1
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Dubois-Brissonnet F. Characterization of Bacterial Membrane Fatty Acid Profiles for Biofilm Cells. Methods Mol Biol 2025; 2852:135-141. [PMID: 39235741 DOI: 10.1007/978-1-0716-4100-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
When submitted to environmental stresses, bacteria can modulate its fatty acid composition of membrane phospholipids in order to optimize membrane fluidity. Characterization of bacterial membrane fatty acid profiles is thus an interesting indicator of cellular physiological state. The methodology described here aims to improve the recovering of biofilm cells for the characterization of their fatty acid profiles. The saponification reagent is directly applied on the whole biofilm before the removal of cells from the inert surface. In this way, maximum of the cells and their fatty acids can be recovered from the deepest layers of the biofilm.
Collapse
|
3
|
Tsoumtsa Meda L, Lagarde J, Guillier L, Roussel S, Douarre PE. Using GWAS and Machine Learning to Identify and Predict Genetic Variants Associated with Foodborne Bacteria Phenotypic Traits. Methods Mol Biol 2025; 2852:223-253. [PMID: 39235748 DOI: 10.1007/978-1-0716-4100-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry. The monitoring of foodborne strains can therefore be facilitated by the use of these genomic markers capable of rapidly providing essential information on isolated strains, such as the source of contamination, risk of illness, potential for biofilm formation, and tolerance or resistance to biocides. The increasing availability of large genome datasets is enhancing the understanding of the genetic basis of complex traits such as host adaptation, virulence, and persistence. Genome-wide association studies have shown very promising results in the discovery of genomic markers that can be integrated into rapid detection tools. In addition, machine learning has successfully predicted phenotypes and classified important traits. Genome-wide association and machine learning tools have therefore the potential to support decision-making circuits intending at reducing the burden of foodborne diseases. The aim of this chapter review is to provide knowledge on the use of these two methods in food microbiology and to recommend their use in the field.
Collapse
Affiliation(s)
- Landry Tsoumtsa Meda
- ACTALIA, La Roche-sur-Foron, France
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), Rennes, France
| | | | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France.
| |
Collapse
|
4
|
Felton SM, Akula N, Kolling GL, Azadi P, Black I, Kumar A, Heiss C, Capobianco J, Uknalis J, Papin JA, Berger BW. Applying a polysaccharide lyase from Stenotrophomonas maltophilia to disrupt alginate exopolysaccharide produced by Pseudomonas aeruginosa clinical isolates. Appl Environ Microbiol 2024:e0185324. [PMID: 39670718 DOI: 10.1128/aem.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa is considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment, P. aeruginosa undergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment for P. aeruginosa infection. Previously, we demonstrated polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia strain k279a can catalyze the degradation of multiple polyuronides in vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent of P. aeruginosa alginate, suggesting that Smlt1473 could have potential application against multidrug-resistant P. aeruginosa and perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate from P. aeruginosa. Additionally, we show that tested P. aeruginosa strains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degrade P. aeruginosa alginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCE Pseudomonas aeruginosa is a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronic P. aeruginosa infection. As a result, colonization with P. aeruginosa is the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen for P. aeruginosa infection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoid P. aeruginosa clinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producing P. aeruginosa, as well as have the potential to reduce P. aeruginosa EPS in non-clinical settings.
Collapse
Affiliation(s)
- Samantha M Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Nikki Akula
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ambrish Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Joseph Capobianco
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Joseph Uknalis
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bryan W Berger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Afonso AC, Gomes IB, Massano F, Saavedra MJ, Simões M, Simões LC. Coaggregation dynamics in drinking water biofilms and implications for chlorine disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135948. [PMID: 39342844 DOI: 10.1016/j.jhazmat.2024.135948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Biofilms in drinking water (DW) systems persistently challenge traditional disinfection methods due to intricate microbial interactions, with coaggregation playing a crucial role in forming multispecies biofilms. This study examined the implications of coaggregation on tolerance towards sodium hypochlorite (NaOCl) disinfection. Dual-species biofilms were formed for seven days on polyvinyl chloride coupons, comprising a strain of the emerging pathogen Stenotrophomonas maltophilia and the coaggregating strain Delftia acidovorans 005 P. For comparison, dual-species biofilms were also formed with a non-coaggregation strain (D. acidovorans 009 P). The minimum bactericidal concentration (MBC) for each planktonic strain varied (D. acidovorans: 1 mg/L, S. maltophilia: 1.5 mg/L) below the safe DW treatment limits. However, high NaOCl doses (10 ×MBC and 100 ×MBC,) showed low efficacy against dual-species biofilms, indicating significant biofilm tolerance to disinfection. Membrane damage occurred at sub-MBC without culturability loss, underscoring biofilm resilience. The biofilm analysis revealed a complex interplay between the composition of extracellular polymeric substances and the architecture, which was influenced by the presence of the coaggregating strain. Overall, coaggregation significantly influenced biofilm formation and resilience, impacting NaOCl disinfection. These findings underscore the challenges of microbial interactions in biofilms, emphasizing the need for improved disinfection strategies to control biofilms in drinking water systems.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francisca Massano
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Saavedra
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia C Simões
- CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
6
|
Piletić K, Mežnarić S, Keržić E, Oder M, Gobin I. Comparison of different disinfection protocols against contamination of ceramic surfaces with Klebsiella pneumoniae biofilm. Arh Hig Rada Toksikol 2024; 75:289-296. [PMID: 39718087 DOI: 10.2478/aiht-2024-75-3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Environmental contamination with Klebsiella pneumoniae biofilm can be a source of healthcare-associated infections. Disinfection with various biocidal active substances is usually the method of choice to remove contamination with biofilm. In this study we tested 13 different disinfection protocols using gaseous ozone, citric acid, and three working concentrations of benzalkonium chloride-based professional disinfecting products on 24-hour-old biofilms formed by two K. pneumoniae strains on ceramic tiles. All tested protocols significantly reduced total bacterial counts compared to control, varying from a log10 CFU reduction factor of 1.4 to 5.6. Disinfection combining two or more biocidal active substances resulted in significantly better anti-biofilm efficacy than disinfection with single substances, and the most effective combination for both strains was that of citric acid, gaseous ozone, and benzalkonium chloride. This follow up study is limited to K. pneumoniae alone, and to overcome this limitation, future studies should include more bacterial species, both Gram-positive and Gramnegative, and more samples for us to find optimal disinfection protocols, applicable in real hospital settings.
Collapse
Affiliation(s)
- Kaća Piletić
- 1University of Rijeka Faculty of Medicine, Department of Microbiology and Parasitology, Rijeka, Croatia
| | - Silvestar Mežnarić
- 2University of Rijeka Faculty of Medicine, Department of Basic and Clinical Pharmacology and Toxicology, Rijeka, Croatia
| | - Eli Keržić
- 3University of Ljubljana Biotechnical Faculty, Department of Wood Science and Technology, Ljubljana, Slovenia
| | - Martina Oder
- 4University of Ljubljana Faculty of Health Sciences, Department of Sanitary Engineering, Ljubljana, Slovenia
| | - Ivana Gobin
- 1University of Rijeka Faculty of Medicine, Department of Microbiology and Parasitology, Rijeka, Croatia
| |
Collapse
|
7
|
Wan Q, Ke J, Cao R, Wang J, Huang T, Wen G. Enhanced inactivation of Aspergillus niger biofilms by the combination of UV-LEDs with chlorine-based disinfectants. WATER RESEARCH 2024; 267:122451. [PMID: 39293342 DOI: 10.1016/j.watres.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The presence of pathogenic fungal biofilms in drinking water distribution systems poses significant challenges in maintaining the safety of drinking water. This research delved into the formation of Aspergillus niger (A. niger) biofilms and evaluated their susceptibility to inactivation using combinations of ultraviolet light emitting diodes (UV-LEDs) with chlorine-based disinfectants, including UV-LEDs/chlorine (Cl2), UV-LEDs/chlorine dioxide (ClO2), and UV-LEDs/chloramine (NH2Cl) at 265 nm, 280 nm and 265/280 nm. Results indicated that A. niger biofilms reached initial maturity within 24 h, with matured three-dimensional filamentous structures and conidiospores by 96 h. UV-LEDs combined with chlorine-based disinfectants enhanced A. niger biofilm inactivation compared to UV-LEDs alone and low-pressure UV combined with chlorine-based disinfectants. At an UV fluence of 400 mJ/cm2, log reductions of UV265, UV280, and UV265/280 combined with chlorine-based disinfectants were 2.95-fold, 3.20-fold, and 2.38-fold higher than that of UV265, UV280, and UV265/280, respectively. During the inactivation, A. niger biofilm cells experienced increased membrane permeability and intracellular reactive oxygen species levels, resulting in cellular apoptosis. Extracellular polymeric substances contributed to the higher resistance of biofilms. Regarding electrical energy consumption, the order was: UV-LEDs/ClO2 > UV-LEDs/NH2Cl > UV-LEDs/Cl2. These findings provide insights into the effective utilization of UV-LEDs for fungal biofilm disinfection.
Collapse
Affiliation(s)
- Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jian Ke
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
8
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Wu J, Thompson TP, O'Connell NH, McCracken K, Powell J, Gilmore BF, Dunne CP, Kelly SA. Extended-Spectrum β-Lactamase-Producing Bacteria from Hospital Wastewater Pipes: Isolation, Characterisation, and Biofilm Control using Common Disinfectants. J Hosp Infect 2024:S0195-6701(24)00394-3. [PMID: 39586542 DOI: 10.1016/j.jhin.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Hospital wastewater systems have been identified as reservoirs for antibiotic-resistant bacteria, with biofilms harbouring extended-spectrum β-lactamase (ESBL)-producing microorganisms posing significant infection risk. This study focuses on the antimicrobial susceptibility and biofilm control of ESBL-producing bacteria from wastewater pipes from a tertiary care teaching hospital in Ireland, which had experienced endemic infection outbreaks caused by ESBL-producing bacteria. Following isolation of ESBL-producers on selective agar antibiotic susceptibility profiles were determined for a number of antibiotics assessed for their ability to form biofilms. Biofilm eradication studies using the commercially available disinfectants bleach, OptizanTM, VirkonTM, and ClinellTM were performed on selected isolates. ESBL-producing bacteria (n=39 isolates) showed a high degree of resistance to β-lactams. Biofilm-forming ability ranged from non-adherent to strongly adherent and appeared to be source dependent, suggesting the characteristics of the pipe environment played an important role in biofilm formation. All disinfectants showed effective biofilm eradication under suggested working conditions. Effectiveness was significantly reduced following reductions in concentration and contact time, with only ClinellTM showing significant biofilm reduction against all isolates at all concentrations and contact times tested. Of the chlorine-based formulations, OptizanTM frequently outperformed bleach at lower concentrations and treatment times. Biofilm eradication was strain dependent, with varying disinfectant response profiles observed from biofilms from different Stenotrophomonas maltophilia isolates. This study highlights the high degree of ESBL-producing bacteria recovery from patient-facing hospital wastewater apparatus. Their ability to form resident biofilms and act as potential reservoirs of infection emphasises the need for rigorous and effective infection control practices.
Collapse
Affiliation(s)
- J Wu
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, UK, BT9 7BL
| | - T P Thompson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, UK, BT9 7BL
| | - N H O'Connell
- Microbiology Department, University Hospital Limerick, Limerick, Ireland; School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| | - K McCracken
- Keith McCracken Consulting Limited, The Manor House, Greencastle, Co. Donegal, Ireland
| | - J Powell
- Microbiology Department, University Hospital Limerick, Limerick, Ireland; School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| | - B F Gilmore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, UK, BT9 7BL; School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| | - C P Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, UK, BT9 7BL; School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| | - S A Kelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, UK, BT9 7BL; School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
10
|
Reiche T, Hageskal G, Hoel S, Tøndervik A, Nærdal GK, Heggeset TMB, Haugen T, Trøen HH, Jakobsen AN. Disinfection in a salmon processing plant: Impact on bacterial communities and efficacy towards foodborne bacteria and biofilms. Int J Food Microbiol 2024; 424:110853. [PMID: 39116462 DOI: 10.1016/j.ijfoodmicro.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Salmon aquaculture is the fastest growing food production system in the world. Deficiencies in the quality or safety of salmon can have global repercussions. Controlling food safety aspects during production is therefore essential. Here, we investigate the state of hygiene in a salmon processing plant using next generation sequencing and classical culture-dependent methods to characterize the surface microbiota before and after cleaning and disinfection (C&D) at ten surface sampling points. Total aerobic counts revealed an average reduction in the bacterial loads of 1.1 log CFU/cm2 by C&D. The highest relative abundance in the core microbiota before C&D was assigned to Acinetobacter, Mycoplasmataceae, Pseudomonas and Enterobacteriaceae in descending order. After C&D, we observed a significant increase in the relative abundance of Pseudomonas (p < 0.05). However, variations were found between conveyors, processing machines and drains. To assess the efficacy of commercial disinfectants, we performed susceptibility assays using advanced robotic high-throughput technologies and included foodborne bacteria which may affect food safety and spoilage. These included 128 Pseudomonas isolates, 46 Aeromonas isolates and 59 Enterobacterales isolates sampled from the salmon processing plant. Generally, minimum inhibitory concentrations (MICs) of the disinfectants were below the user concentration recommended by the producer for most isolates. BacTiter-Glo biofilm assays revealed that 30 min exposure to six out of eight commercial disinfectants resulted in an average reduction of relative luminescence >95 % in 59 single-species biofilms selected for screening. However, disinfection alone may not always be sufficient to eradicate biofilms completely. C&D routines must therefore be continuously assessed to maintain food safety and quality. The results from this study can contribute to understand and improve the state of hygiene in salmon processing environments.
Collapse
Affiliation(s)
- Thorben Reiche
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway.
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Guro Kruge Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | | | - Tone Haugen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Hanne Hein Trøen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| |
Collapse
|
11
|
Khan A, Joshi HM. Combating chlorine-resistant marine Klebsiella pneumoniae biofilms with chlorine-tolerant bacteriophages. CHEMOSPHERE 2024; 368:143782. [PMID: 39571947 DOI: 10.1016/j.chemosphere.2024.143782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Biofilm formation presents a significant challenge in health care, food industries, water distribution systems, etc. In addition to their inherent resistance to various stresses and biocides, emerging resistance against widely used biocides like chlorine is a growing concern. The strong link between chlorine resistance and the development of antibiotic resistance among microbes further exacerbates this issue. Therefore, it is highly desirable to devise a method to mitigate the problems associated with biofilms formed by Chlorine Resistant Bacteria (CRB). In this study, a highly chlorine resistant, biofilm-forming Klebsiella pneumoniae was isolated from the cooling water system of a nuclear power plant employing continuous chlorination for biofilm control. Interestingly, K. pneumoniae was found to enhance biofilm formation under the influence of increasing concentrations of chlorine, highlighting the limitations of chlorination-based biofilm control measures. As a remedial measure, chlorine resistant bacteriophages specific to K. pneumoniae were successfully isolated from the same water sample. These bacteriophages effectively inhibited planktonic growth biofilm formation and removed preformed biofilms. Whole-genome sequencing of two of the promising bacteriophages confirmed their identity as novel bacteriophages specific to K. pneumoniae. The absence of any antibiotic-resistant gene, virulent factor(s), or gene associated with the lysogenic life cycle further supports their suitability for environmental applications. This study provides valuable insights into the prevalence of chlorine resistant, pathogenic bacteria in cooling water distribution systems. It also highlights the promising application of bacteriophages to mitigate chlorine resistant bacteria and their biofilms.
Collapse
Affiliation(s)
- Atif Khan
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Hiren M Joshi
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
12
|
Crnčević D, Ramić A, Kastelic AR, Odžak R, Krce L, Weber I, Primožič I, Šprung M. Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents. Sci Rep 2024; 14:26211. [PMID: 39482460 PMCID: PMC11528103 DOI: 10.1038/s41598-024-77647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Quaternary ammonium compounds (QACs) are a biologically active group of chemicals with a wide range of different applications. Due to their strong antibacterial properties and broad spectrum of activity, they are commonly used as ingredients in antiseptics and disinfectants. In recent years, the spread of bacterial resistance to QACs, exacerbated by the spread of infectious diseases, has seriously threatened public health and endangered human lives. Recent trends in this field have suggested the development of a new generation of QACs, in parallel with the study of bacterial resistance mechanisms. In this work, we present a new series of quaternary 3-substituted quinuclidine compounds that exhibit potent activity across clinically relevant bacterial strains. Most of the derivatives had minimal inhibitory concentrations (MICs) in the low single-digit micromolar range. Notably, QApCl and QApBr were selected for further investigation due to their strong antibacterial activity and low toxicity to human cells along with their minimal potential to induce bacterial resistance. These compounds were also able to inhibit the formation of bacterial biofilms more effectively than commercial standard, eradicating the bacterial population within just 15 min of treatment. The candidates employ a membranolytic mode of action, which, in combination with the generation of reactive oxygen species (ROS), destabilizes the bacterial membrane. This treatment results in a loss of cell volume and alterations in surface morphology, ultimately leading to bacterial cell death. The prominent antibacterial potential of quaternary 3-aminoquinuclidines, as exemplified by QApCl and QApBr, paves the way for new trends in the development of novel generation of QACs.
Collapse
Affiliation(s)
- Doris Crnčević
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
- Faculty of Science, Doctoral Study in Biophysics, University of Split, R. Bošković 33, Split, Croatia
| | - Alma Ramić
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Andreja Radman Kastelic
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Renata Odžak
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
| | - Lucija Krce
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ivana Weber
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ines Primožič
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Matilda Šprung
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia.
| |
Collapse
|
13
|
Chan YL, Tang SN, Osman CP, Chee CF, Tay ST. Exploring naphthoquinone and anthraquinone derivatives as antibiotic adjuvants against Staphylococcus aureus biofilms: Synergistic effects of menadione. Microb Pathog 2024; 195:106886. [PMID: 39182855 DOI: 10.1016/j.micpath.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Given the ability of Staphylococcus aureus to form biofilms and produce persister cells, making infections difficult to treat with antibiotics alone, there is a pressing need for an effective antibiotic adjuvant to address this public health threat. In this study, a series of quinone derivatives were evaluated for their antimicrobial and antibiofilm activities against methicillin-susceptible and methicillin-resistant S. aureus reference strains. Following analyses using broth microdilution, growth curve analysis, checkerboard assay, time-kill experiments, and confocal laser scanning microscopy, menadione was identified as a hit compound. Menadione exhibited a notable antibacterial profile (minimum inhibitory concentration, MIC = 4-16 μg/ml; minimum bactericidal concentration, MBC = 256 μg/ml) against planktonic S. aureus and its biofilms (minimum biofilm inhibitory concentration, MBIC50 = 0.0625-0.25 μg/ml). When combined with oxacillin, erythromycin, and vancomycin, menadione exhibited a synergistic or additive effect against planktonic cells and biofilms of two S. aureus reference strains and six clinical isolates, highlighting its potential as a suitable adjuvant for further development against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Che Puteh Osman
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Holcomb DA, Riner D, Cowan B, Salah Z, Jennings WC, Mattioli MC, Murphy JL. Chlorine Inactivation of Elizabethkingia spp. in Water. Emerg Infect Dis 2024; 30:2174-2177. [PMID: 39320337 PMCID: PMC11431903 DOI: 10.3201/eid3010.240917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
We performed chlorine inactivation experiments for Elizabethkingia anophelis and E. meningoseptica bacterial strains from clinical and environmental sources. Free chlorine concentration × contact time values <0.04 mg·min/L achieved 99.9% inactivation of Elizabethkingia species, indicating chlorine susceptibility. Measures to control biofilm producing pathogens in plumbing are needed to prevent Elizabethkingia bacterial infections.
Collapse
|
15
|
Blair MF, Vaidya R, Salazar-Benites G, Bott CB, Pruden A. Relating microbial community composition to treatment performance in an ozone-biologically active carbon filtration potable reuse treatment train. WATER RESEARCH 2024; 262:122091. [PMID: 39047455 DOI: 10.1016/j.watres.2024.122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Treatment trains that couple ozone (O3) with biologically active carbon (BAC) filtration are of interest as a lower cost, more sustainable, membrane-free approach to water reuse. However, little is known about the microbial communities that are the fundamental drivers of O3-BAC treatment. The objective of this study was to demonstrate microbial community profiling as a diagnostic tool for assessing the functionality, biological stability, and resilience of coupled physical, chemical, advanced oxidative and biological processes employed in water reuse treatment. We utilized 16S rRNA gene amplicon sequencing to profile the bacterial microbiota over time throughout a potable reuse train employing coagulation, flocculation, sedimentation, ozonation, BAC filtration, granular activated carbon (GAC) adsorption, and UV disinfection. A distinct baseline microbiota was associated with each stage of treatment (ANOSIM, p < 0.05, r-stat = 0.52), each undergoing succession with time and operational shifts. Ozonation resulted in the sharpest shifts (i.e., 83.3 % average change in Genus level relative abundances, when adjusted O3:TOC ratio > 1), and also variance, in microbial community composition. Adjustment in O3:TOC ratios, temperature, filter-aid polymer, monochloramine quenching agent, and empty-bed contact time also resulted in measurable changes in the baseline microbial community composition of individual processes, but to a lesser degree. Of these, supplementation of nitrogen and phosphorus resulted in the strongest bifurcation, especially in the microbial communities inhabiting the BAC (ANOSIM: p < 0.05, BAC5 r-stat = 0.32; BAC10 r-stat = 0.54) and GAC (ANOSIM: p < 0.05, GAC10 r-stat = 0.54; GAC20 r-stat = 0.63) units. Additionally, we found that the BAC microbial community was responsive to an inoculation of microbially active media, which resulted in improved TOC removal. The findings of this study improve understanding of bacterial dynamics occurring in advanced water treatment trains and can inform improved system design and operation.
Collapse
Affiliation(s)
- Matthew F Blair
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Le NNT, Wu J, Rickard AH, Xi C. Evaluation of the long-term protection conferred by an organosilicon-based disinfectant formulation against bacterial contamination of surfaces. J Appl Microbiol 2024; 135:lxae210. [PMID: 39227172 DOI: 10.1093/jambio/lxae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
AIMS The aim of this work was to evaluate the efficacy of an organosilicon-based, commercially available antimicrobial formulation in the My-shield® product line against bacterial surface contamination. METHODS AND RESULTS The antimicrobial product was tested in vitro for its long-term persistence on surfaces and effectiveness against Staphylococcus aureus biofilms in comparison to 70% ethanol and 0.1% or 0.6% sodium hypochlorite. Field testing was also conducted over 6 weeks at a university athletic facility. In vitro studies demonstrated the log reductions achieved by the test product, 70% ethanol, and 0.1% sodium hypochlorite were 3.6, 3.1, and 3.2, respectively. The test product persisted on surfaces after washing and scrubbing, and pre-treatment with this product prevented S. aureus surface colonization for up to 30 days. In comparison, pre-treatment with 70% ethanol or 0.6% sodium hypochlorite was not protective against S. aureus biofilm formation after seven days. The field test demonstrated that weekly applications of the test product were more effective at reducing surface bacterial load than daily applications of a control product. CONCLUSIONS The test product conferred greater long-term protection against bacterial growth and biofilm formation by S. aureus than ethanol and sodium hypochlorite. Even with less frequent applications, the test product maintained a high level of antimicrobial activity.
Collapse
Affiliation(s)
- Nguyen Nhat Thu Le
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Alexander H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| |
Collapse
|
17
|
Mahdavi P, Aliakbarlu J. Antibiofilm Effect of Sequential Application of Ozonated Water, Acetic Acid and Lactic Acid on Salmonella Typhimurium and Staphylococcus aureus Biofilms In Vitro. J Food Prot 2024; 87:100336. [PMID: 39074613 DOI: 10.1016/j.jfp.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Biofilms are highly resistant to disinfectants and antimicrobials and are known as the primary source of food contamination. Salmonella Typhimurium (S. Typhimurium) and Staphylococcus aureus (S. aureus) have an excellent ability to form biofilm. This study aimed to evaluate the antibiofilm activity of ozonated water (O), acetic acid (AA), and lactic acid (LA), individually and sequentially, against biofilms of S. Typhimurium and S. aureus formed on the polystyrene surfaces. The antibiofilm effects of the treatments were evaluated using crystal violet staining and the viable count determination methods. In the staining method, the highest percentage of biofilm mass reduction was induced by successive use of ozonated water and acetic acid (O-AA), which reduced S. aureus biofilm mass by 44.36%. The sequential use of ozonated water and lactic acid (O-LA) could decrease S. Typhimurium biofilm mass by 57.26%. According to the viable count method, the most effective treatment was the sequential use of ozonated water and lactic acid (O-LA), which reduced S. aureus and S. Typhimurium biofilms by 1.76 and 4.06 log, respectively. It was concluded that the sequential use of ozonated water and organic acids can be considered a practical and environmentally friendly approach to control biofilms.
Collapse
Affiliation(s)
- Parvin Mahdavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran.
| |
Collapse
|
18
|
Tagliaferri TL, Rhode S, Muñoz P, Simon K, Krüttgen A, Stoppe C, Ruhl T, Beier JP, Horz HP, Kim BS. Antiseptic management of critical wounds: differential bacterial response upon exposure to antiseptics and first insights into antiseptic/phage interactions. Int J Surg 2024; 110:5374-5384. [PMID: 38742847 PMCID: PMC11392177 DOI: 10.1097/js9.0000000000001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND With the antibiotic crisis, the topical antibacterial control including chronic wounds gains increasing importance. However, little is known regarding tolerance development when bacteria face repetitive exposure to the identical antiseptics as commonly found in clinical practice. MATERIALS AND METHODS Clinical isolates foremost of chronic wounds were exposed in vitro to dilutions of two antiseptics used for wound therapy: polyhexanide or octenidine. Adaptive response was determined by growth/kill curves, minimal inhibitory concentration (MIC), and whole genome sequencing. Antiseptic/bacteriophage combinations were studied by liquid-infection assays and bacterial plating. RESULTS Polyhexanide acted stronger against Escherichia coli and Proteus mirabilis while octenidine was more potent against Staphylococcus aureus . Otherwise, the antiseptic efficacy varied across isolates of Klebsiella pneumoniae , Pseudomonas aeruginosa , and Acinetobacter baumannii . Upon repetitive exposure with constant antiseptic concentrations P. aeruginosa and P. mirabilis adaptation was evident by a reduced lag-phase and a twofold increased MIC. Under increasing octenidine concentrations, P. aeruginosa adapted to an eightfold higher dosage with mutations in smvA , opgH , and kinB affecting an efflux pump, alginate and biofilm formation, respectively. S. aureus adapted to a fourfold increase of polyhexanide with a mutation in the multiple peptide resistance factor MprF, also conferring cross-resistance to daptomycin. Antiseptic/bacteriophage combinations enhanced bacterial inhibition and delayed adaptation. CONCLUSION Different bacterial species/strains respond unequally to low-level antiseptic concentrations. Bacterial adaptation potential at phenotypic and genotypic levels may indicate the necessity for a more nuanced selection of antiseptics. Bacteriophages represent a promising yet underexplored strategy for supporting antiseptic treatment, which may be particularly beneficial for the management of critical wounds.
Collapse
Affiliation(s)
| | - Sophie Rhode
- Department of Plastic Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
- Department of Plastic, Reconstructive and esthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg Germany
| | - Priscila Muñoz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Kevin Simon
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Alex Krüttgen
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Stoppe
- University Hospital, Würzburg, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Alves Ruislan AL, França Dias M, Daniela Lopes Júlio A, Mourão Silva UDC, Pagnin S, Veiga AA, Godinho Zanetti D, Santos VLD. Effects of antimicrobials over sessile and planktonic microbiota associated with an industrial cooling water system. BIOFOULING 2024; 40:499-513. [PMID: 39108059 DOI: 10.1080/08927014.2024.2384436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The bacterial community from a cooling water system was investigated through culture-dependent and independent strategies, and the responses of planktonic and sessile bacteria (grown in glass slides and stainless-steel coupons) to antimicrobials of industrial and clinical use were assessed. The morphotypes with higher biofilm-forming potential were Pseudoxanthomonas sp., Rheinheimera sp., Aeromonas sp. and Staphylococcus sp., and the first also exhibited lower susceptibility to all antibiotics and biocides tested. 16S rRNA high throughput sequencing indicated that Pseudomonadota (77.1% on average, sd 11.1%), Bacteroidota (8.4, sd 5.7%), and Planctomycetota (3.0, sd 1.3%) were the most abundant phyla. KEGG orthologs associated with antibiotics and biocide resistance were abundant in all samples. Although the minimum inhibitory and bactericidal concentrations were generally higher for biofilms, morphotypes in planktonic form also showed high levels of resistance, which could be associated with biofilm cells passing into the planktonic phase. Overall, monochloramine was the most effective biocide.
Collapse
Affiliation(s)
| | - Marcela França Dias
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Sergio Pagnin
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Andrea Azevedo Veiga
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Débora Godinho Zanetti
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Thi Nguyen H, Choi W, Jeong S, Bae H, Oh S, Cho K. Comprehensive assessment of chlorination disinfection on microplastic-associated biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134751. [PMID: 38820748 DOI: 10.1016/j.jhazmat.2024.134751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Chlorination on microplastic (MP) biofilms was comprehensively investigated with respect to disinfection efficiency, morphology, and core microbiome. The experiments were performed under various conditions: i) MP particles; polypropylene (PP) and polystyrene (PS), ii) MP biofilms; Escherichia coli for single-species and river water microorganisms for multiple-species, iii) different chlorine concentrations, and iv) different chlorine exposure periods. As a result, chlorination effectively inactivated the MP biofilm microorganisms. The disinfection efficiency increased with increasing the free chlorination concentration and exposure periods for both single- and multiple-species MP biofilms. The multiple-species MP biofilms were inactivated 1.3-6.0 times less than single-species MP biofilms. In addition, the PP-MP biofilms were more vulnerable to chlorination than the PS-MP biofilms. Morphology analysis verified that chlorination detached most MP biofilms, while a small part still remained. Interestingly, chlorination strongly changed the biofilm microbiome on MPs; the relative abundance of some microbes increased after the chlorination, suggesting they could be regarded as chlorine-resistant bacteria. Some potential pathogens were also remained on the MP particles after the chlorination. Notably, chlorination was effective in inactivating the MP biofilms. Further research should be performed to evaluate the impacts of residual MP biofilms on the environment.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seongpil Jeong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
21
|
MubarakAli D, Saravanakumar K, Ganeshalingam A, Santosh SS, De Silva S, Park JU, Lee CM, Cho SH, Kim SR, Cho N, Thiripuranathar G, Park S. Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections. Pharmaceutics 2024; 16:976. [PMID: 39204321 PMCID: PMC11359499 DOI: 10.3390/pharmaceutics16080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bacterial infections create an acidic state in the microenvironment (pH: 5.0-5.5), which differs from normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms, structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this review examines challenges in DDS development, focusing on enhancing antibacterial activity and eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation and photothermal therapy are discussed as future directions for the treatment of bacterial diseases.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India;
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | | | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - Jung Up Park
- Division of Practical Application, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Republic of Korea;
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Su-Hyeon Cho
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea;
| | - Song-Rae Kim
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| |
Collapse
|
22
|
Wang T, Yang C, Li G, Wang Y, Ji B, Chen Y, Zhou H, Cao L. Enhanced antibiofilm potential of low-intensity pulsed ultrasound combined with 0.35% povidone-iodine in a rat model of periprosthetic joint infection. Bone Joint Res 2024; 13:332-341. [PMID: 38964744 PMCID: PMC11223899 DOI: 10.1302/2046-3758.137.bjr-2023-0339.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Aims Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue.
Collapse
Affiliation(s)
- Tianxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Laboratory of High Incidence Disease Research in Xingjiang, Xinjang Medical University, Ministry of Education, Ürümqi, xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Ürümqi, xinjiang, China
| | - Chenchen Yang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Laboratory of High Incidence Disease Research in Xingjiang, Xinjang Medical University, Ministry of Education, Ürümqi, xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Ürümqi, xinjiang, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yang Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yongjie Chen
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Laboratory of High Incidence Disease Research in Xingjiang, Xinjang Medical University, Ministry of Education, Ürümqi, xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Ürümqi, xinjiang, China
| |
Collapse
|
23
|
Ren K, Ming H, Liu S, Lang X, Jin Y, Fan J. Full-length 16S rRNA gene sequencing reveals the operating mode and chlorination-aggravated SWRO biofouling at a nuclear power plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1-17. [PMID: 39007303 DOI: 10.2166/wst.2024.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.
Collapse
Affiliation(s)
- Kaijia Ren
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Hongxia Ming
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Siyu Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xianlong Lang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116021, China
| | - Yuan Jin
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China
| | - Jingfeng Fan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China E-mail:
| |
Collapse
|
24
|
Parsafard N, Abedi R, Moodi H. Ternary tin-doped titanium dioxide/calcium oxide (Sn-TiO 2/CaO) composite as a photocatalyst for efficient removal of toxic dyes. RSC Adv 2024; 14:19984-19995. [PMID: 38938525 PMCID: PMC11210368 DOI: 10.1039/d4ra03641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
In this study, a novel environmentally friendly route was explored for the synthesis of a tin-doped titanium dioxide/calcium oxide (Sn-TiO2/CaO) composite using eggshell as a ternary photocatalyst. The composite was prepared via a simple hydrothermal method, resulting in a unique material with potential applications in photocatalysis. The prepared photocatalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis/diffuse reflectance spectroscopy, scanning electron microscopy, X-ray fluorescence, and the Brunauer-Emmett-Teller techniques. At the same time, the Sn-TiO2/CaO composite shows excellent degradation activity for toxic dyes. The degradation efficiencies for alizarin red, bromophenol blue, methylene blue, malachite green, and methyl red are 68.38%, 62.39%, 76.81%, 86.93%, and 17.52%, respectively, under ultraviolet light irradiation for 35 min at pH = 3. In addition, the best photocatalytic degradation efficiency for zero charge (pH 7) and basic pH is for AR 98.21% and 68.38%, MR 33.01% and 17.52%, BPB 73.17% and 17.52%, MB 72.32% and 76.81%, and MG 85.59% and 86.93%, respectively, under UV light irradiation for 35 min. The increase in photocatalytic activity of the ternary photocatalyst is accredited to the enhancement of electron-hole pair separation. Simultaneous photodegradation and photoreduction of organic dyes show that ternary photocatalysts could be used in real wastewater applications.
Collapse
Affiliation(s)
- Nastaran Parsafard
- Kosar University of Bojnord, Department of Applied Chemistry North Khorasan Iran +98 58 32427408 +98 58 32258865
| | - Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Homa Moodi
- Kosar University of Bojnord, Department of Applied Chemistry North Khorasan Iran +98 58 32427408 +98 58 32258865
| |
Collapse
|
25
|
Shan L, Zheng W, Xu S, Zhu Z, Pei Y, Bao X, Yuan Y. Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials. Arch Microbiol 2024; 206:295. [PMID: 38856934 DOI: 10.1007/s00203-024-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.
Collapse
Affiliation(s)
- Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Wanjun Zheng
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Siyang Xu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
- Department of Transportation of Jiangxi Province, Comprehensive Transportation Development Research Center of Jiangxi Provincial, Nanchang, PR China
| | - Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yunyan Pei
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xiajun Bao
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
26
|
Gaillac A, Gourin C, Dubreil L, Briandet R, Prévost H, Jaffrès E. Biofilm formation of the food spoiler Brochothrix thermosphacta on different industrial surface materials using a biofilm reactor. Food Microbiol 2024; 120:104457. [PMID: 38431311 DOI: 10.1016/j.fm.2023.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Brochothrix thermosphacta is considered as a major food spoiler bacteria. This study evaluates biofilm formation by B. thermosphacta CD337(2) - a strong biofilm producer strain - on three food industry materials (polycarbonate (PC), polystyrene (PS), and stainless steel (SS)). Biofilms were continuously grown under flow at 25 °C in BHI broth in a modified CDC biofilm reactor. Bacterial cells were enumerated by plate counting, and biofilm spatial organization was deciphered by combining confocal laser scanning microscopy and image analysis. The biofilms had the same growth kinetics on all three materials and reach 8log CFU/cm2 as maximal concentration. Highly structured biofilms were observed on PC and PS, but less structured ones on SS. This difference was confirmed by structural quantification analysis using the image analysis software tool BiofilmQ. Biofilm on SS show less roughness, density, thickness and volume. The biofilm 3D structure seemed to be related to the coupon topography and roughness. The materials used in this study do not affect biofilm growth. However, their roughness and topography affect the biofilm architecture, which could influence biofilm behaviour.
Collapse
Affiliation(s)
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | |
Collapse
|
27
|
Vidács A, Kerekes EB, Takó M, Vágvölgyi C, Krisch J. Eradication of multiple-species biofilms from food industrial and domestic surfaces using essential oils. FOOD SCI TECHNOL INT 2024; 30:361-369. [PMID: 36959708 DOI: 10.1177/10820132231165543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbial biofilm formation represents a serious problem for both food industry and households. Natural biofilms are formed mostly by multiple species, and show resistance against most of the usual sanitizers. In this study, the effects of cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana) and thyme (Thymus vulgaris) essential oils (EOs) and their main components (cinnamaldehyde, terpinene-4-ol, and thymol) were investigated on four-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida and Staphylococcus aureus. Minimum bactericide concentration (MBC) and killing time were determined by means of the microdilution method. MBC of the investigated EOs and components was between 0.5 mg/mL (cinnamaldehyde) to 25 mg/mL (terpinene-4-ol). Killing times for the four-species suspension were 5 or 10 min, time spans usable in the food industry. For eradication of the mixed-population biofilm from stainless steel (SS), polypropylene (PP), tile and wood surfaces, EO- or EO component-based disinfectant solutions were developed, and their effects were compared to a peracetic acid-based industrial sanitizer (HC-DPE). Total eradication of biofilms (99.9%) was achieved, with solutions containing cinnamon and thyme EO and EO components, from SS and PP, but not from tile or wood surfaces. Apparently, cinnamon EO, terpinene-4-ol and thymol have better disinfectant activity than HC-DPE.
Collapse
Affiliation(s)
- Anita Vidács
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| |
Collapse
|
28
|
Samadi A, Kermanshahi Pour A, Beims RF, Xu CC. Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2541-2557. [PMID: 36749305 DOI: 10.1080/09593330.2023.2178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Ramon Filipe Beims
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| | - Chunbao Charles Xu
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
29
|
Marra D, Orillo E, Toscano G, Petala M, Karapantsios TD, Caserta S. The role of air relative humidity on the wettability of Pseudomonas fluorescens AR11 biofilms. Colloids Surf B Biointerfaces 2024; 237:113831. [PMID: 38508084 DOI: 10.1016/j.colsurfb.2024.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Biofilms are complex porous materials formed by microorganisms, polysaccharides, proteins, eDNA, inorganic matter, and water. They are ubiquitous in various environmental niches and are known to grow at solid-liquid, solid-air and air-liquid interfaces, often causing problems in several industrial and sanitary fields. Their removal is a challenge in many applications and numerous studies have been conducted to identify promising chemical species as cleaning agents. While these substances target specific components of biofilm structure, the role of water content in biofilm, and how it can influence wettability and detergent absorption have been quite neglected in the literature. Estimating water content in biofilm is a challenging task due to its heterogeneity in morphology and chemical composition. In this study, we controlled water content in Pseudomonas fluorescens AR 11 biofilms grown on submerged glass slides by regulating environmental relative humidity after drying. Interfacial properties of biofilm were investigated by measuring wetting of water and soybean oil. The morphology of biofilm structure was evaluated using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. The results showed that biofilm water content has a significant and measurable effect on its wettability, leading to the hypothesis that a preliminary control of water content can play a crucial role in biofilm removal process.
Collapse
Affiliation(s)
- Daniele Marra
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy
| | - Emilia Orillo
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy
| | - Giuseppe Toscano
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy
| | - Maria Petala
- Department of Civil Engineering, University Box 487, Thessaloniki 54 124, Greece
| | - Thodoris D Karapantsios
- Department of Chemical Technology and Industrial Chemistry, School of Chemistry, Aristotle University, University Box 116, 541 24 Thessaloniki, Greece
| | - Sergio Caserta
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy; CEINGE, Advanced Biotechnologies, Naples 80145, Italy.
| |
Collapse
|
30
|
Abdallah Y, Ogunyemi SO, Bi J, Wang F, Huang X, Shi X, Jiang J, Ibrahim E, Mohany M, Al-Rejaie SS, Yan C, Li B. Nickel oxide nanoparticles: A new generation nanoparticles to combat bacteria Xanthomonas oryzae pv. oryzae and enhance rice plant growth. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105807. [PMID: 38582579 DOI: 10.1016/j.pestbp.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 04/08/2024]
Abstract
Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 μg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 μg/mL. Adding 200 μg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 μg/mL NiONPs). When compared to the control, rice plants treated with 200 μg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Plant Pathology, Minia University, El-Minia 11432, Egypt.
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Ji''an Bi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Fang Wang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xuan Huang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xianbo Shi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jiefeng Jiang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Liu X, Xia X, Liu Y, Li Z, Shi T, Zhang H, Dong Q. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Res Int 2024; 180:114067. [PMID: 38395584 DOI: 10.1016/j.foodres.2024.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Listeria monocytogenes is an important foodborne pathogen that causes listeriosis, a severe and fatal condition. Biofilms are communities of microorganisms nested within a self-secreted extracellular polymeric substance, and they protect L. monocytogenes from environmental stresses. Biofilms, once formed, can lead to the persistence of L. monocytogenes in processing equipment and are therefore considered to be a major concern for the food industry. This paper briefly introduces the recent advancements on biofilm formation characteristics and detection methods, and focuses on analysis of the mechanism of L. monocytogenes biofilm resistance; Moreover, this paper also summarizes and discusses the existing different techniques of L. monocytogenes biofilm control according to the physical, chemical, biological, and combined strategies, to provide a theoretical reference to aid the choice of effective control technology in the food industry.
Collapse
Affiliation(s)
- Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
32
|
Ogunyemi SO, Luo J, Abdallah Y, Yu S, Wang X, Alkhalifah DHM, Hozzein WN, Wang F, Bi J, Yan C, Li B. Copper oxide nanoparticles: an effective suppression tool against bacterial leaf blight of rice and its impacts on plants. PEST MANAGEMENT SCIENCE 2024; 80:1279-1288. [PMID: 37897195 DOI: 10.1002/ps.7857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND To address the challenges of food security for the ever-increasing population, the emergence of nanotechnology provides an alternate technology of choice for the production of safer pesticides which serves as a substitute for conventional fertilizer. The antidrug resistance of Xanthomonas oryzae pv. oryzae (Xoo) and build-up of chemicals in the environment has made it necessary to find alternative safe techniques for effective disease management. Hence, in this study, copper oxide nanoparticles (CuONPs) were produced by green synthesis using a Hibiscus rosa-sinensis L. flower extract. RESULTS The characterization of CuONPs using ultraviolet-visible spectrophotometry, scanning electron microscopy with an energy-dispersive spectrum profile, Fourier transform infrared spectroscopy, and X-ray diffraction ascertained the presence of CuONPs, which were nanorods of 28.1 nm. CuONPs significantly obstructed the growth and biofilm development of Xoo by 79.65% and 79.17% respectively. The antibacterial mechanism of CuONPs was found to result from wounding the cell membrane, giving rise to an exodus of intracellular content and generation of oxidative reactive oxygen species that invariably inhibited Xoo respiration and growth. A toxicity study under greenhouse conditions revealed that CuONPs significantly increased growth variables and the biomass of rice, and reduced bacterial leaf blight. Application of CuONPs on Arabidopsis improved the chlorophyll fluorescence parameters; the ΦPSII was significantly increased by 152.05% in comparison to the control. CONCLUSION Altogether, these results suggest that CuONPs in low concentration (200.0 μg mL-1 ) are not toxic to plants and can serve as nano-fertilizers and nano-pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Plant Pathology Department, Faculty of Agriculture, Minia University, Elminya, Egypt
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo, China
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Fang Wang
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ji'an Bi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Fessia A, Ponzio R, Arcibia L, Barros G, Nesci A. Effects of different light wavelengths on Bacillus subtilis and Bacillus velezensis, two biocontrol agents isolated from the maize phyllosphere. Arch Microbiol 2024; 206:104. [PMID: 38363376 DOI: 10.1007/s00203-024-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
In previous studies, two strains isolated from the maize phyllosphere were identified as Bacillus subtilis (EM-A7) and Bacillus velezensis (EM-A8) and selected as potential biocontrol agents against Exserohilum turcicum. This study aimed to assess the ability of EM-A7 and EM-A8 to form biofilm and have antagonistic activity under varying light conditions. LED sources were custom-designed so that each corresponded to a given spectrum at a specific photosynthetically active photon flux density. Significant differences were observed in growth parameters (generation time and constant growth rate) under different LED sources. Blue light inhibited the growth of both strains. Red increased k rate in EM-A8, while the g values increased in EM-A7. Red and white light generally increased biofilm formation, and blue light inhibited it. EM-A7 and EM-A8 significantly reduced their ability to swim under blue LED, but it was not affected by red, green, or white light. The ability to swarm was negatively affected. Fungal growth decreased significantly compared to the control when the bacterium growing on the same plate had been previously incubated under red and white light or in the dark. These results indicate that different light wavelengths clearly influenced the aspects assessed in B. subtilis and B. velezensis, with the effects of blue light being overall negative and those of red and white overall positive. Given that, all these factors can be important for the establishment and survival of Bacillus strains on leaves, as well as for their effectiveness against pathogens, light could be a significant factor to consider in the design of biocontrol strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Rodrigo Ponzio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina
| | - Luciana Arcibia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Mougin J, Midelet G, Leterme S, Best G, Ells T, Joyce A, Whiley H, Brauge T. Benzalkonium chloride disinfectant residues stimulate biofilm formation and increase survival of Vibrio bacterial pathogens. Front Microbiol 2024; 14:1309032. [PMID: 38414711 PMCID: PMC10897976 DOI: 10.3389/fmicb.2023.1309032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024] Open
Abstract
Vibrio spp. are opportunistic human and animal pathogens found ubiquitously in marine environments. Globally, there is a predicted rise in the prevalence of Vibrio spp. due to increasing ocean temperatures, which carries significant implications for public health and the seafood industry. Consequently, there is an urgent need for enhanced strategies to control Vibrio spp. and prevent contamination, particularly in aquaculture and seafood processing facilities. Presently, these industries employ various disinfectants, including benzalkonium chloride (BAC), as part of their management strategies. While higher concentrations of BAC may be effective against these pathogens, inadequate rinsing post-disinfection could result in residual concentrations of BAC in the surrounding environment. This study aimed to investigate the adaptation and survival of Vibrio spp. exposed to varying concentrations of BAC residues. Results revealed that Vibrio bacteria, when exposed, exhibited a phenotypic adaptation characterized by an increase in biofilm biomass. Importantly, this effect was found to be strain-specific rather than species-specific. Exposure to BAC residues induced physiological changes in Vibrio biofilms, leading to an increase in the number of injured and alive cells within the biofilm. The exact nature of the "injured" bacteria remains unclear, but it is postulated that BAC might heighten the risk of viable but non-culturable (VBNC) bacteria development. These VBNC bacteria pose a significant threat, especially since they cannot be detected using the standard culture-based methods commonly employed for microbiological risk assessment in aquaculture and seafood industries. The undetected presence of VBNC bacteria could result in recurrent contamination events and subsequent disease outbreaks. This study provides evidence regarding the role of c-di-GMP signaling pathways in Vibrio adaptation mechanisms and suggests that c-di-GMP mediated repression is a potential avenue for further research. The findings underscore that the misuse and overuse of BAC may increase the risk of biofilm development and bacterial survival within the seafood processing chain.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Graziella Midelet
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France
| | - Sophie Leterme
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Adelaide, SA, Australia
- Flinders Institute for NanoScale Science and Technology, Flinders University, Adelaide, SA, Australia
| | - Giles Best
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Adelaide, SA, Australia
| | - Thomas Brauge
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France
| |
Collapse
|
35
|
Liang S, Xiao L, Fang Y, Chen T, Xie Y, Peng Z, Wu M, Liu Y, Xie J, Nie Y, Zhao X, Deng Y, Zhao C, Mai Y. A nanocomposite hydrogel for co-delivery of multiple anti-biofilm therapeutics to enhance the treatment of bacterial biofilm-related infections. Int J Pharm 2024; 649:123638. [PMID: 38008233 DOI: 10.1016/j.ijpharm.2023.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
The characteristics of biofilms have exacerbated the issue of clinical antibiotic resistance, rendering it a pressing challenge in need of resolution. The combination of biofilm-dispersing agents and antibiotics can eliminate biofilms and promote healing synergistically in infected wounds. In this study, we developed a novel nanocomposite hydrogel (NC gel) comprised of the poly(lactic acid)-hyperbranched polyglycerol (PLA-HPG) based bioadhesive nanoparticles (BNPs) and a hydrophilic carboxymethyl chitosan (CS) network. The NC gel was designed to co-deliver two biofilm-dispersing agents (an NO-donor SNO, and an α-amylase Am) and an antibiotic, cefepime (Cef), utilizing a synergistic anti-biofilm mechanism in which Am loosens the matrix structure and NO promotes the release of biofilm bacteria via quorum sensing, and Cef kills bacteria. The drug-loaded NC gel (SNO/BNP/CS@Am-Cef) demonstrated sustained drug release, minimal cytotoxicity, and increased drug-bacterial interactions at the site of infection. When applied to mice infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vivo, SNO/BNP/CS@Am-Cef enhanced biofilm elimination and promoted wound healing compared to traditional antibiotic treatments. Our work demonstrates the feasibility of the co-delivery of biofilm-dispersing agents and antibiotics using the NC gel and presents a promising approach for the polytherapy of bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan 528000, China
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, NY 10314, USA
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Chao Zhao
- Department of Chemical and Biological Engineering, Center for Convergent Biosciences and Medicine, Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
36
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
37
|
Bai X, Gallina NL, Bhunia AK. Microbial Biofilms in Food Safety and Public Health Domains. ENCYCLOPEDIA OF FOOD SAFETY 2024:295-302. [DOI: 10.1016/b978-0-12-822521-9.00250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
39
|
Prabhukhot GS, Eggleton CD, Patel J. Multispecies Bacterial Biofilms and Their Evaluation Using Bioreactors. Foods 2023; 12:4495. [PMID: 38137299 PMCID: PMC10742677 DOI: 10.3390/foods12244495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pathogenic biofilm formation within food processing industries raises a serious public health and safety concern, and places burdens on the economy. Biofilm formation on equipment surfaces is a rather complex phenomenon, wherein multiple steps are involved in bacterial biofilm formation. In this review we discuss the stages of biofilm formation, the existing literature on the impact of surface properties and shear stress on biofilms, types of bioreactors, and antimicrobial coatings. The review underscores the significance of prioritizing biofilm prevention strategies as a first line of defense, followed by control measures. Utilizing specific biofilm eradication strategies as opposed to a uniform approach is crucial because biofilms exhibit different behavioral outcomes even amongst the same species when the environmental conditions change. This review is geared towards biofilm researchers and food safety experts, and seeks to derive insights into the scope of biofilm formation, prevention, and control. The use of suitable bioreactors is paramount to understanding the mechanisms of biofilm formation. The findings provide useful information to researchers involved in bioreactor selection for biofilm investigation, and food processors in surfaces with novel antimicrobial coatings, which provide minimal bacterial attachment.
Collapse
Affiliation(s)
- Grishma S. Prabhukhot
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (G.S.P.); (C.D.E.)
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (G.S.P.); (C.D.E.)
| | - Jitendra Patel
- US Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
40
|
Qi W, Skov PV, de Jesus Gregersen KJ, Pedersen LF. A novel method to estimate biofilm activity based on enzymatic oxygen release from hydrogen peroxide decomposition. Biofilm 2023; 5:100121. [PMID: 37090160 PMCID: PMC10119708 DOI: 10.1016/j.bioflm.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Biofilm is central for biological water treatment processes in recirculating aquaculture systems (RAS). A lack of suitable methods for quantifying biofilm activity, however, makes it difficult to assess and compare the microbial status of biofilm. This type of information of the biofilm will be useful to assess the colonization status of nitrifying biocarriers or to evaluate the effect of disinfectants on the biofilm activity. Here we introduce a novel assay for rapid assessment of microbial activities in the biofilm attached on bioelements from a RAS biofilter. The assay consisted of an intermittent respirometer platform where biofilter elements were exposed to 10 mg/L hydrogen peroxide (H2O2) for 1 h, following concurrent measurements of oxygen release from the decomposition of H2O2 caused by biofilm-associated enzymes. A different number of colonized, mature bioelements from a moving bed biofilter in a freshwater RAS were tested with repeated H2O2 exposure, and compared against their autoclaved forms. A substantial increase in dissolved oxygen (DO) concentration (0.92-2.31 mg O2/L) occurred with mature bioelements during 1 h of H2O2 exposure, compared to small amounts of DO release (≤0.27 mg O2/L) with autoclaved bioelements. This substantiates that H2O2 decomposition by biofilm is mainly governed by microbial enzymatic activities. A monomolecular model fitted well with the observed oxygen release profiles of tested mature bioelements after H2O2 exposure (R2 > 0.98). The kinetic rate constant of net oxygen release (k or , h-1) was proportional (R2 for linear fit = 0.99) to the number of mature bioelements tested. Repeated exposure of H2O2 to the same bioelements did not change k or , which indicates that 10 mg/L H2O2 with an exposure time of 1 h does not suppress enzymatic activity in biofilm. Our study provides a new rapid method that allows simple quantification of microbial activity in biofilm samples from aquaculture systems, which could potentially be also applied to study biofilm from wastewater treatment plants and other industries.
Collapse
Affiliation(s)
- Wanhe Qi
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Kim João de Jesus Gregersen
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Lars-Flemming Pedersen
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| |
Collapse
|
41
|
Vosoughian N, Asadbeygi M, Mohammadi A, Soudi MR. Green synthesis of zinc oxide nanoparticles using novel bacterium strain (Bacillus subtilis NH1-8) and their in vitro antibacterial and antibiofilm activities against Salmonellatyphimurium. Microb Pathog 2023; 185:106457. [PMID: 37993074 DOI: 10.1016/j.micpath.2023.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in a range of applications, including food packaging, preservation, and storage. In the current investigation, extracellular green synthesis of ZnO NPs through an simple, eco-friendly, and rapid approach using a novel bacterial strain (Bacillus subtilis NH1-8) was studied. To assess the morphological, optical, and structural properties of ZnO NPs, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD) techniques were carried out. In addition, disk diffusion, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) methods were performed to determine the antibacterial activity of ZnO NPs. The average size of biosynthesized ZnO NPs was 39 nm, exhibiting semi-spherical, which was confirmed by TEM analyses. The UV-vis spectroscopy exhibited the absorption peak at 200-800nm. The ZnO NPs have shown effective antimicrobial and antibiofilm activities against S. typhimurium. Thus, biosynthesized ZnO NPs could be exploited as a breakthrough technology in the surface coating of food containers and cans to minimize contamination by S. typhimurium.
Collapse
Affiliation(s)
- Nikta Vosoughian
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran
| | - Mastoore Asadbeygi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran
| | - Ali Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| |
Collapse
|
42
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
43
|
Aoyama N, Kanematsu H, Barry DM, Miura H, Ogawa A, Kogo T, Kawai R, Hagio T, Hirai N, Kato T, Yoshitake M, Ichino R. AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7051. [PMID: 37959648 PMCID: PMC10649311 DOI: 10.3390/ma16217051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Biofilms, mainly comprised of bacteria, form on materials' surfaces due to bacterial activity. They are generally composed of water, extracellular polymeric substances (polysaccharides, proteins, nucleic acids, and lipids), and bacteria. Some bacteria that form biofilms cause periodontal disease, corrosion of the metal materials that make up drains, and slippage. Inside of a biofilm is an environment conducive to the growth and propagation of bacteria. Problems with biofilms include the inability of disinfectants and antibiotics to act on them. Therefore, we have investigated the potential application of alternating electromagnetic fields for biofilm control. We obtained exciting results using various materials' specimens and frequency conditions. Through these studies, we gradually understood that the combination of the type of bacteria, the kind of material, and the application of an electromagnetic field with various low frequencies (4 kHz-12 kHz) changes the circumstances of the onset of the biofilm suppression effect. In this study, relatively high frequencies (20 and 30 kHz) were applied to biofilms caused by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), and quantitative evaluation was performed using staining methods. The sample surfaces were analyzed by Raman spectroscopy using a Laser Raman spectrometer to confirm the presence of biofilms on the surface.
Collapse
Affiliation(s)
- Natsu Aoyama
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Hideyuki Kanematsu
- Research Collaboration Promotion Center, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
| | - Dana M. Barry
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA;
| | - Hidekazu Miura
- Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka 510-0293, Japan;
| | - Akiko Ogawa
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (A.O.); (N.H.)
| | - Takeshi Kogo
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Risa Kawai
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Takeshi Hagio
- Institutes of Innovation for Future Society, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan;
| | - Nobumitsu Hirai
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (A.O.); (N.H.)
| | - Takehito Kato
- National Institute of Technology (KOSEN), Oyama College, Oyama 323-0806, Japan;
| | - Michiko Yoshitake
- National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan;
| | - Ryoichi Ichino
- Graduate School of Engineering Chemical Systems Engineering 2, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan;
| |
Collapse
|
44
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
45
|
Shang H, Tan BZ, Dakwa V, D'Agnese E, Stanley RA, Sassi H, Lai YW, Deaker R, Bowman JP. Effect of pre-harvest sanitizer treatments on Listeria survival, sensory quality and bacterial community dynamics on leafy green vegetables grown under commercial conditions. Food Res Int 2023; 173:113341. [PMID: 37803650 DOI: 10.1016/j.foodres.2023.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 10/08/2023]
Abstract
Leafy green vegetables (LGVs) have large surface areas and can be colonized by various microorganisms including pathogens. In this study, we investigated the effect of pre-harvest sanitizer treatments on the survival of inoculated proxy pathogen Listeria innocua ATCC 33090 and the natural microbial community of mizuna, rocket (arugula), red chard and spinach grown under commercial conditions. Electrolyzed water (e-water), peracetic acid (PAA), and 1-bromo-3-chloro-5-dimethylhydantoin (BCDMH) were tested against water controls. We also observed the subsequent sensorial changes of harvested, bagged LGV leaves over a period of 12 days within chill storage alongside the growth, diversity and structure of bacterial populations determined using 16S rRNA gene amplicon sequencing and total viable counts (TVC). Treatment with PAA resulted in the highest reductions of L. innocua (2.4-5.5 log units) compared to the other treatments (0.25-2.5 log units). On day 0 (24 h after sanitizer application), the TVC on sanitizer treated LGVs were significantly reduced compared to water controls, except for rocket. During storage at 4.5 (±0.5)°C sanitisers only hindered microbial growth on LGVs initially and did not influence final bacterial population levels, growth rates or changes in LGV sample colour, decay, odour and texture compared to water controls. Shelf-life was not extended nor was it reduced. The community structure on LGV types differed though a core set of bacterial amplicon sequence variants (ASV) were present across all samples. No significant differences were observed in bacterial diversity between sanitizer treatments, however sanitizer treated LGV samples had initially reduced diversity compared to water treated samples. The bacterial compositions observed at the end point of storage considerably differed from what was observed at initial point owing to the increase in abundance of specific bacterial taxa, mainly Pseudomonas spp., the abundance and growth responses differing between LGV types studied. This study provides a better understanding on the microbiology and sensory impact of pre-harvest applied sanitiser treatments on different LGVs destined for commercial food use.
Collapse
Affiliation(s)
- Hongshan Shang
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia; Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Bi Zheng Tan
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Vongai Dakwa
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Erin D'Agnese
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Roger A Stanley
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Hannah Sassi
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - Yu-Wen Lai
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - Rosalind Deaker
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia.
| |
Collapse
|
46
|
Liu JY, Jia JJ, Liu M, Duan H, Hu ML, Liu C, Xue RY, Jin ZL, Zhang SS, Li GC, Feng R, Jin Z, Li HB, He L. A novel indolylbenzoquinone compound HL-J6 suppresses biofilm formation and α-toxin secretion in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2023; 62:106972. [PMID: 37741585 DOI: 10.1016/j.ijantimicag.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Eradication of methicillin-resistant Staphylococcus aureus (MRSA) is challenging due to multi-drug resistance of strains and biofilm formation, the latter of which is an important barrier to the penetration of antibiotics and host defences. As such, there is an urgent need to discover and develop novel agents to fight MRSA-associated infection. In this study, HL-J6, a novel indolylbenzoquinone compound, was shown to inhibit S. aureus strains, with a minimum inhibitory concentration against MRSA252 of 2 µg/mL. Moreover, HL-J6 exhibited potent antibiofilm activity in vitro and was able to kill bacteria in biofilm. In the mouse models of wound infection, HL-J6 treatment reduced the MRSA load significantly and inhibited biofilm formation on the wounds. The potent targets of its antibiofilm activity were explored by real-time reverse transcriptase polymerase chain rection, which indicated that HL-J6 downregulated the transcription levels of sarA, atlAE and icaADBC. Moreover, Western blot results showed that HL-J6 reduced the secretion level of α-toxin, a major virulence factor. These findings indicate that HL-J6 is a promising lead compound for the development of novel drugs against MRSA biofilm infections.
Collapse
Affiliation(s)
- Jing-Yi Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing-Jing Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Duan
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China; School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ming-Li Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruo-Yi Xue
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi-Li Jin
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shan-Shan Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China; School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guo-Cheng Li
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rang Feng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Jin
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Bo Li
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
47
|
Rolbiecki D, Paukszto Ł, Krawczyk K, Korzeniewska E, Sawicki J, Harnisz M. Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater - A nanopore long-read metagenomic approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132298. [PMID: 37595469 DOI: 10.1016/j.jhazmat.2023.132298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens).
Collapse
Affiliation(s)
- Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland.
| |
Collapse
|
48
|
Tomičić R, Tomičić Z, Nićetin M, Knežević V, Kocić-Tanackov S, Raspor P. Food grade disinfectants based on hydrogen peroxide/peracetic acid and sodium hypochlorite interfere with the adhesion of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to stainless steel of differing surface roughness. BIOFOULING 2023; 39:990-1003. [PMID: 38078346 DOI: 10.1080/08927014.2023.2288886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differing degrees of surface roughness (Ra = 25.20-961.90 nm). Stainless steel is a material commonly used in the food industry for processing equipment, which is regularly exposed to cleaning procedures. The investigation included the commercial disinfectants hydrogen peroxide/peracetic acid and sodium hypochlorite which were evaluated for their antibacterial and anti-adhesion activity. The adhesion was assessed by the standard plate count method, while the broth microdilution method CLSI M07-A10 was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the disinfectants. Based on the MIC values, both disinfectants exerted significant inhibitory effects with MIC values for hydrogen peroxide/peracetic acid and sodium hypochlorite of 250 µg ml-1 and 500 µg ml-1, respectively. Whereas the MBC values were equal to the MIC for all bacteria except for E. coli with values 2-fold higher than the MIC. Obtained results also revealed that all tested bacteria were able to adhere to stainless steel surfaces, although differences were found for strains and surface roughness. The lowest adhesion rate of each strain was recorded on the roughest stainless steel disc at a Ra of 961.90 nm. Further, at a concentration of 1 MIC, the disinfectant sodium hypochlorite reduced initial bacterial adhesion to stainless steel surfaces to a significantly greater extent than the disinfectant hydrogen peroxide/peracetic acid. These findings are consistent with the results obtained by Scanning Electron Microscopy (SEM) analysis, which indicates the great applicability of the tested disinfectants for the control of bacterial adhesion in the food industry.
Collapse
Affiliation(s)
- Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Milica Nićetin
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
49
|
Almulhim F, Hong PY. Evaluation of protein extraction methods to improve meta-proteomics analysis of treated wastewater biofilms. Proteomics 2023; 23:e2300191. [PMID: 37541654 DOI: 10.1002/pmic.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Metaproteomics can be used to study functionally active biofilm-based bacterial populations in reclaimed water distribution systems, which in turn result in bacterial regrowth that impacts the water quality. However, existing protein extraction methods have differences in their protein recovery and have not been evaluated for their efficacies in reclaimed water biofilm samples. In this study, we first evaluated six different protein extraction methods with diverse chemical and physical properties on a mixture of bacterial cell culture. Based on a weighting scores-based evaluation, the extraction protocols in order of decreasing performance are listed as B-PER > RIPA > PreOmics > SDS > AllPrep > Urea. The highest four optimal methods on cell culture were further tested against treated wastewater non-chlorinated and chlorinated effluent biofilms. In terms of protein yield, our findings showed that RIPA performed the best; however, the highest number of proteins were extracted from SDS and PreOmics. Furthermore, SDS and PreOmics worked best to rupture gram-positive and gram-negative bacterial cell walls. Considering the five evaluation factors, PreOmics obtained highest weighted score, indicating its potential effectiveness in extracting proteins from biofilms. This study provides the first insight into evaluating protein extraction methods to facilitate metaproteomics for complex reclaimed water matrices.
Collapse
Affiliation(s)
- Fatimah Almulhim
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Pei-Ying Hong
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Geraldes C, Tavares L, Gil S, Oliveira M. Biocides in the Hospital Environment: Application and Tolerance Development. Microb Drug Resist 2023; 29:456-476. [PMID: 37643289 DOI: 10.1089/mdr.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Hospital-acquired infections are a rising problem with consequences for patients, hospitals, and health care workers. Biocides can be employed to prevent these infections, contributing to eliminate or reduce microorganisms' concentrations at the hospital environment. These antimicrobials belong to several groups, each with distinct characteristics that need to be taken into account in their selection for specific applications. Moreover, their activity is influenced by many factors, such as compound concentration and the presence of organic matter. This article aims to review some of the chemical biocides available for hospital infection control, as well as the main factors that influence their efficacy and promote susceptibility decreases, with the purpose to contribute for reducing misusage and consequently for preventing the development of resistance to these antimicrobials.
Collapse
Affiliation(s)
- Catarina Geraldes
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luís Tavares
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Solange Gil
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
- Department of Animal Health, Biological Isolation and Containment Unit (BICU), Veterinary Hospital, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|