/13/2023] Open
Abstract
Tuberculosis (TB) is one of the oldest human diseases and is one of the major causes of mortality and morbidity across the Globe. Mycobacterium tuberculosis (Mtb), the causal agent of TB is one of the most successful pathogens known to mankind. Malnutrition, smoking, co-infection with other pathogens like human immunodeficiency virus (HIV), or conditions like diabetes further aggravate the tuberculosis pathogenesis. The association between type 2 diabetes mellitus (DM) and tuberculosis is well known and the immune-metabolic changes during diabetes are known to cause increased susceptibility to tuberculosis. Many epidemiological studies suggest the occurrence of hyperglycemia during active TB leading to impaired glucose tolerance and insulin resistance. However, the mechanisms underlying these effects is not well understood. In this review, we have described possible causal factors like inflammation, host metabolic changes triggered by tuberculosis that could contribute to the development of insulin resistance and type 2 diabetes. We have also discussed therapeutic management of type 2 diabetes during TB, which may help in designing future strategies to cope with TB-DM cases.
Collapse
Affiliation(s)
- Manoj Kumar Bisht
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Dahiya
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sudip Ghosh
- Molecular Biology Unit, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
14
|
Angelova A, Pierrard K, Detje CN, Santiago E, Grewenig A, Nüesch JPF, Kalinke U, Ungerechts G, Rommelaere J, Daeffler L. Oncolytic Rodent Protoparvoviruses Evade a TLR- and RLR-Independent Antiviral Response in Transformed Cells. Pathogens 2023; 12:pathogens12040607. [PMID: 37111493 PMCID: PMC10144674 DOI: 10.3390/pathogens12040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells. MVMp and H-1PV triggered IFN production in semi-permissive normal mouse embryonic fibroblasts (MEFs) and human peripheral blood mononuclear cells (PBMCs), but not in permissive transformed/tumor cells. IFN production triggered by MVMp in primary MEFs required PV replication and was independent of the pattern recognition receptors (PRRs) Toll-like (TLR) and RIG-like (RLR) receptors. PV infection of (semi-)permissive cells, whether transformed or not, led to nuclear translocation of the transcription factors NFĸB and IRF3, hallmarks of PRR signaling activation. Further evidence showed that PV replication in (semi-)permissive cells resulted in nuclear accumulation of dsRNAs capable of activating mitochondrial antiviral signaling (MAVS)-dependent cytosolic RLR signaling upon transfection into naïve cells. This PRR signaling was aborted in PV-infected neoplastic cells, in which no IFN production was detected. Furthermore, MEF immortalization was sufficient to strongly reduce PV-induced IFN production. Pre-infection of transformed/tumor but not of normal cells with MVMp or H-1PV prevented IFN production by classical RLR ligands. Altogether, our data indicate that natural rodent PVs regulate the antiviral innate immune machinery in infected host cells through a complex mechanism. In particular, while rodent PV replication in (semi-)permissive cells engages a TLR-/RLR-independent PRR pathway, in transformed/tumor cells this process is arrested prior to IFN production. This virus-triggered evasion mechanism involves a viral factor(s), which exert(s) an inhibitory action on IFN production, particularly in transformed/tumor cells. These findings pave the way for the development of second-generation PVs that are defective in this evasion mechanism and therefore endowed with increased immunostimulatory potential through their ability to induce IFN production in infected tumor cells.
Collapse
Affiliation(s)
- Assia Angelova
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kristina Pierrard
- Program Infection, Inflammation and Cancer, Division Viral Transformation Mechanisms (F030), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, TWICNORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Estelle Santiago
- CNRS, IPHC UMR 7178, Université de Strasbourg, F-67000 Strasbourg, France
| | - Annabel Grewenig
- Program Infection, Inflammation and Cancer, Division DNA Vectors (F160), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürg P F Nüesch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWICNORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Guy Ungerechts
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laurent Daeffler
- CNRS, IPHC UMR 7178, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
15
|
da Costa A, de Andrade HF. Toxoplasma gondii in CD36 -/- mice shows lethal infection and poor immunization with probable macrophage immune defects. Parasitol Res 2023; 122:1283-1291. [PMID: 36988683 DOI: 10.1007/s00436-023-07828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Experimental toxoplasmosis is an excellent model for adaptive immune response. Gamma-irradiated tachyzoites or soluble tachyzoite antigen extracts (STag) induce protection against experimental toxoplasmosis in mice. Scavenger receptors recognize irradiated proteins, promote their entry into cells, and lead to antigen presentation. CD36 is a specific scavenger receptor involved in intracellular transport of free fatty acid (FFA), cellular recycling, and intracellular trafficking in lipid rafts outside the lysosomal pathways. CD36 is also associated with an altered immune response, as CD36-/- mice presented some immune defects in the cyst-forming Toxoplasma gondii. We studied T. gondii infection in CD36-/- mice, naïve or immunized, with irradiated T. gondii STags by investigating protection, antibody production, and primed macrophage transplantation. CD36-/- mice presented no resistance against the viable RH tachyzoites, even after immunization with gamma-irradiated STags that protected wild-type mice. The animals presented poor humoral responses to both immunogens despite adequate levels of serum immunoglobulins. CD36-/- mice failed to induce protection against virulent T. gondii infection with inadequate antibody production or an innate response. Irradiated antigens failed to induce antibodies in CD36-/- mice and only produced adequate levels of immunoglobulin G when transplanted with irradiated STag-primed wild-type macrophages. The CD36 pathway is necessary for humoral response against the irradiated antigen; however, several other pathways are also involved in mounting a humoral response against any antigen. CD36 is a multipurpose molecule for FFA and lipid transport, as well as for the immune response, and gamma radiation mimics the innate response by targeting irradiated antigens of this pathway.
Collapse
Affiliation(s)
- Andrea da Costa
- Protozoology Laboratory, Instituto de Medicina Tropical de São Paulo and Department Pathology, School of Medicine, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470, 1St Floor, São Paulo, SP, CEP 05403-000, Brazil
| | - Heitor Franco de Andrade
- Protozoology Laboratory, Instituto de Medicina Tropical de São Paulo and Department Pathology, School of Medicine, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470, 1St Floor, São Paulo, SP, CEP 05403-000, Brazil.
| |
Collapse
|
16
|
Fan XL, Song Y, Qin DX, Lin PY. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression. Int Rev Immunol 2023; 42:101-112. [PMID: 34544330 DOI: 10.1080/08830185.2021.1931170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian locomotor output cycles kaput (Clock) and brain and muscle ARNT-like 1 (Bmal1) are two core circadian clock genes. They form a heterodimer that can bind to the E-box element in the promoters of Period circadian protein (Per) and Cryptochrome (Cry) genes, thereby inducing the rhythmic expression of circadian clock control genes. Toll-like receptors (TLRs) are type I transmembrane proteins belonging to the pattern recognition receptor (PRR) family. They can recognize a variety of pathogens and play an important role in innate immunity and adaptive immune responses. Recent studies have found that the circadian clock is closely associated with the immune system. TLRs have a certain correlation with the circadian rhythms; Bmal1 seems to be the central mediator connecting the circadian clock and the immune system. Research on Bmal1 and TLRs has made some progress, but the specific relationship between TLRs and Bmal1 remains unclear. Understanding the relationship between TLRs and Clock/Bmal1 genes is increasingly important for basic research and clinical treatment.
Collapse
Affiliation(s)
- Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Dong-Xu Qin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
17
|
The Role of Pericytes in Regulation of Innate and Adaptive Immunity. Biomedicines 2023; 11:biomedicines11020600. [PMID: 36831136 PMCID: PMC9953719 DOI: 10.3390/biomedicines11020600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes' response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders.
Collapse
|
18
|
Ma X, Wang F, Zhen L, Cai Q. Hsa_circ_0001204 modulates inflammatory response of macrophages infected by Mycobacterium tuberculosis via TLR4/NF-κB signalling pathway. Clin Exp Pharmacol Physiol 2023; 50:132-139. [PMID: 36048566 DOI: 10.1111/1440-1681.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Circular RNAs (circRNAs) play a vital role in the regulation of Mycobacterium tuberculosis (M.tb) by macrophages. In this project, the potential role of hsa_circ_0001204 in M.tb-infected macrophages is explored. Hsa_circ_0001204 was determined in the patients with tuberculosis (TB) and M.tb-infected macrophages. Its effect on the survival of M.tb and the apoptosis and inflammation of M.tb-infected macrophages was evaluated. Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signalling was detected by western blotting and immunofluorescence. TB patients and M.tb-infected THP-1 cells showed the significant downregulation of hsa_circ_0001204. Upregulating hsa_circ_0001204 reduced M.tb survival and suppressed the apoptosis and inflammatory response of THP-1 cells. The TLR4/NF-κB signalling pathway could be inhibited by hsa_circ_0001204 overexpression, which was activated by M.tb-infection. Hsa_circ_0001204 confers protective effects in M.tb-infected THP-1 cells, at least partly via the inhibition of TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Fang Wang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Libo Zhen
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Qingshan Cai
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| |
Collapse
|
19
|
Almazmomi MA, Alsieni M. Targeting TLR-4 Signaling to Treat COVID-19-induced Acute Kidney Injury. J Pharmacol Pharmacother 2023. [DOI: 10.1177/0976500x221147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has turned into a potentially fatal pandemic illness. Numerous acute kidney injury (AKI) cases have been reported, although diffuse alveolar destruction and acute respiratory failure are the major symptoms of SARS-CoV-2 infection. The AKI, often known as a sudden loss of kidney function, carries a greater risk of mortality and morbidity. AKI was the second most frequent cause of death after acute respiratory distress syndrome (ARDS) in critically ill patients with coronavirus disease 2019 (COVID-19). While most patients with COVID-19 have moderate symptoms, some have severe symptoms, such as septic shock and ARDS. Also, it has been proven that some patients have severe symptoms, such as the failure of several organs. The kidneys are often affected either directly or indirectly. The major signs of kidney involvement are proteinuria and AKI. It is hypothesized that multiple mechanisms contribute to kidney injury in COVID-19. Direct infection of podocytes and proximal tubular cells in the kidneys may lead to acute tubular necrosis and collapsing glomerulopathy. SARS-CoV2 may also trigger a cascade of immunological responses that lead to AKI, including cytokine storm (CS), macrophage activation syndrome, and Toll-like receptor type-4 activation (TLR-4). Other proposed processes of AKI include interactions between organs, endothelial failure, hypercoagulability, rhabdomyolysis, and sepsis. Furthermore, ischemic damage to the kidney might result from the decreased oxygen supply. This article focuses on kidney injury’s epidemiology, etiology, and pathophysiological processes. Specifically, it focuses on the CS and the role of TLR-4 in this process. To effectively manage and treat acute kidney damage and AKI in COVID-19, it is crucial to understand the underlying molecular pathways and pathophysiology.
Collapse
Affiliation(s)
- Meaad A. Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard—Health Affairs, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alsieni
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Xin JY, Wang J, Ding QQ, Chen W, Xu XK, Wei XT, Lv YH, Wei YP, Feng Y, Zu XP. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114341. [PMID: 36442401 DOI: 10.1016/j.ecoenv.2022.114341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.
Collapse
Affiliation(s)
- Jia-Yun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian-Qian Ding
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xi-Ke Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xin-Tong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Hui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan-Ping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xian-Peng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
21
|
Armillariella tabescens methanol extract ameliorates ulcerative colitis via inhibiting TLR4/NF-κB and NLRP3 activation and mediating intestinal barrier integrity. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Li Y, Ren Q, Wang X, Luoreng Z, Wei D. Bta-miR-199a-3p Inhibits LPS-Induced Inflammation in Bovine Mammary Epithelial Cells via the PI3K/AKT/NF-κB Signaling Pathway. Cells 2022; 11:cells11213518. [PMID: 36359915 PMCID: PMC9656885 DOI: 10.3390/cells11213518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Mastitis is characterized by inflammatory damage to mammary gland tissue, which could decline milk production and quality and significantly affect the economic benefits of ranching. MicroRNAs (miRNAs), such as miR-199a-3p, are novel therapeutic targets in inflammation, and their regulation is an effective strategy for inflammation control. Despite its importance in humans and animals, the molecular mechanism of bovine miR-199a-3p (bta-miR-199a-3p) in dairy cow mastitis and bovine mammary epithelial cell (bMEC) inflammation is unclear. In our study, a bovine mammary epithelial cell line (MAC-T) induced by lipopolysaccharide (LPS) was used as an inflammatory cell model to investigate the molecular mechanism of bta-miR-199a-3p in the MAC-T inflammatory response. bta-miR-199a-3p was up-regulated in the LPS-induced MAC-T cells, while CD2-associated protein (CD2AP) was revealed as its target gene in a double luciferase reporter gene experiment. In addition, the overexpression of bta-miR-199a-3p negatively regulated the expression of CD2AP and the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa-B (NF-κB) signaling pathway. These subsequently inhibited the secretion of related inflammatory factors (TNF-α, IL-1β, and IL-6) and the expression of apoptotic genes (CASP3 and CASP9), thereby alleviating the LPS-challenged inflammatory response in the MAC-T cells. Silencing of bta-miR-199a-3p, however, reversed the above effects. Thus, bta-miR-199a-3p inhibits LPS-induced inflammation in bMECs by directly targeting CD2AP and regulating the PI3K/AKT/NF-κB signaling pathway. This study reveals the potential regulatory mechanism of bta-miR-199a-3p in bMEC inflammatory immune response and may serve as a useful target for the treatment of mastitis.
Collapse
Affiliation(s)
- Yuhang Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qianqian Ren
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (X.W.); (Z.L.)
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (X.W.); (Z.L.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
23
|
Breastfeeding increases the expression of TLR4, TNF-α, CCL2, and CCL3 in the prepuce tissue of neonates. Arch Med Res 2022; 53:688-693. [DOI: 10.1016/j.arcmed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
24
|
Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, López-Fagúndez M, Pazos-Pérez A, Crespo-Golmar A, Gualillo O, Jorge-Mora A, Bravo SB, Gómez R. Repurposing drugs to inhibit innate immune responses associated with TLR4, IL1, and NLRP3 signaling in joint cells. Biomed Pharmacother 2022; 155:113671. [PMID: 36108390 DOI: 10.1016/j.biopha.2022.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) affects more than 300 million people worldwide and it is about to become the first disabling disease. OA is characterized by the progressive degradation of the articular cartilage but is a disease of the whole joint. Articular innate immune responses (IIR) associated with tissue degradation contribute to its progression. However, no treatment is available to block these IIRs. Through data text mining and computational pharmacology, we identified two clinical available drugs, naloxone, and thalidomide, with potential inhibitory properties on toll-like receptor 4 (TLR4), a major activator of these IIR. Proteome analysis confirmed that activation of this receptor or the IL1 receptor generated OA-like and gout-like proteomic changes in human primary chondrocytes. Both compounds were found to block TLR4 complex and inhibit TLR4 and IL1R-mediated IIR in OA chondrocytes, osteoblasts, and synoviocytes. Furthermore, naloxone and thalidomide inhibitory effects involved the downregulation of the NLRP3 inflammasome pathway, which is downstream of TLR4/IL1R signaling. We demonstrated that these compounds, within a therapeutic range of concentrations, exhibited anti-inflammatory and anti-catabolic properties in joint primary OA cells without any toxic effect. This data underpins naloxone & thalidomide repurpose to treat OA-associated inflammatory responses.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Antia Crespo-Golmar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Oreste Gualillo
- Research laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Susana Belén Bravo
- Proteomics Unit, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain.
| |
Collapse
|
25
|
Cao L, Fang H, Yan D, Wu XM, Zhang J, Chang MX. CD44a functions as a regulator of p53 signaling, apoptosis and autophagy in the antibacterial immune response. Commun Biol 2022; 5:889. [PMID: 36042265 PMCID: PMC9427754 DOI: 10.1038/s42003-022-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
The cell adhesion molecule CD44 has been implicated in diverse biological functions including the pathological responses to infections and inflammatory diseases. The variable forms of CD44 contribute to functional variations, which are not yet defined in teleost. Here, we show that zebrafish CD44a plays a protective role in the host defense against Edwardsiella piscicida infection. Zebrafish CD44a deficiency inhibits cell growth and proliferation, impairs cell growth and death pathways, and regulates the expression levels of many genes involved in p53 signaling, apoptosis and autophagy. In addition, CD44a gene disruption in zebrafish leads to inhibition of apoptosis and induction of autophagy, with the increased susceptibility to E. piscicida infection. Furthermore, we show that zebrafish CD44a variants including CD44a_tv1 and CD44a_tv2 promote the translocation of p53 from the nucleus to the cytoplasm and interact with p53 in the cytoplasm. Mechanistically, zebrafish CD44a_tv1 mediates the beneficial effect for larvae survival infected with E. piscicida is depending on the CASP8-mediated apoptosis. However, the antibacterial effect of zebrafish CD44a_tv2 depends on the cytoplasmic p53-mediated inhibition of autophagy. Collectively, our results identify that different mechanisms regulate CD44a variants-mediated antibacterial responses.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
26
|
Xu J, Gu X, Xie Y, He R, Xu J, Xiong L, Peng X, Yang G. Characterization of a novel cysteine protease inhibitor in Baylisascaris schroederi migratory larvae and its role in regulating mice immune cell response. Front Immunol 2022; 13:894820. [PMID: 36105820 PMCID: PMC9464942 DOI: 10.3389/fimmu.2022.894820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Baylisascaris schroederi (B. schroederi) is a severe threat to the survival of giant pandas. Currently, the immune regulation mechanism of B. schroederi is poorly understood. Cysteine protease inhibitors (CPI) play important roles in the regulation of host immune responses against certain nematodes. In this study, a recombinant CPI of B. schroederi migratory larvae (rBsCPI-1) was cloned and expressed, and the effects of rBsCPI-1 on the physiological activities and antigen presentation of monocyte-derived macrophages (MDMs) were analyzed. We also analyzed the regulatory effects of rBsCPI-1 on the proliferation and differentiation of CD4+ T cells. And further identified the signaling pathways which play important roles in this process. The results showed that rBsCPI-1 activated the TLR2/4-small Rho GTPases-PAK1 pathway. On the one hand, it increased the phagocytosis and migration of MDMs. On the other hand, it activated downstream MAPK and NF-κB signaling pathways to induce apoptosis of MDMs. rBsCPI-1 also induced MDMs to polarize to the M2 subtype, thereby exerting an immunosuppressive effect. Meanwhile, rBsCPI-1 inhibited the antigen presentation process by decreasing the expression of MHC-II molecules, further inhibiting the proliferation of CD4+ T cells and inducing a Th1/Th2 mixed immune response. Treg cells with immunosuppressive effects were increased. The PD-L2/PD-1 and CD80/CTLA-4 signaling pathways between MDMs and CD4+ T cells were also activated by rBsCPI-1. In conclusion, this study preliminarily confirmed that rBsCPI-1 affects the physiological activities and polarization of MDMs through the TLR2/4 signaling pathway, and further interferes with antigen presentation response, inducing CD4+ T cells to play an immunosuppressive cellular response during the migratory process of B. schroederi. Thus, this study will provide a reference for elucidating the immune evasion mechanism of B. schroederi and developing new drugs and protective vaccines against B. schroederi.
Collapse
Affiliation(s)
- Jingyun Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- *Correspondence: Guangyou Yang,
| |
Collapse
|
27
|
Local and systemic inflammation triggers different outcomes of tumor growth related to infiltration of anti-tumor or pro-tumor macrophages. Chin Med J (Engl) 2022; 135:1821-1828. [PMID: 35903953 PMCID: PMC9521782 DOI: 10.1097/cm9.0000000000001775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous evidence suggests inflammation may be a double-edged sword with cancer-promoting and cancer suppressing function. In this study, we explore the impact of local and systemic inflammation on cancer growth. METHODS Female BALB/C mice were subcutaneously implanted with foreign body (plastic plates) to build up a local inflammation and intraperitoneally injected with PolyIC or lipopolysaccharides (LPS) to build up a systemic inflammation, followed by subcutaneous injection of 5 × 10 5 colon cancer cells. Immunohistochemistry and enzyme linked immunosorbent assay were utilized to detect the Ki67 and interleukin (IL) 6, IL-1β, and monocyte chemoattractant protein-1 expression in the tumor tissues and serum, respectively. The distributions of immune cells and expression of toll-like receptors (TLRs) were evaluated by flow cytometry (FCM) and quantitative real time-polymerase chain reaction. RESULTS The results showed that local inflammation induced by foreign body implantation suppressed tumor growth with decreased tumor weight ( P = 0.001), volume ( P = 0.004) and Ki67 index ( P < 0.001). Compared with the control group, myeloid-derived suppressive cells sharply decreased ( P = 0.040), while CD4 + T cells slightly increased in the tumor tissues of the group of foreign body-induced local inflammation ( P = 0.035). Moreover, the number of M1 macrophages ( P = 0.040) and expression of TLRs, especially TLR3 ( P < 0.001) and TLR4 ( P < 0.001), were significantly up-regulated in the foreign body group. Contrarily, tumor growth was significantly promoted in LPS or PolyIC-induced systemic inflammation ( P = 0.009 and 0.006). FCM results showed M1 type macrophages ( P = 0.017 and 0.006) and CD8 + T cells ( P = 0.031 and 0.023) were decreased, while M2 type macrophages ( P = 0.002 and 0.007) were significantly increased in tumor microenvironment of LPS or PolyIC-induced systemic inflammation group. In addition, the decreased expression of TLRs was detected in LPS or PolyIC group. CONCLUSIONS The foreign body-induced local inflammation inhibited tumor growth, while LPS or PolyIC- induced systemic inflammation promoted tumor growth. The results suggested that the different outcomes of tumor growth might be attributed to the infiltration of anti-tumor or pro-tumor immune cells, especially M1 or M2 type macrophages into tumor microenvironment.
Collapse
|
28
|
Chen PK, Wey SJ, Chen DY. Interleukin-18: a biomarker with therapeutic potential in adult-onset Still's disease. Expert Rev Clin Immunol 2022; 18:823-833. [PMID: 35771972 DOI: 10.1080/1744666x.2022.2096592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Adult-onset Still's disease (AOSD) is an autoinflammatory disease driven by the innate immune response. Given the ambiguity in clinical presentation and lack of specific diagnostic biomarkers, AOSD diagnosis is usually delayed in the early stage. Because AOSD is a rare disease with clinical heterogeneity, there is no consensus on its treatment currently. This review summarizes the current research evidence regarding the pathogenic role and the diagnostic or therapeutic potential of interleukin (IL)-18 in AOSD. AREAS COVERED We searched the MEDLINE database using the PubMed interface and reviewed English-language literature from 1971 to 2022. This review focusing on IL-18 discusses its pathogenic role and clinical implications in AOSD. EXPERT OPINION NLRP3-inflammasome activation with IL-18 overproduction plays a pathogenic role in AOSD. IL-18 is closely linked to the clinical manifestations and disease activity of AOSD and may be a diagnostic biomarker. Given its pathogenic role in AOSD, IL-18 could become a potential therapeutic target. IL-18 binding protein (IL-18BP) negatively regulates the biological activity of IL-18 by inhibiting IL-18 signaling, and a clinical trial revealed that IL-18BP (Tadekinig alfa) treatment was well-tolerated and effective for AOSD. Recently, monoclonal antibodies against IL-18 have been under evaluation in a phase 1b trial.
Collapse
Affiliation(s)
- Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung, Taiwan
| | - Shiow-Jiuan Wey
- Division of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Translational Medicine Laboratory, Rheumatology and Immunology Center, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing UniversityPh., Taichung, Taiwan
| |
Collapse
|
29
|
Li Y, Deng M, Li Y, Mao X, Yan S, Tang X, Mao H. Clinical heterogeneity of NLRP12-associated autoinflammatory diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Lu N, Cheng W, Liu D, Liu G, Cui C, Feng C, Wang X. NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Front Cell Dev Biol 2022; 10:823387. [PMID: 35493086 PMCID: PMC9045366 DOI: 10.3389/fcell.2022.823387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
The NLRP3 inflammasome is a crucial constituent of the body’s innate immune system, and a multiprotein platform which is initiated by pattern recognition receptors (PRRs). Its activation leads to caspase-1 maturation and release of inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and subsequently causes pyroptosis. Recently, the excess activation of NLRP3 inflammasome has been confirmed to mediate inflammatory responses and to participate in genesis and development of atherosclerosis. Therefore, the progress on the discovery of specific inhibitors against the NLRP3 inflammasome and the upstream and downstream inflammatory factors has become potential targets for clinical treatment. Here we review the recently described mechanisms about the NLRP3 inflammasome activation, and discuss emphatically the pharmacological interventions using statins and natural medication for atherosclerosis associated with NLRP3 inflammasome.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Can Cui
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Chaoli Feng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Xianwei Wang,
| |
Collapse
|
31
|
Köllisch G, Solis FV, Obermann HL, Eckert J, Müller T, Vierbuchen T, Rickmeyer T, Muche S, Przyborski JM, Heine H, Kaufmann A, Baumeister S, Lingelbach K, Bauer S. TLR8 is activated by 5'-methylthioinosine, a Plasmodium falciparum-derived intermediate of the purine salvage pathway. Cell Rep 2022; 39:110691. [PMID: 35417716 DOI: 10.1016/j.celrep.2022.110691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
The innate immune recognition of the malaria-causing pathogen Plasmodium falciparum (P. falciparum) is not fully explored. Here, we identify the nucleoside 5'-methylthioinosine (MTI), a Plasmodium-specific intermediate of the purine salvage pathway, as a pathogen-derived Toll-like receptor 8 (TLR8) agonist. Co-incubation of MTI with the TLR8 enhancer poly(dT) as well as synthetic or P. falciparum-derived RNA strongly increase its stimulatory activity. Of note, MTI generated from methylthioadenosine (MTA) by P. falciparum lysates activates TLR8 when MTI metabolism is inhibited by immucillin targeting the purine nucleoside phosphorylase (PfPNP). Importantly, P. falciparum-infected red blood cells incubated with MTI or cultivated with MTA and immucillin lead to TLR8-dependent interleukin-6 (IL-6) production in human monocytes. Our data demonstrate that the nucleoside MTI is a natural human TLR8 ligand with possible in vivo relevance for innate sensing of P. falciparum.
Collapse
Affiliation(s)
- Gabriele Köllisch
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Hannah-Lena Obermann
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany
| | - Jeannine Eckert
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Thomas Müller
- Institute for Medical Microbiology, Immunology und Hygiene, Technical University Munich, Munich, Germany
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Rickmeyer
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Simon Muche
- Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany
| | - Stefan Baumeister
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Klaus Lingelbach
- Department of Parasitology, Philipps University Marburg, 35043 Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps University Marburg, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
32
|
Zhang L, Li Y, Bian L, Luo Q, Zhang X, Zhao B. Analysis of Factors Affecting Cranial Nerve Function of Patients With Vascular Mild Cognitive Impairment Through Functional Magnetic Resonance Imaging Under Artificial Intelligence Environment. Front Public Health 2022; 9:803659. [PMID: 35399347 PMCID: PMC8989955 DOI: 10.3389/fpubh.2021.803659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
The study aimed to explore the risk factors of effects of patients with vascular mild cognitive impairment (VaMCI) through functional magnetic resonance imaging (fMRI). In this study, 62 patients were selected from the department of neurology, admitted to Changzhi People's Hospital from October 1, 2018 to February 1, 2020. Patients with VaMCI were defined as the VaMCI group according to Clinical Dementia Rating (CDR), and subjects with normal cognitive function were defined as the normal control (NC) group. All patients underwent fMRI to identify the amplitude low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values, and to analyze their association with VaMCI. The results showed that the VaMCI group had lower scores for Mini-mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and their subitems (visual space and execution, recall, attention and computation, and language ability) than NC group, with statistical differences (P < 0.05). In VaMCI group, the brain regions with increased ALFF values were the left temporal lobe, left parietal lobe, right temporal lobe, right parietal lobe, and posterior cingulate gyrus. Of them, the left parietal lobe and right temporal lobe were negatively correlated with the recall score on MMSE scale (r = -0.216, r = -0.132, P < 0.01). In VaMCI group, the brain regions with decreased ReHo values were the left temporal lobe, occipital lobe, and left middle temporal gyrus. Of them, the left temporal lobe and occipital lobe were positively correlated with MoCA score (r = 0.473, r = 0.848, P < 0.01). In conclusion, VaMCI patients have cognitive impairment and abnormally increased spontaneous brain activity, especially in the left parietal lobe and the right temporal lobe. At rest, VaMCI patients show decreased whole-brain ReHo in the left medial temporal lobe and occipital lobe. Hypertension is a high-risk factor for cognitive impairment in VaMCI patients. The study can provide a theoretical basis for early diagnosis of VaMCI.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Yanran Li
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Bian
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Qingrong Luo
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Xiaoxi Zhang
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Bing Zhao
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| |
Collapse
|
33
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
34
|
Zou PF, Li KQ, Li Y, Shen YJ, Zhang ZP, Wang YL. Molecular cloning and functional characterization of RIP1 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 122:386-398. [PMID: 35181446 DOI: 10.1016/j.fsi.2022.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Receptor interacting protein 1 (RIP1) plays important roles not only in cell-death pathways but also in host innate immune responses. In the present study, a RIP1 ortholog named Lc-RIP1 was cloned and characterized in large yellow croaker (Larimichthys crocea). The open reading frame (ORF) of Lc-RIP1 is 2,046 bp, encoding a protein of 681 amino acids (aa), with an N-terminal kinase domain, an RHIM domain, and a C-terminal death domain. Subcellular localization analysis revealed that Lc-RIP1 was a cytosolic protein, which was broadly expressed in examined tissues/organs, and could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation in vivo based on qRT-PCR analysis. Notably, Lc-RIP1 could induce NF-κB, but not IRF3, IRF7 or type I IFN promoter activation. In addition, Lc-RIP1 overexpression could enhance Lc-MAVS, Lc-TRAF3, and Lc-TRAF6 mediated NF-κB promoter activation, and also Lc-TRIF and Lc-MAVS mediated IRF3 promoter activation, whereas suppress Lc-TRIF mediated NF-κB and type I IFN promoter activation, as well as Lc-TRAF3 and Lc-IRF3 mediated IRF3 promoter activation, Lc-IRF3 mediated type I IFN promoter activation and Lc-IRF7 mediated IRF7 promoter activation. These results collectively indicated that Lc-RIP1 function importantly in regulation of host innate immune signaling.
Collapse
Affiliation(s)
- Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| | - Kai Qing Li
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China.
| | - Ying Jia Shen
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Zi Ping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| |
Collapse
|
35
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
36
|
Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2022; 11:786913. [PMID: 35070992 PMCID: PMC8770285 DOI: 10.3389/fonc.2021.786913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages play critical roles in tumor progression. In the tumor microenvironment, macrophages display highly diverse phenotypes and may perform antitumorigenic or protumorigenic functions in a context-dependent manner. Recent studies have shown that macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a targeted manner, thereby exerting significant anticancer effects. In addition, macrophages engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor sites, these engineered macrophages can significantly change the otherwise immune-suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer immune responses. In this review, we first introduce the multifaceted activities of macrophages and the principles of nanotechnology in cancer therapy and then elaborate on macrophage engineering via nanotechnology or genetic approaches and discuss the effects, mechanisms, and limitations of such engineered macrophages, with a focus on using live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new directions in macrophage engineering are reviewed, such as transporting NP drugs through macrophage cell membranes or extracellular vesicles, reprogramming tumor-associated macrophages (TAMs) by nanotechnology, and engineering macrophages with CARs. Finally, we discuss the possibility of combining engineered macrophages and other treatments to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xinchen Sun
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, Taizhou Peoples' Hospital, Taizhou, China
| | - Huihui Cai
- Department of Immunology, Nantong University, School of Medicine, Nantong, China.,Department of Clinical Laboratory, The Sixth Nantong People's Hospital, Nantong, China
| | - Lei Wu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Ying Liu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yu Zhao
- Department of Immunology, Southeast University, School of Medicine, Nanjing, China
| | - Dingjingyu Zhou
- Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
37
|
Lu Y, Lu Y, Meng J, Wang Z. Pyroptosis and Its Regulation in Diabetic Cardiomyopathy. Front Physiol 2022; 12:791848. [PMID: 35145423 PMCID: PMC8822267 DOI: 10.3389/fphys.2021.791848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a prevalent disease, characterized by contractile dysfunction and left ventricular hypertrophy. Patients with DbCM have high morbidity and mortality worldwide. Recent studies have identified that pyroptosis, a kind of cell death, could be induced by hyperglycemia involved in the formation of DbCM. This review summarizes the regulatory mechanisms of pyroptosis in DbCM, including NOD-like receptor3, AIM2 inflammasome, long non-coding RNAs, microRNAs, circular RNA, autophagy, and some drugs.
Collapse
Affiliation(s)
- Yafang Lu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yaqiong Lu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital, University of South China, Hengyang, China
- *Correspondence: Jun Meng,
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
- Zuo Wang,
| |
Collapse
|
38
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
39
|
Elmonem MA, Veys KRP, Prencipe G. Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies. Cells 2022; 11:cells11020190. [PMID: 35053306 PMCID: PMC8773784 DOI: 10.3390/cells11020190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023] Open
Abstract
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.
Collapse
Affiliation(s)
- Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
- Correspondence:
| | - Koenraad R. P. Veys
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Pediatrics, AZ Delta Campus, 8820 Torhout, Belgium
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
40
|
Ismail N, Sharma A, Soong L, Walker DH. Review: Protective Immunity and Immunopathology of Ehrlichiosis. ZOONOSES (BURLINGTON, MASS.) 2022; 2:10.15212/zoonoses-2022-0009. [PMID: 35876763 PMCID: PMC9300479 DOI: 10.15212/zoonoses-2022-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity from apparently subclinical to a fatal toxic shock-like fatal disease. Models in immunocompetent mice range from an abortive infection to uniformly lethal depending on the infecting Ehrlichia species, dose of inoculum, and route of inoculation. Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. Lethal infection occurs with early overproduction of proinflammatory cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. Furthermore, fatal ehrlichiosis is associated with signaling via TLR 9/MyD88 with upregulation of several inflammasome complexes and secretion of IL-1 beta, IL-1 alpha, and IL-18 by hepatic mononuclear cells, suggesting activation of canonical and noncanonical inflammasome pathways, a deleterious role for IL-18, and the protective role for caspase 1. Autophagy promotes ehrlichial infection, and MyD88 signaling hinders ehrlichial infection by inhibiting autophagy induction and flux. Activation of caspase 11 during infection of hepatocytes by the lethal ehrlichial species after interferon alpha receptor signaling results in the production of inflammasome-dependent IL-1 beta, extracellular secretion of HMGB1, and pyroptosis. The high level of HMGB1 in lethal ehrlichiosis suggests a role in toxic shock. Studies of primary bone marrow-derived macrophages infected by highly avirulent or mildly avirulent ehrlichiae reveal divergent M1 and M2 macrophage polarization that links with generation of pathogenic CD8 T cells, neutrophils, and excessive inflammation or with strong expansion of protective Th1 and NKT cells, resolution of inflammation and clearance of infection, respectively.
Collapse
Affiliation(s)
- Nahed Ismail
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Aditya Sharma
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - David H. Walker
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
41
|
The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4993452. [PMID: 34976301 PMCID: PMC8718323 DOI: 10.1155/2021/4993452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosoma cruzi that affects several million people mainly in Latin American countries. Chagas disease has two phases, which are acute and chronic, both separated by an indeterminate time period in which the infected individual is relatively asymptomatic. The acute phase extends for 40-60 days with atypical and mild symptoms; however, about 30% of the infected patients will develop a symptomatic chronic phase, which is characterized by either cardiac, digestive, neurological, or endocrine problems. Cardiomyopathy is the most important and severe result of Chagas disease, which leads to left ventricular systolic dysfunction, heart failure, and sudden cardiac death. Most deaths are due to heart failure (70%) and sudden death (30%) resulting from cardiomyopathy. During the chronic phase, T. cruzi-infected macrophages respond with the production of proinflammatory cytokines and production of superoxide and nitric oxide by the NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) enzymes, respectively. During the chronic phase, myocardial changes are produced as a result of chronic inflammation, oxidative stress, fibrosis, and cell death. The cellular inflammatory response is mainly the result of activation of the NF-κB-dependent pathway, which activates gene expression of inflammatory cytokines, leading to progressive tissue damage. The persisting production of reactive oxygen species (ROS) is the result of mitochondrial dysfunction in the cardiomyocytes. In this review, we will discuss inflammation and oxidative damage which is produced in the heart during the chronic phase of Chagas disease and recent evidence on the role of macrophages and the production of proinflammatory cytokines during the acute phase and the origin of macrophages/monocytes during the chronic phase of Chagas disease. We will also discuss the contributing factors and mechanisms leading to the chronic inflammation of the cardiac tissue during the chronic phase of the disease as well as the innate and adaptive host immune response. The contribution of genetic factors to the progression of the chronic inflammatory cardiomyopathy of chronic Chagas disease is also discussed. The secreted extracellular vesicles (exosomes) produced for both T. cruzi and infected host cells can play key roles in the host immune response, and those roles are described. Lastly, we describe potential treatments to attenuate the chronic inflammation of the cardiac tissue, designed to improve heart function in chagasic patients.
Collapse
|
42
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
43
|
Guoying L, Li L, Siyue Y, Lei L, Guangliang C. Total Saponin of Dioscorea collettii Attenuates MSU Crystal-Induced Inflammation by Inhibiting the Activation of the TLR4/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8728473. [PMID: 34721647 PMCID: PMC8550844 DOI: 10.1155/2021/8728473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rhizomes from Dioscorea collettii are extensively used in traditional medicine for the treatment of arthritic diseases, particularly gouty arthritis (GA). This study aims to investigate whether the total saponin of Dioscorea collettii (TSD) can attenuate monosodium urate (MSU) crystal-induced inflammatory effects by suppressing the activation of the TLR4/NF-κB signaling pathway in vivo and in vitro. METHODS Seventy-two male Wistar rats and THP-1 cells were used in this study. Pathological examination was used to examine the ankle joints of rats. The expression levels of TLR4, NF-κB, MyD88, and IL-1β were detected by qRT-PCR, Western blotting, or immunofluorescence. RESULTS Compared with those in the normal group, the ankle joints of rats in the model group exhibited significant swelling, synovial tissue hyperplasia, inflammatory cell infiltration, and increased expression of IL-1β protein. The joint swelling degree of rats in the TSD high- and medium-dose groups and the colchicine group was significantly decreased, and the histopathology was obviously improved. TSD and colchicine reduced the levels of IL-1β and TNF-α in synovial fluid. They also decreased the mRNA expression of TLR4, NF-κB, and IL-1β in rat joint synovial tissue and the protein expression of TLR4, MyD88, and NF-κB. NF-κB protein expression in both the cytoplasm and nuclei of THP-1 cells showed the opposite trend. Furthermore, immunofluorescence showed that TSD reduced the nuclear translocation of NF-κBp65 in the model group. CONCLUSION TSD exhibits an anti-inflammatory effect in the MSU-induced inflammation model, and the mechanism may be to reduce the production of cytokines by inhibiting the activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li Guoying
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China
| | - Li Li
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China
| | - Yang Siyue
- College of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lv Lei
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China
| | - Chen Guangliang
- College of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China
| |
Collapse
|
44
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
45
|
RIP3 Associates with RIP1, TRIF, MAVS, and Also IRF3/7 in Host Innate Immune Signaling in Large Yellow Croaker Larimichthys crocea. Antibiotics (Basel) 2021; 10:antibiotics10101199. [PMID: 34680780 PMCID: PMC8533023 DOI: 10.3390/antibiotics10101199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor-interacting protein 3 (RIP3) has been demonstrated to be a key regulator not only in cell death pathways including apoptosis and necroptosis but also in inflammation and host immune responses. In this study, a RIP3 ortholog named Lc-RIP3 is identified in large yellow croaker (Larimichthys crocea). The open reading frame (ORF) of Lc-RIP3 is 1524 bp long and encodes a protein of 507 amino acids (aa). The deduced Lc-RIP3 protein has an N-terminal kinase domain and a C-terminal RHIM domain, and the genome organization of Lc-RIP3 is conserved in teleosts with 12 exons and 11 introns but is different from that in mammals, which comprises 10 exons and 9 introns. Confocal microscopy revealed that Lc-RIP3 is a cytosolic protein. The expression analysis at the mRNA level indicated that Lc-RIP3 is ubiquitously distributed in various tissues/organs, and could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation in vivo. Notably, Lc-RIP3 could induce NF-κB but not IRF3 activation. In addition, Lc-RIP3 co-expression with Lc-TRIF, Lc-MAVS, or Lc-IRF3 significantly abolishes the activation of NF-κB but enhances the induction of IRF3 activity. Moreover, NF-κB activity could be up-regulated when Lc-RIP3 is co-expressed with Lc-RIP1 or Lc-IRF7. These results collectively indicate that Lc-RIP3 acts as an important regulator in host innate immune signaling in teleosts.
Collapse
|
46
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
47
|
Li G, Lv D, Yao Y, Wu H, Wang J, Deng S, Song Y, Guan S, Wang L, Ma W, Yang H, Yan L, Zhang J, Ji P, Zhang L, Lian Z, Liu G. Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota. FASEB J 2021; 35:e21783. [PMID: 34403510 DOI: 10.1096/fj.202100651r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Abstract
Melatonin is a pleiotropic molecule with a variety of biological functions, which include its immunoregulatory action in mammals. Brucellosis is a worldwide endemic zoonotic disease caused by the Brucella, which not only causes huge economic losses for the livestock industry but also impacts human health. To target this problem, in current study, two marker-free transgenic sheep overexpressing melatonin synthetic enzyme ASMT (acetylserotonin O-methyltransferase) gene were generated and these melatonin enrich transgenic sheep were challenged by Brucella infection. The results showed that the serum melatonin concentration was significantly higher in transgenic sheep than that of wild type (726.92 ± 70.6074 vs 263.10 ± 34.60 pg/mL, P < .05). Brucella challenge test showed that two thirds (4/6) of the wild-type sheep had brucellosis, while none of the transgenic sheep were infected. Whole-blood RNA-seq results showed that differential expression genes (DEGs) were significantly enriched in natural killer cell-mediated cytotoxicity, phagosome, antigen processing, and presentation signaling pathways in overexpression sheep. The DEGs of toll-like receptors (TLRs) and NOD-like receptors (NLRs) families were verified by qPCR and it showed that TLR1, TLR2, TLR7, CD14, NAIP, and CXCL8 expression levels in overexpression sheep were significantly higher and NLRP1, NLRP3, and TNF expression levels were significantly lower than those of wild type. The rectal feces were subjected to 16S rDNA amplicon sequencing, and the microbial functional analysis showed that the transgenic sheep had significantly lower abundance of microbial genes related to infectious diseases compared to the wild type, indicating overexpression animals are likely more resistant to infectious diseases than wild type. Furthermore, exogenous melatonin treatment relieved brucellosis inflammation by upregulating anti-inflammatory cytokines IL-4 and downregulating pro-inflammatory IL-2, IL-6, and IFN-γ. Our preliminary results provide an informative reference for the study of the relationship between melatonin and brucellosis.
Collapse
Affiliation(s)
- Guangdong Li
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Yao
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yukun Song
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Likai Wang
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenkui Ma
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hai Yang
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Laiqing Yan
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Inborn Errors in the LRR Domain of Nod2 and Their Potential Consequences on the Function of the Receptor. Cells 2021; 10:cells10082031. [PMID: 34440800 PMCID: PMC8392326 DOI: 10.3390/cells10082031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
The innate immune system plays a critical role in the early detection of pathogens, primarily by relying on pattern-recognition receptor (PRR) signaling molecules. Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic receptor that recognizes invading molecules and danger signals inside the cells. Recent studies highlight the importance of NOD2′s function in maintaining the homeostasis of human body microbiota and innate immune responses, including induction of proinflammatory cytokines, regulation of autophagy, modulation of endoplasmic reticulum (ER) stress, etc. In addition, there is extensive cross-talk between NOD2 and the Toll-like receptors that are so important in the induction and tuning of adaptive immunity. Polymorphisms of NOD2′s encoding gene are associated with several pathological conditions, highlighting NOD2′s functional importance. In this study, we summarize NOD2′s role in cellular signaling pathways and take a look at the possible consequences of common NOD2 polymorphisms on the structure and function of this receptor.
Collapse
|
49
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1006] [Impact Index Per Article: 251.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
50
|
Lv L, Wei Q, Wang Z, Zhao Y, Chen N, Yi Q. Clinical and Molecular Correlates of NLRC5 Expression in Patients With Melanoma. Front Bioeng Biotechnol 2021; 9:690186. [PMID: 34307322 PMCID: PMC8299757 DOI: 10.3389/fbioe.2021.690186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
NLRC5 is an important regulator in antigen presentation and inflammation, and its dysregulation promotes tumor progression. In melanoma, the impact of NLRC5 expression on molecular phenotype, clinical characteristics, and tumor features is largely unknown. In the present study, public datasets from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and cBioPortal were used to address these issues. We identify that NLRC5 is expressed in both immune cells and melanoma cells in melanoma samples and its expression is regulated by SPI1 and DNA methylation. NLRC5 expression is closely associated with Breslow thickness, Clark level, recurrence, pathologic T stage, and ulceration status in melanoma. Truncating/splice mutations rather than missense mutations in NLRC5 could compromise the expression of downstream genes. Low expression of NLRC5 is associated with poor prognosis, low activity of immune-related signatures, low infiltrating level of immune cells, and low cytotoxic score in melanoma. Additionally, NLRC5 expression correlates with immunotherapy efficacy in melanoma. In summary, these findings suggest that NLRC5 acts as a tumor suppressor in melanoma via modulating the tumor immune microenvironment. Targeting the NLRC5 related pathway might improve efficacy of immunotherapy for melanoma patients.
Collapse
Affiliation(s)
- Lei Lv
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhiwen Wang
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|