1
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenol induces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small cell lung cancer cell lines. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:503-514. [PMID: 38849220 DOI: 10.1016/j.joim.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024; 22(4): 504-515.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Pei Liang
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lian Yang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai 200237, China
| | - Li-Jun Jia
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Brun C, Chalet L, Moulin F, Bochaton T, Ducreux S, Paillard M, Crola Da Silva C. A bibliometric analysis: Ca 2+ fluxes and inflammatory phenotyping by flow cytometry in peripheral blood mononuclear cells. Front Immunol 2023; 14:1272809. [PMID: 37901222 PMCID: PMC10611513 DOI: 10.3389/fimmu.2023.1272809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Background The immune system, composed of organs, tissues, cells, and proteins, is the key to protecting the body from external biological attacks and inflammation. The latter occurs in several pathologies, such as cancers, type 1 diabetes, and human immunodeficiency virus infection. Immunophenotyping by flow cytometry is the method of choice for diagnosing these pathologies. Under inflammatory conditions, the peripheral blood mononuclear cells (PBMCs) are partially activated and generate intracellular pathways involving Ca2+-dependent signaling cascades leading to transcription factor expression. Ca2+ signaling is typically studied by microscopy in cell lines but can present some limitations to explore human PBMCs, where flow cytometry can be a good alternative. Objective In this review, we dived into the research field of inflammation and Ca2+ signaling in PBMCs. We aimed to investigate the structure and evolution of this field in a physio-pathological context, and then we focused our review on flow cytometry analysis of Ca2+ fluxes in PBMCs. Methods From 1984 to 2022, 3865 articles on inflammation and Ca2+ signaling in PBMCs were published, according to The Clarivate Web of Science (WOS) database used in this review. A bibliometric study was designed for this collection and consisted of a co-citation and bibliographic coupling analysis. Results The co-citation analysis was performed on 133 articles: 4 clusters highlighted the global context of Ca2+ homeostasis, including chemical probe development, identification of the leading players in Ca2+ signaling, and the link with chemokine production in immune cell function. Next, the bibliographic coupling analysis combined 998 articles in 8 clusters. This analysis outlined the mechanisms of PBMC activation, from signal integration to cellular response. Further explorations of the bibliographic coupling network, focusing on flow cytometry, revealed 21 articles measuring cytosolic Ca2+ in PBMCs, with only 5 since 2016. This final query showed that Ca2+ signaling analysis in human PBMCs using flow cytometry is still underdeveloped and investigates mainly the cytosolic Ca2+ compartment. Conclusion Our review uncovers remaining knowledge gaps of intracellular players involved in Ca2+ signaling in PBMCs, such as reticulum and mitochondria, and presents flow cytometry as a solid option to supplement gold-standard microscopy studies.
Collapse
Affiliation(s)
- Camille Brun
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Lucie Chalet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
- Olea Medical, La Ciotat, France
| | - Florentin Moulin
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Thomas Bochaton
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
- Hospices Civils de Lyon, Hôpital Louis Pradel, Services D’explorations Fonctionnelles Cardiovasculaires et CIC de Lyon, Lyon, France
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Melanie Paillard
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
4
|
Yang MH, Hwang ST, Um JY, Ahn KS. Cycloastragenol exerts protective effects against UVB irradiation in human dermal fibroblasts and HaCaT keratinocytes. J Dermatol Sci 2023; 111:60-67. [PMID: 37474410 DOI: 10.1016/j.jdermsci.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/24/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cycloastragenol (CAG) is a triterpene aglycone of astragaloside IV that possesses various pharmacological actions including improving telomerase activity, inhibiting inflammation and cell proliferation, inducing apoptosis. OBJECTIVE CAG has also shown effect to significantly improve the appearance of aging skin but, its molecular mechanism of protective effect against UVB induced-damage have not been elucidated. We investigated the potential effect of CAG on UVB wrinkle promoting activities and skin-moisturizing effects in human dermal fibroblasts (HDF) and HaCaT keratinocytes. METHODS After UVB irradiation or H2O2 treatment, the levels of matrix metalloproteinases (MMPs) and ROS generation were measured in CAG-treated HDF cells. In addition, after UVB irradiation, hyaluronic acid and skin hydration factors (filaggrin and SPT) were also analyzed in CAG (0-0.5-1-2 µM)-treated HDF and HaCaT cells. RESULTS We found that CAG caused a significant decrease in the levels of UVB-induced MMP-1, MMP-9, MMP-13 and ROS generation, also increased UVB-damaged Collagen Ⅰ. We also noted that CAG increased cell viability and can regulate MMP-1, MMP-9, MMP-13and Collagen Ⅰ in H2O2-damaged HDF cells. Moreover, we noticed that CAG effectively enhanced levels of hyaluronic acid and expression of skin hydration factors (filaggrin and serine palmitoyltransferase (SPT)) in UVB-damaged HDF and HaCaT cells. CONCLUSION This is first report indicating that CAG can exhibit protective effect against UVB and H2O2-induced damages and can contribute in maintenance of healthy skin.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea; Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea; Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
5
|
Antitumor Effect of Cycloastragenol in Colon Cancer Cells via p53 Activation. Int J Mol Sci 2022; 23:ijms232315213. [PMID: 36499536 PMCID: PMC9737126 DOI: 10.3390/ijms232315213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer cell (CRC) is the fourth most common cancer in the world. There are several chemotherapy drugs available for its treatment, though they have side effects. Cycloastragenol (CY) is a compound from Astragalus membranaceus (Fisch.) Bge known to be effective in aging, anti-inflammatory, anticancer, and anti-heart failure treatments. Although many studies have demonstrated the functions of CY in cancer cells, no studies have shown the effects of p53 in colon cancer cells. In this study, we found that CY reduces the viability of colon cancer cells in p53 wild-type cells compared to p53 null cells and HT29. Furthermore, CY induces apoptosis by p53 activation in a dose- and time-dependent manner. And it was confirmed that it affects the L5 gene related to p53. Additionally, CY enhanced p53 expression compared to when either doxorubicin or 5-FU was used alone. Altogether, our findings suggest that CY induces apoptosis via p53 activation and inhibits the proliferation of colon cancer cells. In addition, apoptosis occurs in colon cancer cells due to other factors. Moreover, CY is expected to have a combined effect when used together with existing treatments for colon cancer in the future.
Collapse
|
6
|
Melin LG, Dall JH, Lindholt JS, Steffensen LB, Beck HC, Elkrog SL, Clausen PD, Rasmussen LM, Stubbe J. Cycloastragenol Inhibits Experimental Abdominal Aortic Aneurysm Progression. Biomedicines 2022; 10:biomedicines10020359. [PMID: 35203568 PMCID: PMC8962318 DOI: 10.3390/biomedicines10020359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm involves vascular inflammation and elastin degradation. Astragalusradix contains cycloastragenol, which is known to be anti-inflammatory and to protect against elastin degradation. We hypothesized that cycloastragenol supplementation inhibits abdominal aortic aneurysm progression. Abdominal aortic aneurysm was induced in male rats by intraluminal elastase infusion in the infrarenal aorta and treated daily with cycloastragenol (125 mg/kg/day). Aortic expansion was followed weekly by ultrasound for 28 days. Changes in aneurysmal wall composition were analyzed by mRNA levels, histology, zymography and explorative proteomic analyses. At day 28, mean aneurysm diameter was 37% lower in the cycloastragenol group (p < 0.0001). In aneurysm cross sections, elastin content was insignificantly higher in the cycloastragenol group (10.5% ± 5.9% vs. 19.9% ± 16.8%, p = 0.20), with more preserved elastin lamellae structures (p = 0.0003) and without microcalcifications. Aneurysmal matrix metalloprotease-2 activity was reduced by the treatment (p = 0.022). Messenger RNA levels of inflammatory- and anti-oxidative markers did not differ between groups. Explorative proteomic analysis showed no difference in protein levels when adjusting for multiple testing. Among proteins displaying nominal regulation were fibulin-5 (p = 0.02), aquaporin-1 (p = 0.02) and prostacyclin synthase (p = 0.007). Cycloastragenol inhibits experimental abdominal aortic aneurysm progression. The suggested underlying mechanisms involve decreased matrix metalloprotease-2 activity and preservation of elastin and reduced calcification, thus, cycloastragenol could be considered for trial in abdominal aortic aneurysm patients.
Collapse
Affiliation(s)
- Leander Gaarde Melin
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Julie Husted Dall
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Jes S. Lindholt
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lasse B. Steffensen
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Hans Christian Beck
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
| | - Sophie L. Elkrog
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Pernille D. Clausen
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
| | - Lars Melholt Rasmussen
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
| | - Jane Stubbe
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital (OUH), 5000 Odense, Denmark; (L.G.M.); (J.H.D.); (J.S.L.); (H.C.B.); (L.M.R.)
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (L.B.S.); (S.L.E.); (P.D.C.)
- Correspondence: ; Tel.: +45-6550-3709
| |
Collapse
|
7
|
Summary of Natural Products Ameliorate Concanavalin A-Induced Liver Injury: Structures, Sources, Pharmacological Effects, and Mechanisms of Action. PLANTS 2021; 10:plants10020228. [PMID: 33503905 PMCID: PMC7910830 DOI: 10.3390/plants10020228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Liver diseases represent a threat to human health and are a significant cause of mortality and morbidity worldwide. Autoimmune hepatitis (AIH) is a progressive and chronic hepatic inflammatory disease, which may lead to severe complications. Concanavalin A (Con A)-induced hepatic injury is regarded as an appropriate experimental model for investigating the pathology and mechanisms involved in liver injury mediated by immune cells as well as T cell-related liver disease. Despite the advances in modern medicine, the only available strategies to treat AIH, include the use of steroids either solely or with immunosuppressant drugs. Unfortunately, this currently available treatment is associated with significant side-effects. Therefore, there is an urgent need for safe and effective drugs to replace and/or supplement those in current use. Natural products have been utilized for treating liver disorders and have become a promising therapy for various liver disorders. In this review, the natural compounds and herbal formulations as well as extracts and/or fractions with protection against liver injury caused by Con A and the underlying possible mechanism(s) of action are reviewed. A total of 53 compounds from different structural classes are discussed and over 97 references are cited. The goal of this review is to attract the interest of pharmacologists, natural product researchers, and synthetic chemists for discovering novel drug candidates for treating immune-mediated liver injury.
Collapse
|
8
|
Efficient production of the anti-aging drug Cycloastragenol: insight from two Glycosidases by enzyme mining. Appl Microbiol Biotechnol 2020; 104:9991-10004. [PMID: 33119795 DOI: 10.1007/s00253-020-10966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The telomerase activator cycloastragenol (CA) is regarded as a potential anti-aging drug with promising applications in the food and medical industry. However, one remaining challenge is the low efficiency of CA production. Herein, we developed an enzyme-based approach by applying two enzymes (β-xylosidase: Xyl-T; β-glucosidase: Bgcm) for efficient CA production. Both key glycosidases, mined by activity tracking or homology sequence screening, were successfully over-expressed and showed prominent enzymatic activity profiles, including widely pH stability (Xyl-T: pH 3.0-8.0; Bgcm: pH 4.0-10.0), high catalytic efficiency (kcat/Km: 0.096 mM-1s-1 (Xyl-T) and 3.08 mM-1s-1 (Bgcm)), and mesophilic optimum catalytic temperature (50 °C). Besides, the putative catalytic residues (Xyl-T: Asp311/Glu 521; Bgcm: Asp311/Glu 521) and the potential substrate-binding mechanism of Xyl-T and Bgcm were predicted by comprehensive computational analysis, providing valuable insight into the hydrolysis of substrates at the molecular level. Notably, a rationally designed two-step reaction process was introduced to improve the CA yield and increased up to 96.5% in the gram-scale production, providing a potential alternative for the industrial CA bio-production. In essence, the explored enzymes, the developed enzyme-based approach, and the obtained knowledge from catalytic mechanisms empower researchers to further engineer the CA production and might be applied for other chemicals synthesis. KEY POINTS: • A β-xylosidase and a β-glucosidase were mined to hydrolyze ASI into CA. • The two recombinant glycosidases showed prominent catalytic profiles. • Two-step enzymatic catalysis for CA production from ASI was developed. Graphical abstract.
Collapse
|
9
|
Yu Y, Wu J, Li J, Liu Y, Zheng X, Du M, Zhou L, Yang Y, Luo S, Hu W, Li L, Yao W, Liu Y. Cycloastragenol prevents age-related bone loss: Evidence in d-galactose-treated and aged rats. Biomed Pharmacother 2020; 128:110304. [PMID: 32497865 DOI: 10.1016/j.biopha.2020.110304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Aging-induced bone loss is a multifactorial, age-related, and progressive phenomenon among the general population and may further progress to osteoporosis and increase the risk of fractures. Cycloastragenol (CAG), currently the only compound reported that activates human telomerase, is thought to be able to alleviate or delay the symptoms of aging and chronic diseases. Previous research has suggested that CAG may have the potential to alleviate age-related bone loss. However, to date, no research has specifically focused on this aspect. In this study, we aimed to investigate whether CAG could prevent senile osteoporosis, and further reveal its underlying mechanism. METHODS CAG treatment was administrated into two bone loss rat models (D-galactose administration and aging) for 20 weeks and 33 weeks, respectively. Serum biomarkers analyses, bone biomechanical tests, micro-computed tomography assessment, and bone histomorphometry analyses were performed on the bone samples collected at the endpoint, to determine whether CAG could prevent or alleviate age-related bone loss. Proteomic analysis was performed to reveal the changes in protein profiles of the bones, and western blot was used to further verify the identity of the key proteins. The viability, osteoblastic differentiation, and mineralization of MC3T3-E1 cells were also evaluated after CAG treatment in vitro. RESULTS The results suggest that CAG treatment improves bone formation, reduces osteoclast number, alleviates the degradation of bone microstructure, and enhances bone biomechanical properties in both d-galactose- and aging-induced bone loss models. CAG treatment promotes viability, osteoblastic differentiation, and mineralization in MC3T3-E1 cells. Proteomic and western blot analyses revealed that CAG treatment increases osteoactivin (OA) expression to alleviate bone loss. CONCLUSION The results revealed that CAG alleviates age-related bone loss and improves bone microstructure and biomechanical properties. This may due to CAG-induced increase in OA expression. In addition, the results support preclinical investigations of CAG as a potential therapeutic medicine for the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Yongjie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Jingkai Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Yanzhi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China; Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, PR China
| | - Xiaoyan Zheng
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Mingzhu Du
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Limin Zhou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Shiying Luo
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Wenjia Hu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Weimin Yao
- Department of Respiratory Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, PR China.
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China.
| |
Collapse
|
10
|
Interactions of Tofacitinib and Dexamethasone on Lymphocyte Proliferation. Pharm Res 2020; 37:105. [DOI: 10.1007/s11095-020-02827-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
11
|
Enzymatic Bioconversion of Cycloastragenol-6-O-β-D-glucoside into Cycloastragenol by a Novel Recombinant β-Glucosidase from Phycicoccus sp. Soil748. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Ren YS, Li HH, Yao JC, Tan YJ, Pan LH, Peng T, Zhao LL, Zhang GM, Yue J, Hu XM, Liu Z, Li J. Application quantitative proteomics approach to identify differentially expressed proteins associated with cardiac protection mediated by cycloastragenol in acute myocardial infarction rats. J Proteomics 2020; 222:103691. [PMID: 32068187 DOI: 10.1016/j.jprot.2020.103691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Acute myocardial infarction (AMI) is an acute heart disease. Cycloastragenol, as a natural product, inhibits inflammation and protects cardiomyocytes. Cycloastragenol (Y006) modulates inflammation in AMI is not known. To explore the function of Cycloastragenol in AMI, this study investigated the effect of Y006 and its mechanisms both in vitro and in vivo. Y006 influences the concentration of 11 proteins, as shown by a proteomics analysis, immunohistochemistry and western blotting. Among these 11 proteins, Erk1/2, PLCG1, IKBKG, and ZEB1 are related to inflammatory regulation. BAX, COX2, and GSK3β are involved in modulating cardiomyocyte apoptosis, and RhoA and DSC2 are directly associated with myocardial function. However, the functions of ARHGAP17 and Rit2 in heart are less well established. Additionally, Y006 suppressed TNF-α, IFN-γ and IL-17 production in PBMCs (peripheral blood monocytes) from patients with acute myocardial infarction and enhanced IL-10 and IL-4 expression. Similar results were obtained in a rat model of AMI by flow cytometry detection and ELISA. Our findings indicate that Y006 protects rats from AMI through direct or indirect inhibition of inflammation and cardiomyocyte apoptosis. However, the specific mechanism of Y006's protective function requires further study. Nonetheless, this research revealed a novel aspect for the treatment of myocardial infarction. SIGNIFICANCE: In the present study, we undertook the first proteomic evaluation of Cycloastragenol (Y006) function in acute myocardial infarction (AMI). Y006 significantly improved myocardial function in vivo by regulating multiple molecular expressions. Hypoxia is a direct reason for AMI. And our data support a role of Y006 in gene expression, cell apoptosis under hypoxia. The conclusions of this research assist to explain the potential molecular mechanism in Cycloastragenol treating AMI and supply a new method for ameliorating AMI.
Collapse
Affiliation(s)
- Yu-Shan Ren
- Department of Immunology, Binzhou Medical University, Yantai 264003, China
| | - Hong-Hua Li
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Hong Pan
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Tao Peng
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Li Zhao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; School of Pharmacy, Linyi University, Linyi, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xue-Mei Hu
- Department of Immunology, Binzhou Medical University, Yantai 264003, China
| | - Zhong Liu
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jie Li
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China; National Engineering & Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.
| |
Collapse
|
13
|
Chen C, Ni Y, Jiang B, Yan S, Xu B, Fan B, Huang H, Chen G. Anti-aging derivatives of cycloastragenol produced by biotransformation. Nat Prod Res 2019; 35:2685-2690. [DOI: 10.1080/14786419.2019.1662011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chen Chen
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, PR China
| | - Baocheng Jiang
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Song Yan
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang, PR China
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong, PR China
| |
Collapse
|
14
|
Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin‑induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep 2019; 20:1383-1392. [PMID: 31173243 DOI: 10.3892/mmr.2019.10344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 11/06/2022] Open
Abstract
Hypercholesterolemia is one of the major risk factors for the occurrence and development of atherosclerosis. The most common drugs used to treat hypercholesterolemia are 3‑hydroxy‑3‑methyl‑glutaryl‑CoA reductase inhibitors, known as statins. Statins induce a beneficial increase in the levels of the low density lipoprotein receptor (LDLR) and additionally upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which leads to LDLR degradation. This process causes a negative feedback response that attenuates the lipid lowering effects of statins. Therefore, the development of PCSK9 inhibitors may increase the lipid‑lowering functions of statins. In the present study, a drug‑screening assay was developed using the human PCSK9 promoter, based on data from a dual‑luciferase reporter assay, and the efficacies of various compounds from Traditional Chinese Medicine were examined. Among the compounds examined, SIL was demonstrated to function by targeting PCSK9. It was identified that SIL treatment decreased the expression levels of PCSK9 in HepG2 cells by decreasing the activity of the PCSK9 promoter in a dose‑and time‑dependent manner. Notably, SIL antagonized the statin‑induced phosphorylation of the p38 MAPK signaling pathway. The present study suggested that SIL may be developed as a novel PCSK9 inhibitor that may increase the efficiency of statin treatment.
Collapse
Affiliation(s)
- Zhewen Dong
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
15
|
Hwang ST, Kim C, Lee JH, Chinnathambi A, Alharbi SA, Shair OHM, Sethi G, Ahn KS. Cycloastragenol can negate constitutive STAT3 activation and promote paclitaxel-induced apoptosis in human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152907. [PMID: 30981183 DOI: 10.1016/j.phymed.2019.152907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cycloastragenol (CAG), a triterpene aglycone is commonly prescribed for treating hypertension, cardiovascular disease, diabetic nephropathy, viral hepatitis, and various inflammatory-linked diseases. HYPOTHESIS We investigated CAG for its action on signal transducer and activator of transcription 3 (STAT3) activation cascades, and its potential to sensitize gastric cancer cells to paclitaxel-induced apoptosis. METHODS The effect of CAG on STAT3 phosphorylation and other hallmarks of cancer was deciphered using diverse assays in both SNU-1 and SNU-16 cells. RESULTS We observed that CAG exhibited cytotoxic activity against SNU-1 and SNU-16 cells to a greater extent as compared to normal GES-1 cells. CAG predominantly caused negative regulation of STAT3 phosphorylation at tyrosine 705 through the abrogation of Src and Janus-activated kinases (JAK1/2) activation. We noted that CAG impaired translocation of STAT3 protein as well as its DNA binding activity. It further decreased cellular proliferation and mediated its anticancer effects predominantly by causing substantial apoptosis rather than autophagy. In addition, CAG potentiated paclitaxel-induced anti-oncogenic effects in gastric tumor cells. CONCLUSIONS Our results indicate that CAG can function to impede STAT3 activation in human gastric tumor cells and therefore it may be a suitable candidate agent for therapy of gastric cancer.
Collapse
Affiliation(s)
- Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
16
|
Wang Y, Chen C, Wang Q, Cao Y, Xu L, Qi R. Inhibitory effects of cycloastragenol on abdominal aortic aneurysm and its related mechanisms. Br J Pharmacol 2019; 176:282-296. [PMID: 30302749 PMCID: PMC6295405 DOI: 10.1111/bph.14515] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aortic aneurysm (AAA) is a degenerative disease affecting human health, but there are no safe and effective medications for AAA therapy. Cycloastragenol (CAG), derived from Astragali Radix, has various pharmacological effects. However, whether CAG can protect against AAA remains elusive. In this study, we investigated whether CAG has an inhibitory effect on AAA and its related mechanism. EXPERIMENTAL APPROACH The AAA mouse model was induced by incubating the abdominal aorta with elastase. CAG was administered by gavage at different doses beginning on the same day or 14 days after inducing AAA to explore its preventive or therapeutic effects respectively. The preventive effects of CAG on AAA were verified in another AAA mouse model induced by angiotensin II in ApoE-/- mouse. In vitro experiments were implemented on rat vascular smooth muscle cells (VSMCs) stimulated by TNF-α. KEY RESULTS Compared to the control AAA model group, CAG (125 mg·kg-1 body weight day-1 ) reduced the incidence of AAA, the dilatation of aorta and elastin degradation in media in both mouse models of AAA. CAG suppressed the inflammation, oxidation, phenotype switch and apoptosis in TNF-α-stimulated VSMCs, ameliorated the expression and activity of MMPs and decreased the activation of the ERK/JNK signalling pathway. CAG also inhibited the degradation of elastin in TNF-α-stimulated VSMCs. CONCLUSION AND IMPLICATIONS CAG presents protective effects against AAA through down-regulation of the MAPK signalling pathways and thus attenuates inflammation, oxidation, VSMC phenotype switch and apoptosis and the expression of MMPs as well as increasing elastin biosynthesis.
Collapse
MESH Headings
- Administration, Oral
- Angiotensin II/metabolism
- Animals
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Conformation
- Oxidative Stress/drug effects
- Pancreatic Elastase/metabolism
- Rats
- Rats, Sprague-Dawley
- Sapogenins/administration & dosage
- Sapogenins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yunxia Wang
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Cong Chen
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Qinyu Wang
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Yini Cao
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Lu Xu
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Rong Qi
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| |
Collapse
|
17
|
Cycloastragenol ameliorates experimental heart damage in rats by promoting myocardial autophagy via inhibition of AKT1-RPS6KB1 signaling. Biomed Pharmacother 2018; 107:1074-1081. [DOI: 10.1016/j.biopha.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023] Open
|
18
|
Yu Y, Zhou L, Yang Y, Liu Y. Cycloastragenol: An exciting novel candidate for age-associated diseases. Exp Ther Med 2018; 16:2175-2182. [PMID: 30186456 PMCID: PMC6122403 DOI: 10.3892/etm.2018.6501] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Cycloastragenol (CAG) is a triterpenoid saponin compound and a hydrolysis product of the main active ingredient in Astragalus membranaceus (Fisch.) Bunge. An increasing body of evidence has indicated that CAG has a wide spectrum of pharmacological functions, which are attracting attention in the research community. The aim of the present review paper was to review and elucidate the advanced study of CAG. The focus was on advanced studies of CAG in English and Chinese databases; the literature was collected and reviewed to summarize the latest efficacy, pharmacokinetics and adverse reactions of CAG. Extensive pharmacological effects have been attributed to CAG, including telomerase activation, telomere elongation, anti-inflammatory and anti-oxidative properties; CAG has also been reported to improve lipid metabolism. Clinical research has demonstrated that CAG activates telomerase in humans and ameliorates various biomarkers. CAG is absorbed through the intestinal epithelium via passive diffusion and undergoes first-pass hepatic metabolism. Within a certain dose range, oral CAG is relatively safe; however, underlying mechanisms associated with CAG are not clear, and thus, we should be aware of potential adverse reactions associated with CAG. According to existing studies and clinical trials, CAG is safe and has broad application prospects. However, further studies are required to fully understand its efficacy and potential adverse reactions, and to ensure the proper use of CAG is applied to treat diseases clinically.
Collapse
Affiliation(s)
- Yongjie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Limin Zhou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|