1
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhang Y, Zhao Q, Zhang J, Wei S, Tao F, Yang P. Bio-Inspired Adaptive and Responsive Protein-Based Materials. Chempluschem 2024:e202400309. [PMID: 39116292 DOI: 10.1002/cplu.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In nature, the inherent adaptability and responsiveness of proteins play a crucial role in the survival and reproduction of organisms, enabling them to adjust to ever-changing environments. A comprehensive understanding of protein structure and function is essential for unraveling the complex biological adaptive processes, providing new insights for the design of protein-based materials in advanced fields. Recently, materials derived from proteins with specific properties and functions have been engineered. These protein-based materials, distinguished by their engineered adaptability and responsiveness, range from the nanoscale to the macroscale through meticulous control of protein structure. First, the review introduces the natural adaptability and responsiveness of proteins in organisms, encompassing biological adhesion and the responses of organisms to light, magnetic fields, and temperature. Next, it discusses the achievements in protein-engineered adaptability and adhesion through protein assembly and nanotechnology, emphasizing precise control over protein bioactivity. Finally, the review briefly addresses the application of protein engineering techniques and the self-assembly capabilities of proteins to achieve responsiveness in protein-based materials to humidity, light, magnetism, temperature, and other factors. We hope this review will foster a multidimensional understanding of protein adaptability and responsiveness, thereby advancing the interdisciplinary integration of biomedical science, materials science, and biotechnology.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Qi Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Jingjiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Shuo Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
3
|
Schultzhaus J, Hervey J, Fears K, Spillmann C. Proteomic comparison of the organic matrices from parietal and base plates of the acorn barnacle Amphibalanus amphitrite. Open Biol 2024; 14:230246. [PMID: 38806147 PMCID: PMC11293433 DOI: 10.1098/rsob.230246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 05/30/2024] Open
Abstract
Acorn barnacles are efficient colonizers on a wide variety of marine surfaces. As they proliferate on critical infrastructure, their settlement and growth have deleterious effects on performance. To address acorn barnacle biofouling, research has focused on the settlement and adhesion processes with the goal of informing the development of novel coatings. This effort has resulted in the discovery and characterization of several proteins found at the adhesive substrate interface, i.e. cement proteins, and a deepened understanding of the function and composition of the biomaterials within this region. While the adhesive properties at the interface are affected by the interaction between the proteins, substrate and mechanics of the calcified base plate, little attention has been given to the interaction between the proteins and the cuticular material present at the substrate interface. Here, the proteome of the organic matrix isolated from the base plate of the acorn barnacle Amphibalanus amphitrite is compared with the chitinous and proteinaceous matrix embedded within A. amphitrite parietal plates. The objective was to gain an understanding of how the basal organic matrix may be specialized for adhesion via an in-depth comparative proteome analysis. In general, the majority of proteins identified in the parietal matrix were also found in the basal organic matrix, including nearly all those grouped in classes of cement proteins, enzymes and pheromones. However, the parietal organic matrix was enriched with cuticle-associated proteins, of which ca 30% of those identified were unique to the parietal region. In contrast, ca 30-40% of the protease inhibitors, enzymes and pheromones identified in the basal organic matrix were unique to this region. Not unexpectedly, nearly 50% of the cement proteins identified in the basal region were significantly distinct from those found in the parietal region. The wider variety of identified proteins in the basal organic matrix indicates a greater diversity of biological function in the vicinity of the substrate interface where several processes related to adhesion, cuticle formation and expansion of the base synchronize to play a key role in organism survival.
Collapse
Affiliation(s)
- Janna Schultzhaus
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Judson Hervey
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Kenan Fears
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Christopher Spillmann
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
4
|
Han Z, Wang Z, Rittschof D, Huang Z, Chen L, Hao H, Yao S, Su P, Huang M, Zhang YY, Ke C, Feng D. New genes helped acorn barnacles adapt to a sessile lifestyle. Nat Genet 2024; 56:970-981. [PMID: 38654131 DOI: 10.1038/s41588-024-01733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Barnacles are the only sessile lineages among crustaceans, and their sessile life begins with the settlement of swimming larvae (cyprids) and the formation of protective shells. These processes are crucial for adaptation to a sessile lifestyle, but the underlying molecular mechanisms remain poorly understood. While investigating these mechanisms in the acorn barnacle, Amphibalanus amphitrite, we discovered a new gene, bcs-6, which is involved in the energy metabolism of cyprid settlement and originated from a transposon by acquiring the promoter and cis-regulatory element. Unlike mollusks, the barnacle shell comprises alternate layers of chitin and calcite and requires another new gene, bsf, which generates silk-like fibers that efficiently bind chitin and aggregate calcite in the aquatic environment. Our findings highlight the importance of exploring new genes in unique adaptative scenarios, and the results will provide important insights into gene origin and material development.
Collapse
Affiliation(s)
- Zhaofang Han
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixuan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Daniel Rittschof
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Liying Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Shanshan Yao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Pei Su
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Danqing Feng
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Wang Z, Yao S, Han Z, Li Z, Wu Z, Hao H, Feng D. Rapid discovery of a new antifoulant: From in silico studies targeting barnacle chitin synthase to efficacy against barnacle settlement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116187. [PMID: 38460404 DOI: 10.1016/j.ecoenv.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Due to the adverse environmental impacts of toxic heavy metal-based antifoulants, the screening of environmentally friendly antifoulants has become important for the development of marine antifouling technology. Compared with the traditional lengthy and costly screening method, computer-aided drug design (CADD) offers a promising and efficient solution that can accelerate the screening process of green antifoulants. In this study, we selected barnacle chitin synthase (CHS, an important enzyme for barnacle settlement and development) as the target protein for docking screening. Three CHS genes were identified in the barnacle Amphibalanus amphitrite, and their encoded proteins were found to share a conserved glycosyltransferase domain. Molecular docking of 31,561 marine natural products with AaCHSs revealed that zoanthamine alkaloids had the best binding affinity (-11.8 to -12.6 kcal/mol) to AaCHSs. Considering that the low abundance of zoanthamine alkaloids in marine organisms would limit their application as antifoulants, a marine fungal-derived natural product, mycoepoxydiene (MED), which has a similar chemical structure to zoanthamine alkaloids and the potential for large-scale production by fermentation, was selected and validated for stable binding to AaCHS2L2 using molecular docking and molecular dynamics simulations. Finally, the efficacy of MED in inhibiting cyprid settlement of A. amphitrite was confirmed by a bioassay that demonstrated an EC50 of 1.97 μg/mL, suggesting its potential as an antifoulant candidate. Our research confirmed the reliability of using AaCHSs as antifouling targets and has provided insights for the efficient discovery of green antifoulants by CADD.
Collapse
Affiliation(s)
- Zhixuan Wang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shanshan Yao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhaofang Han
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhuo Li
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Cheng J, Li S, Li X, Zhan A. Influence of calcium concentration on larval adhesion in a highly invasive fouling ascidian: From morphological changes to molecular mechanisms. MARINE POLLUTION BULLETIN 2024; 200:116119. [PMID: 38325201 DOI: 10.1016/j.marpolbul.2024.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Calcium ion (Ca2+) is involved in the protein-mediated larval adhesion of fouling ascidians, yet the effects of environmental Ca2+ on larval adhesion remain largely unexplored. Here, the larvae of fouling ascidian C. robusta were exposed to different concentrations of Ca2+. Exposures to low-concentration (0 mM and 5 mM) and high-concentration (20 mM and 40 mM) Ca2+ significantly decreased the adhesion rate of larvae, which was primarily attributed to the decreases in adhesive structure length and curvature. Changes in the expressions of genes encoding adhesion-, microvilli-, muscle contraction-, and collagen-related proteins provided a molecular-level explanation for adhesion rate reduction. Additionally, larvae likely prioritized their energy towards immunomodulation in response to Ca2+ stresses, ultimately leading to adhesion reduction. These findings advance our understanding of the influencing mechanisms of environmental Ca2+ on larval adhesion, which are expected to provide references for the development of precise antifouling strategies against ascidians and other fouling species.
Collapse
Affiliation(s)
- Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Lee WK, Chan BKK, Kim JY, Ju SJ, Kim SJ. Comparative genomics reveals the dynamic evolutionary history of cement protein genes of barnacles from intertidal to deep-sea hydrothermal vents. Mol Ecol Resour 2024; 24:e13895. [PMID: 37955198 DOI: 10.1111/1755-0998.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Thoracican barnacles are a diverse group of marine organisms for which the availability of genome assemblies is currently limited. In this study, we sequenced the genomes of two neolepadoid species (Ashinkailepas kermadecensis, Imbricaverruca yamaguchii) from hydrothermal vents, in addition to two intertidal species. Genome sizes ranged from 481 to 1054 Mb, with repetitive sequence contents of 21.2% to 50.7%. Concordance rates of orthologs and heterozygosity rates were between 82.4% and 91.7% and between 1.0% and 2.1%, respectively, indicating high genetic diversity and heterozygosity. Based on phylogenomic analyses, we revised the nomenclature of cement genes encoding cement proteins that are not homologous to any known proteins. The major cement gene, CP100A, was found in all thoracican species, including vent-associated neolepadoids, and was hypothesised to be essential for thoracican settlement. Duplicated genes, CP100B and CP100C, were found only in balanids, suggesting potential functional redundancy or acquisition of new functions associated with the calcareous base. An ancestor of CP52 genes was duplicated dynamically among lepadids, pollicipedids with multiple copies on a single scaffold, and balanids with multiple sequential repeats of the conserved regions, but no CP52 genes were found in neolepadoids, providing insights into cement gene evolution among thoracican lineages. This study enhances our understanding of the adhesion mechanisms of thoracicans in underwater environments. The newly sequenced genomes provide opportunities for studying their evolution and ecology, shedding light on their adaptation to diverse marine environments, and contributing to our knowledge of barnacle biology with valuable genomic resources for further studies in this field.
Collapse
Affiliation(s)
- Won-Kyung Lee
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Division of EcoScience, Ewha Womans University, Seoul, Korea
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jae-Yoon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Se-Jong Ju
- Marine Resources & Environment Research Division, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Se-Joo Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
8
|
Wu Z, Wang Z, Li Z, Hao H, Qi Y, Feng D. Impacts of ocean acidification and warming on the release and activity of the barnacle waterborne settlement pheromone, adenosine. MARINE POLLUTION BULLETIN 2024; 199:115971. [PMID: 38159384 DOI: 10.1016/j.marpolbul.2023.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The effects of ocean acidification (OA) and warming on the physiological processes of many marine species have been well documented. However, far less is known about the impacts of these global variables on chemical communication. In this study, we identified the barnacle waterborne settlement pheromone (BWSP) of Balanus albicostatus as adenosine (Ado). Our results showed that neither elevated temperature (30 °C vs. ambient 26 °C) nor elevated pCO2 (1000 μatm vs. ambient 400 μatm) significantly affected the release of Ado from B. albicostatus adults. Exposure to elevated temperature and OA did not impair larval cue perception for settlement in B. albicostatus; however, OA inhibited settlement under elevated temperature in the absence/presence of BWSP, and elevated temperature induced larval settlement only in the presence of BWSP under ambient pCO2 condition. These results provided important insights into barnacle aggregation behavior in changing oceans and may help to predict the consequences of climate change on barnacle populations.
Collapse
Affiliation(s)
- Zhiwen Wu
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhixuan Wang
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhuo Li
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huanhuan Hao
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yuxuan Qi
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Hur S, Méthivier C, Wilson A, Salmain M, Boujday S, Miserez A. Biomineralization in Barnacle Base Plate in Association with Adhesive Cement Protein. ACS APPLIED BIO MATERIALS 2023; 6:3423-3432. [PMID: 37078387 DOI: 10.1021/acsabm.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of β-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.
Collapse
Affiliation(s)
- Sunyoung Hur
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Axel Wilson
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551
| |
Collapse
|
10
|
Tesler AB, Kolle S, Prado LH, Thievessen I, Böhringer D, Backholm M, Karunakaran B, Nurmi HA, Latikka M, Fischer L, Stafslien S, Cenev ZM, Timonen JVI, Bruns M, Mazare A, Lohbauer U, Virtanen S, Fabry B, Schmuki P, Ras RHA, Aizenberg J, Goldmann WH. Long-term stability of aerophilic metallic surfaces underwater. NATURE MATERIALS 2023:10.1038/s41563-023-01670-6. [PMID: 37723337 DOI: 10.1038/s41563-023-01670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.
Collapse
Affiliation(s)
- Alexander B Tesler
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefan Kolle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lucia H Prado
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Böhringer
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matilda Backholm
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | | | - Heikki A Nurmi
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Mika Latikka
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Lena Fischer
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Zoran M Cenev
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Mark Bruns
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anca Mazare
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai, Japan
| | - Ulrich Lohbauer
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sannakaisa Virtanen
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | - Robin H A Ras
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Zhang C, Qi Y, Guo Y, Zhang S, Xiong G, Wang K, Zhang Z. Anti-marine biofouling adhesion performance and mechanism of PDMS fouling-release coating containing PS-PEG hydrogel. MARINE POLLUTION BULLETIN 2023; 194:115345. [PMID: 37531797 DOI: 10.1016/j.marpolbul.2023.115345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Polystyrene microspheres compounded with polyethylene glycol-based hydrogel (PS-PEG)/polydimethylsiloxane (PDMS) coatings were prepared using the physical blending method. The chemical structure, surface and interface properties, interlayer adhesion, and tensile properties were tested in this paper. Furthermore, the antifouling performance was evaluated through bovine serum albumin fluorescent protein adsorption testing, marine bacteria adhesion testing, and benthic diatom adhesion testing. The results showed that the coating performance was best when 20 wt% PS-PEG hydrogel was added. Its surface energy was only 19.21 mJ/m2, the maximum breaking strength was 1.24 MPa, the maximum elongation rate was 675 %, the elastic modulus was 2.53 MPa, and the anti-stripping rate was 100 %. In addition, the coating with added 20 wt% PS-PEG hydrogel bacterial adherence rate was 5.36 % and 2.45 % after rinsing and washing, respectively, and the removal rate was 54.29 %. In the benthic diatom adhesion test, the chlorophyll concentration a-value was only 0.0017 mg/L after washing with added 20 wt% hydrogel, and the protein desorption rate was 84.19 % higher than PDMS in the fluorescent protein adsorption test. This coating has the 'low adhesion' and 'desorption' characteristics in the three growth stages of biofouling. Meanwhile, the low surface energy of the silicone is stable, and the hydrogel also dynamically migrates to the surface to gradually form a hydration layer, both are synergistic. When 20 wt% PS-PEG hydrogel was added, the coating demonstrated excellent antifouling performance due to its high hydration layer, low surface energy, high elasticity, and high interlayer adhesion. This research is expected to contribute to the practical applications of hydrogel coatings in marine antifouling.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yuhong Qi
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yarui Guo
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shukun Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Gang Xiong
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Kaixuan Wang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhanping Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
12
|
Tilbury MA, Tran TQ, Shingare D, Lefevre M, Power AM, Leclère P, Wall JG. Self-assembly of a barnacle cement protein into intertwined amyloid fibres and determination of their adhesive and viscoelastic properties. J R Soc Interface 2023; 20:20230332. [PMID: 37553991 PMCID: PMC10410215 DOI: 10.1098/rsif.2023.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The stalked barnacle Pollicipes pollicipes uses a multi-protein cement to adhere to highly varied substrates in marine environments. We investigated the morphology and adhesiveness of a component 19 kDa protein in barnacle cement gland- and seawater-like conditions, using transmission electron microscopy and state-of-the art scanning probe techniques. The protein formed amyloid fibres after 5 days in gland-like but not seawater conditions. After 7-11 days, the fibres self-assembled under gland-like conditions into large intertwined fibrils of up to 10 µm in length and 200 nm in height, with a distinctive twisting of fibrils evident after 11 days. Atomic force microscopy (AFM)-nanodynamic mechanical analysis of the protein in wet conditions determined E' (elasticity), E'' (viscosity) and tan δ values of 2.8 MPa, 1.2 MPa and 0.37, respectively, indicating that the protein is a soft and viscoelastic material, while the adhesiveness of the unassembled protein and assembled fibres, measured using peak force quantitative nanomechanical mapping, was comparable to that of the commercial adhesive Cell-Tak™. The study provides a comprehensive insight into the nanomechanical and viscoelastic properties of the barnacle cement protein and its self-assembled fibres under native-like conditions and may have application in the design of amyloid fibril-based biomaterials or bioadhesives.
Collapse
Affiliation(s)
- Maura A. Tilbury
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Thi Quynh Tran
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - Dilip Shingare
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Mathilde Lefevre
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Philippe Leclère
- Laboratory for Physics of Nanomaterials and Energy, Research Institute for Materials, University of Mons, 7000 Mons, Belgium
| | - J. Gerard Wall
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| |
Collapse
|
13
|
Hao D, Li X, Yang E, Tian Y, Jiang L. Barnacle inspired high-strength hydrogel for adhesive. Front Bioeng Biotechnol 2023; 11:1183799. [PMID: 37077234 PMCID: PMC10106642 DOI: 10.3389/fbioe.2023.1183799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Barnacle exhibits high adhesion strength underwater for its glue with coupled adhesion mechanisms, including hydrogen bonding, electrostatic force, and hydrophobic interaction. Inspired by such adhesion mechanism, we designed and constructed a hydrophobic phase separation hydrogel induced by the electrostatic and hydrogen bond interaction assembly of PEI and PMAA. By coupling the effect of hydrogen bond, electrostatic force and hydrophobic interaction, our gel materials show an ultrahigh mechanical strength, which is up to 2.66 ± 0.18 MPa. Also, benefit from the coupled adhesion forces, as well as the ability to destroy the interface water layer, the adhesion strength on the polar materials can be up to 1.99 ± 0.11 MPa underwater, while that of the adhesion strength is about 2.70 ± 0.21 MPa under silicon oil. This work provides a deeper understanding of the underwater adhesion principle of barnacle glue. Furthermore, our bioinspired strategy would provide an inspiration for the fabrication of high mechanical gel materials, and the rapid strong adhesive used in both water and organic solvents.
Collapse
Affiliation(s)
- Dezhao Hao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingchao Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Enfeng Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Future Science and Technology on Bioinspired Interface, Beijing, China
- *Correspondence: Ye Tian,
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
15
|
Bioinspired chemical design to control interfacial wet adhesion. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Melrose J. High Performance Marine and Terrestrial Bioadhesives and the Biomedical Applications They Have Inspired. Molecules 2022; 27:molecules27248982. [PMID: 36558114 PMCID: PMC9783952 DOI: 10.3390/molecules27248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study has reviewed the naturally occurring bioadhesives produced in marine and freshwater aqueous environments and in the mucinous exudates of some terrestrial animals which have remarkable properties providing adhesion under difficult environmental conditions. These bioadhesives have inspired the development of medical bioadhesives with impressive properties that provide an effective alternative to suturing surgical wounds improving closure and healing of wounds in technically demanding tissues such as the heart, lung and soft tissues like the brain and intestinal mucosa. The Gecko has developed a dry-adhesive system of exceptional performance and has inspired the development of new generation re-usable tapes applicable to many medical procedures. The silk of spider webs has been equally inspiring to structural engineers and materials scientists and has revealed innovative properties which have led to new generation technologies in photonics, phononics and micro-electronics in the development of wearable biosensors. Man made products designed to emulate the performance of these natural bioadhesive molecules are improving wound closure and healing of problematic lesions such as diabetic foot ulcers which are notoriously painful and have also found application in many other areas in biomedicine. Armed with information on the mechanistic properties of these impressive biomolecules major advances are expected in biomedicine, micro-electronics, photonics, materials science, artificial intelligence and robotics technology.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
18
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Li S, Ma C, Hou B, Liu H. Rational design of adhesives for effective underwater bonding. Front Chem 2022; 10:1007212. [DOI: 10.3389/fchem.2022.1007212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.
Collapse
|
20
|
Martínez-Laiz G, MacLeod CD, Hesketh AV, Konecny CA, Ros M, Guerra-García JM, Harley CDG. The journey of hull-fouling mobile invaders: basibionts and boldness mediate dislodgement risk during transit. BIOFOULING 2022; 38:837-851. [PMID: 36317602 DOI: 10.1080/08927014.2022.2138754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Vessel hull-fouling is responsible for most bioinvasion events in the marine environment, yet it lacks regulation in most countries. Although experts advocate a preventative approach, research efforts on pre-arrival processes are limited. The performance of mobile epifauna during vessel transport was evaluated via laboratory simulations, using the well-known invasive Japanese skeleton shrimp (Caprella mutica), and its native congener C. laeviuscula as case study. The invader did not possess any advantage in terms of inherent resistance to drag. Instead, its performance was conditioned by the complexity of secondary substrate. Dislodgement risk was significantly reduced when sessile fouling basibionts were added, which provided refugia and boosted the probability of C. mutica remaining attached from 7 to 65% in flow exposure trials. Interestingly, the invader exhibited significantly higher exploratory tendency and motility than its native congener at zero-flow conditions. Implications in terms of en-route survivorship, invasion success and macrofouling management are discussed.
Collapse
Affiliation(s)
- Gemma Martínez-Laiz
- Laboratory of Marine Biology, Department of Zoology, University of Seville, Seville, Spain
| | - Colin D MacLeod
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Amelia V Hesketh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra A Konecny
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Macarena Ros
- Laboratory of Marine Biology, Department of Zoology, University of Seville, Seville, Spain
- Department of Biology, CASEM, University of Cadiz, Puerto Real, Spain
| | - José M Guerra-García
- Laboratory of Marine Biology, Department of Zoology, University of Seville, Seville, Spain
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Chai K, Wu Y, Shi W, Duan D, Wu J, Han E. The movement and settlement behaviour of cyprids of Balanus reticulatus on the surfaces of the titanium alloys. BIOFOULING 2022; 38:824-836. [PMID: 36314065 DOI: 10.1080/08927014.2022.2138753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The motion paths of Balanus reticulatus cyprids were similar on all the titanium alloys surfaces. On the parallel grinding surfaces, the temporary attachment duration and the settlement ratio of the cyprids were influenced by the roughness and the composition of the surfaces and correlated positively. The surface roughness could also change the contact area and the numbers of the attachment points of the cyprids in the similar pattern. Consequently, the roughness and the composition of the surfaces regulated the cyprid settlement by the temporary attachment duration. The cross grinding increased the temporary attachment duration but drastically decreased the settlement ratio to 0 compared to the parallel grinding, possibly due to the voids and the drastic decrease of the contact area and the numbers of the attachment points of the cyprids on the cross grinding surface, respectively. The cross grinding therefore significantly reduced the cyprid settlement compared to the parallel grinding.
Collapse
Affiliation(s)
- Ke Chai
- Institute of Corrosion Science and Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yaohua Wu
- Institute of Corrosion Science and Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wei Shi
- Institute of Corrosion Science and Technology, Guangzhou, China
| | - Dongxia Duan
- Sunrui Marine Environment Engineering Co., Ltd, Qingdao, China
| | - Jinyi Wu
- Institute of Corrosion Science and Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Enhou Han
- Institute of Corrosion Science and Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
22
|
Xu Z, Liu Z, Zhang C, Xu D. Advance in barnacle cement with high underwater adhesion. J Appl Polym Sci 2022. [DOI: 10.1002/app.52894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhenzhen Xu
- Beijing Institute of Basic Medical Sciences Beijing China
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences Beijing China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences Beijing China
| |
Collapse
|
23
|
Li F, Ye L, Zhang L, Li X, Liu X, Zhu J, Li H, Pang H, Yan Y, Xu L, Yang M, Yan J. Design of a genetically programmed barnacle-curli inspired living-cell bioadhesive. Mater Today Bio 2022; 14:100256. [PMID: 35469253 PMCID: PMC9034392 DOI: 10.1016/j.mtbio.2022.100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
In nature, barnacles and bacterial biofilms utilize self-assembly amyloid to achieve strong and robust interface adhesion. However, there is still a lack of sufficient research on the construction of macroscopic adhesives based on amyloid-like nanostructures through reasonable molecular design. Here, we report a genetically programmed self-assembly living-cell bioadhesive inspired by barnacle and curli system. Firstly, the encoding genes of two natural adhesion proteins (CsgA and cp19k) derived from E. coli curli and barnacle cement were fused and expressed as a fundamental building block of the bioadhesive. Utilizing the natural curli system of E. coli, fusion protein can be delivered to cell surface and self-assemble into an amyloid nanofibrous network. Then, the E. coli cells were incorporated into the molecular chain network of xanthan gum (XG) through covalent conjugation to produce a living-cell bioadhesive. The shear adhesive strength of the bioadhesive to the surface of the aluminum sheet reaches 278 kPa. Benefiting from living cells encapsulated inside, the bioadhesive can self-regenerate with adequate nutrients. This adhesive has low toxicity to organisms, strong resistance to the liquid environment in vivo, easy to pump, exhibiting potential application prospects in biomedical fields such as intestinal soft tissue repair.
Collapse
|
24
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Liu X, Ma Z, Nie J, Fang J, Li W. Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives. Biomacromolecules 2021; 23:1009-1019. [PMID: 34964608 DOI: 10.1021/acs.biomac.1c01387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, there has been a wave of reports on the fabrication of peptide-based underwater adhesives with the aim of understanding the adhesion mechanism of marine sessile organisms or creating new biomaterials beyond nature. However, the poor shear adhesion performance of the current peptide adhesives has largely hindered their applications. Herein, we proposed to sequentially perform the interfacial adhesion and bulk cohesion of peptide-based underwater adhesives using two redox-complementary peptide/polyoxometalate (POM) coacervates. The oxidative coacervates were prepared by mixing oxidative H5PMo10V2O40 and cationic peptides in an aqueous solution. The reductive coacervates consisted of K5BW12O40 and cysteine-containing reductive peptides. Each of the individual coacervate has well-defined spreading capacity to achieve fast interfacial attachment and adhesion, but their cohesion is poor. However, after mixing the two redox-complementary coacervates at the target surface, effective adhesion and spontaneous curing were observed. We identified that the spontaneous curing resulted from the H5PMo10V2O40-regulated oxidization of cysteine-containing peptides. The formed intermolecular disulfide bonds improved the cross-linking density of the dual-peptide/POM coacervates, giving rise to the enhanced bulk cohesion and mechanical strength. More importantly, the resultant adhesives showcased excellent bioactivity to selectively suppress the growth of Gram-positive bacteria due to the presence of the polyoxometalates. This work raises further potential in the creation of biomimetic adhesives through the orchestrating of covalent and noncovalent interactions in a sequential fashion.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Jun Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| |
Collapse
|
26
|
Yuk H, Wu J, Sarrafian TL, Mao X, Varela CE, Roche ET, Griffiths LG, Nabzdyk CS, Zhao X. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat Biomed Eng 2021; 5:1131-1142. [PMID: 34373600 PMCID: PMC9254891 DOI: 10.1038/s41551-021-00769-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Tissue adhesives do not normally perform well on tissues that are covered with blood or other bodily fluids. Here we report the design, adhesion mechanism and performance of a paste that haemostatically seals tissues in less than 15 s, independently of the blood-coagulation rate. With a design inspired by barnacle glue (which strongly adheres to wet and contaminated surfaces owing to adhesive proteins embedded in a lipid-rich matrix), the paste consists of a blood-repelling hydrophobic oil matrix containing embedded microparticles that covalently crosslink with tissue surfaces on the application of gentle pressure. It slowly resorbs over weeks, sustains large pressures (approximately 350 mm Hg of burst pressure in a sealed porcine aorta), makes tough (interfacial toughness of 150-300 J m-2) and strong (shear and tensile strengths of, respectively, 40-70 kPa and 30-50 kPa) interfaces with blood-covered tissues, and outperforms commercial haemostatic agents in the sealing of bleeding porcine aortas ex vivo and of bleeding heart and liver tissues in live rats and pigs. The paste may aid the treatment of severe bleeding, even in individuals with coagulopathies.
Collapse
Affiliation(s)
- Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Correspondence and requests for materials should be addressed to H.Y. (), C.S.N. (), and X.Z. ()
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffany L. Sarrafian
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Xinyu Mao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia E. Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Ellen T. Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | - Christoph S. Nabzdyk
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA,Correspondence and requests for materials should be addressed to H.Y. (), C.S.N. (), and X.Z. ()
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Correspondence and requests for materials should be addressed to H.Y. (), C.S.N. (), and X.Z. ()
| |
Collapse
|
27
|
Schultzhaus JN, Hervey WJ, Taitt CR, So CR, Leary DH, Wahl KJ, Spillmann CM. Comparative analysis of stalked and acorn barnacle adhesive proteomes. Open Biol 2021; 11:210142. [PMID: 34404232 PMCID: PMC8371367 DOI: 10.1098/rsob.210142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barnacles interest the scientific community for multiple reasons: their unique evolutionary trajectory, vast diversity and economic impact—as a harvested food source and also as one of the most prolific macroscopic hard biofouling organisms. A common, yet novel, trait among barnacles is adhesion, which has enabled a sessile adult existence and global colonization of the oceans. Barnacle adhesive is primarily composed of proteins, but knowledge of how the adhesive proteome varies across the tree of life is unknown due to a lack of genomic information. Here, we supplement previous mass spectrometry analyses of barnacle adhesive with recently sequenced genomes to compare the adhesive proteomes of Pollicipes pollicipes (Pedunculata) and Amphibalanus amphitrite (Sessilia). Although both species contain the same broad protein categories, we detail differences that exist between these species. The barnacle-unique cement proteins show the greatest difference between species, although these differences are diminished when amino acid composition and glycosylation potential are considered. By performing an in-depth comparison of the adhesive proteomes of these distantly related barnacle species, we show their similarities and provide a roadmap for future studies examining sequence-specific differences to identify the proteins responsible for functional differences across the barnacle tree of life.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - William Judson Hervey
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Chris R Taitt
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Chris R So
- Chemistry Division, Naval Research Laboratory, Washington, DC, USA
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, DC, USA
| | - Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
28
|
Li X, Li S, Huang X, Chen Y, Cheng J, Zhan A. Protein-mediated bioadhesion in marine organisms: A review. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105409. [PMID: 34271483 DOI: 10.1016/j.marenvres.2021.105409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Protein-mediated bioadhesion is one of the crucial physiological processes in marine organisms, by which they can firmly adhere to underwater substrates. Most marine adhesive organisms are biofoulers, causing negative effects on marine ecosystems and huge economic losses to aquaculture and maritime industries. Furthermore, adhesive proteins in these organisms are promising bionic candidates for high-performance artificial materials with great application value. In-depth understanding of the bioadhesion in marine ecosystems is of dual significance for resolving biofouling issue and developing marine bionic products. Here, we review the research progress of protein-mediated bioadhesion in marine organisms. The adhesion processes such as protein biosynthesis and secretion are similar among organisms, but the detailed features such as compositions, structures, and molecular functions of adhesive proteins are distinct. Hydroxylation, glycosylation, and phosphorylation are important post-translational modifications during the processes of adhesion. The contents of some amino acids such as glycine, tyrosine and cysteine involved in underwater adhesion are significantly higher, which is a sequence feature of barnacle cement and mussel foot proteins. The amyloid structures and conserved domains/motifs such as EGF and vWFA distributed in adhesive proteins are involved in the underwater adhesion. In addition, the oxidative cross-linking also plays an important role in marine bioadhesion. Overall, the unique and common features identified for the protein-mediated bioadhesion in diverse marine organisms here provide background information and essential reference for characterizing marine adhesive proteins and associated functional domains, formulating antifouling strategies, and developing novel biomimetic adhesives.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
29
|
Chen AB, Shao Q, Hall CK. Molecular simulation study of 3,4-dihydroxyphenylalanine in the context of underwater adhesive design. J Chem Phys 2021; 154:144702. [PMID: 33858170 DOI: 10.1063/5.0044173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Adhesives that can stick to multiple surface types in underwater and high moisture conditions are critical for various applications such as marine coatings, sealants, and medical devices. The analysis of natural underwater adhesives shows that L-3,4-dihydroxyphenylalanine (DOPA) and functional amyloid nanostructures are key components that contribute to the adhesive powers of these natural glues. The combination of DOPA and amyloid-forming peptides into DOPA-amyloid(-forming peptide) conjugates provides a new approach to design generic underwater adhesives. However, it remains unclear how the DOPA monomers may interact with amyloid-forming peptides and how these interactions may influence the adhesive ability of the conjugates. In this paper, we investigate the behavior of DOPA monomers, (glycine-DOPA)3 chains, and a KLVFFAE and DOPA-glycine chain conjugate in aqueous environments using molecular simulations. The DOPA monomers do not aggregate significantly at concentrations lower than 1.0M. Simulations of (glycine-DOPA)3 chains in water were done to examine the intra-molecular interactions of the chain, wherein we found that there were unlikely to be interactions detrimental to the adhesion process. After combining the alternating DOPA-glycine chain with the amyloid-forming peptide KLVFFAE into a single chain conjugate, we then simulated the conjugate in water and saw the possibility of both intra-chain folding and no chain folding in the conjugate.
Collapse
Affiliation(s)
- Amelia B Chen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
30
|
Design of RGDS Peptide-Immobilized Self-Assembling β-Strand Peptide from Barnacle Protein. Int J Mol Sci 2021; 22:ijms22031240. [PMID: 33513895 PMCID: PMC7866236 DOI: 10.3390/ijms22031240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
We designed three types of RGD-containing barnacle adhesive proteins using self-assembling peptides. In the present study, three types of RGD-containing peptides were synthesized by solid-phase peptide synthesis, and the secondary structures of these peptides were analyzed by CD and FT-IR spectroscopy. The mechanical properties of peptide hydrogels were characterized by a rheometer. We discuss the correlation between the peptide conformation, and cell attachment and cell spreading activity from the viewpoint of developing effective tissue engineering scaffolds. We created a peptide-coated cell culture substrate by coating peptides on a polystyrene plate. They significantly facilitated cell adhesion and spreading compared to a non-coated substrate. When the RGDS sequence was modified at N- or C-terminal of R-Y, it was found that the self-assembling ability was dependent on the strongly affects hydrogel formation and cell adhesion caused by its secondary structure.
Collapse
|
31
|
Li XC, Hao DZ, Hao WJ, Guo XL, Jiang L. Bioinspired Hydrogel-Polymer Hybrids with a Tough and Antifatigue Interface via One-Step Polymerization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51036-51043. [PMID: 33112597 DOI: 10.1021/acsami.0c14728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel hybrids are one of the key factors in life activities and biomimetic science; however, their development and utilization are critically impeded by their inadequate adhesive strength and intricate process. In nature, barnacles can stick to a variety of solid surfaces firmly (adhesive strength above 300 kPa) using a hydrophobic interface, which inspires us to firmly combine hydrogels and polymers through introducing an adhesive layer. By spreading a hydrophobic liquid membrane directly, tough combination of a hydrogel and a polymer substrate could be achieved after one-step polymerization. The fracture energy of the hydrogel attached to the surface of polyvinyl chloride was up to 1200 J m-2 and the tensile strength reached 1.21 MPa. Furthermore, the adhesion samples with this method exhibit an antifatigue performance, having withstood large bends and twists. It should be pointed out that this approach can also be applied to a variety of complicated surfaces. This work may expand the application range of hydrogels and provides an inspiration for hydrogel adhesion.
Collapse
Affiliation(s)
- Xing-Chao Li
- Hainan Tropical Island Resources Ministry of Education Key Laboratory of Advanced Materials, Hainan University, Haikou 570228, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - De-Zhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wan-Jun Hao
- Hainan Tropical Island Resources Ministry of Education Key Laboratory of Advanced Materials, Hainan University, Haikou 570228, P. R. China
| | - Xing-Lin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
32
|
Waltz GT, Hunsucker KZ, Swain G, Wendt DE. Using encrusting bryozoan adhesion to evaluate the efficacy of fouling-release marine coatings. BIOFOULING 2020; 36:1149-1158. [PMID: 33342296 DOI: 10.1080/08927014.2020.1857742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Biofouling communities are spatiotemporally diverse, underscoring the need to assess fouling-release (FR) coating performance against common biofouling taxa at multiple field sites. Adhesion strength assessments of FR coatings incorporate few taxa into standardized protocols. This study tested the feasibility of incorporating existing ASTM barnacle protocols on tubeworms and encrusting bryozoans (EB). Additionally, trends in adhesion strength among these taxa were compared at two field sites. EB adhesion at both field sites showed consistent results and adhesion strength followed the same trend: tubeworms > barnacles >EB. Testing EB adhesion was feasible and enhanced assessments of FR coatings by increasing the diversity of assessed taxa.
Collapse
Affiliation(s)
- G T Waltz
- Center for Coastal Marine Sciences, Cal Poly, San Luis Obispo, USA
| | - K Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, USA
| | - G Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, USA
| | - D E Wendt
- Center for Coastal Marine Sciences, Cal Poly, San Luis Obispo, USA
| |
Collapse
|
33
|
Marine Biofouling: A European Database for the Marine Renewable Energy Sector. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070495] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biofouling is a major problem shared among all maritime sectors employing submerged structures where it leads to substantially increased costs and lowered operational lifespans if poorly addressed. Insight into the ongoing processes at the relevant marine locations is key to effective management of biofouling. Of specific concern for the marine renewable energy (MRE) sector is the fact that information on biofouling composition and magnitude across geographies is dispersed throughout published papers and consulting reports. To enable rapid access to relevant key biofouling events the present work describes a European biofouling database to support the MRE sector and other maritime industries. The database compiles in one document qualitative and quantitative data for challenging biofouling groups, including non-native species associated with MRE and related marine equipment, in different European Ecoregions. It provides information on the occurrence of fouling species and data on key biofouling parameters, such as biofouling thickness and weight. The database aims to aid the MRE sector and offshore industries in understanding which biofouling communities their devices are more susceptible to at a given site, to facilitate informed decisions. In addition, the biofouling mapping is useful for the development of biosecurity risk management plans as well as academic research.
Collapse
|
34
|
Yan G, Sun J, Wang Z, Qian PY, He L. Insights into the Synthesis, Secretion and Curing of Barnacle Cyprid Adhesive via Transcriptomic and Proteomic Analyses of the Cement Gland. Mar Drugs 2020; 18:E186. [PMID: 32244485 PMCID: PMC7230167 DOI: 10.3390/md18040186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Barnacles represent one of the model organisms used for antifouling research, however, knowledge regarding the molecular mechanisms underlying barnacle cyprid cementation is relatively scarce. Here, RNA-seq was used to obtain the transcriptomes of the cement glands where adhesive is generated and the remaining carcasses of Megabalanus volcano cyprids. Comparative transcriptomic analysis identified 9060 differentially expressed genes, with 4383 upregulated in the cement glands. Four cement proteins, named Mvcp113k, Mvcp130k, Mvcp52k and Mvlcp1-122k, were detected in the cement glands. The salivary secretion pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes, implying that the secretion of cyprid adhesive might be analogous to that of saliva. Lysyl oxidase had a higher expression level in the cement glands and was speculated to function in the curing of cyprid adhesive. Furthermore, the KEGG enrichment analysis of the 352 proteins identified in the cement gland proteome partially confirmed the comparative transcriptomic results. These results present insights into the molecular mechanisms underlying the synthesis, secretion and curing of barnacle cyprid adhesive and provide potential molecular targets for the development of environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Zishuai Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China;
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China; (J.S.); (P.-Y.Q.)
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
| |
Collapse
|
35
|
Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, Zhang H. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906360. [PMID: 31805206 DOI: 10.1002/adma.201906360] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Protein-based structural biomaterials are of great interest for various applications because the sequence flexibility within the proteins may result in their improved mechanical and structural integrity and tunability. As the two representative examples, protein-based adhesives and fibers have attracted tremendous attention. The typical protein adhesives, which are secreted by mussels, sandcastle worms, barnacles, and caddisfly larvae, exhibit robust underwater adhesion performance. In order to mimic the adhesion performance of these marine organisms, two main biological adhesives are presented, including genetically engineered protein-based adhesives and biomimetic chemically synthetized adhesives. Moreover, various protein-based fibers inspired by spider and silkworm proteins, collagen, elastin, and resilin are studied extensively. The achievements in synthesis and fabrication of structural biomaterials by DNA recombinant technology and chemical regeneration certainly will accelerate the explorations and applications of protein-based adhesives and fibers in wound healing, tissue regeneration, drug delivery, biosensors, and other high-tech applications. However, the mechanical properties of the biological structural materials still do not match those of natural systems. More efforts need to be devoted to the study of the interplay of the protein structure, cohesion and adhesion effects, fiber processing, and mechanical performance.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Juanjuan Su
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
36
|
Chitin is a functional component of the larval adhesive of barnacles. Commun Biol 2020; 3:31. [PMID: 31953492 PMCID: PMC6969031 DOI: 10.1038/s42003-020-0751-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Barnacles are the only sessile crustaceans, and their larva, the cyprid, is supremely adapted for attachment to surfaces. Barnacles have a universal requirement for strong adhesion at the point of larval attachment. Selective pressure on the cyprid adhesive has been intense and led to evolution of a tenacious and versatile natural glue. Here we provide evidence that carbohydrate polymers in the form of chitin provide stability to the cyprid adhesive of Balanus amphitrite. Chitin was identified surrounding lipid-rich vesicles in the cyprid cement glands. The functional role of chitin was demonstrated via removal of freshly attached cyprids from surfaces using a chitinase. Proteomic analysis identified a single cement gland-specific protein via its association with chitin and localized this protein to the same vesicles. The role of chitin in cyprid adhesion raises intriguing questions about the evolution of barnacle adhesion, as well as providing a new target for antifouling technologies. Nick Aldred et al. show that chitin provides stability in the cyprid adhesive of the barnacle Balanus amphitrite. They show that a single cement gland-specific protein associates with chitin, and that freshly attached cyprids can be removed from surfaces using chitinase.
Collapse
|
37
|
Bilotto P, Labate C, De Santo MP, Deepankumar K, Miserez A, Zappone B. Adhesive Properties of Adsorbed Layers of Two Recombinant Mussel Foot Proteins with Different Levels of DOPA and Tyrosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15481-15490. [PMID: 31465231 DOI: 10.1021/acs.langmuir.9b01730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using a surface forces apparatus and an atomic force microscope, we characterized the adhesive properties of adsorbed layers of two recombinant variants of Perna viridis foot protein 5 (PVFP-5), the main surface-binding protein in the adhesive plaque of the Asian green mussel. In one variant, all tyrosine residues were modified into 3,4-dihydroxy-l-phenylalanine (DOPA) during expression using a residue-specific incorporation strategy. DOPA is a key molecular moiety underlying underwater mussel adhesion. In the other variant, all tyrosine residues were preserved. The layer was adsorbed on a mica substrate and pressed against an uncoated surface. While DOPA produced a stronger adhesion than tyrosine in contact with the nanoscopic Si3N4 probe of the atomic force microscope, the two variants produced comparable adhesion on the curved macroscopic mica surfaces of the surface forces apparatus. These findings show that the presence of DOPA is not a sufficient condition to generate strong underwater adhesion. Surface chemistry and contact geometry affect the strength and abundance of protein-surface bonds created during adsorption and surface contact. Importantly, the adsorbed protein layer has a random and dynamic polymer-network structure that should be optimized to transmit the tensile stress generated during surface separation to DOPA surface bonds rather than other weaker bonds.
Collapse
Affiliation(s)
- Pierluigi Bilotto
- Dipartimento di Fisica , Università della Calabria , Rende , Italy
- Institute of Applied Physics , Vienna University of Technology , Vienna , Austria
| | - Cristina Labate
- Dipartimento di Fisica , Università della Calabria , Rende , Italy
| | - Maria P De Santo
- Dipartimento di Fisica , Università della Calabria , Rende , Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR - Nanotec) , c/o Università della Calabria , Ponte P. Bucci, 33/B , 87036 Rende ( CS ), Italy
| | - Kanagavel Deepankumar
- Biological and Biomimetic Material Laboratory and Center for Biomimetic Sensor Science, School of Materials Science and Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 637553
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory and Center for Biomimetic Sensor Science, School of Materials Science and Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 637553
- School of Biological Sciences , Nanyang Technological University (NTU) , 60 Nanyang Drive , Singapore 637551
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR - Nanotec) , c/o Università della Calabria , Ponte P. Bucci, 33/B , 87036 Rende ( CS ), Italy
| |
Collapse
|
38
|
Almeida M, Reis RL, Silva TH. Marine invertebrates are a source of bioadhesives with biomimetic interest. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110467. [PMID: 31924038 DOI: 10.1016/j.msec.2019.110467] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Protein-based bioadhesives are found in diverse marine invertebrates that developed attachment devices to adhere to various substrates. These adhesives are of interest to materials science to create bioinspired-adhesives that can perform in water or wet conditions and can be applied in a broad variety of biotechnological and industrial fields. Due to the high variety of invertebrates that inhabit the marine environment, an enormous diversity of structures and principles used in biological adhesives remains unexplored and a very limited number of model systems have inspired novel biomimetic adhesives, the most notable being the mussel byssus adhesive. In this review we give an overview of other marine invertebrates studied for their bioadhesive properties in view of their interest for the development of new biomimetic adhesives for application in the biomedical field but also for antifouling coatings. The molecular features are described, highlighting relevant structures, and examples of biomimetic materials are discussed and explored, opening an avenue for a new set of medical products.
Collapse
Affiliation(s)
- Mariana Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
39
|
Aldred N. Transdisciplinary approaches to the study of adhesion and adhesives in biological systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190191. [PMID: 31495317 DOI: 10.1098/rstb.2019.0191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
40
|
Pjeta R, Wunderer J, Bertemes P, Hofer T, Salvenmoser W, Lengerer B, Coassin S, Erhart G, Beisel C, Sobral D, Kremser L, Lindner H, Curini-Galletti M, Stelzer CP, Hess MW, Ladurner P. Temporary adhesion of the proseriate flatworm Minona ileanae. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190194. [PMID: 31495318 PMCID: PMC6745481 DOI: 10.1098/rstb.2019.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
Flatworms can very rapidly attach to and detach from many substrates. In the presented work, we analysed the adhesive system of the marine proseriate flatworm Minona ileanae. We used light-, scanning- and transmission electron microscopy to analyse the morphology of the adhesive organs, which are located at the ventral side of the tail-plate. We performed transcriptome sequencing and differential RNA-seq for the identification of tail-specific transcripts. Using in situ hybridization expression screening, we identified nine transcripts that were expressed in the cells of the adhesive organs. Knock-down of five of these transcripts by RNA interference led to a reduction of the animal's attachment capacity. Adhesive proteins in footprints were confirmed using mass spectrometry and antibody staining. Additionally, lectin labelling of footprints revealed the presence of several sugar moieties. Furthermore, we determined a genome size of about 560 Mb for M. ileanae. We demonstrated the potential of Oxford Nanopore sequencing of genomic DNA as a cost-effective tool for identifying the number of repeats within an adhesive protein and for combining transcripts that were fragments of larger genes. A better understanding of the molecules involved in flatworm bioadhesion can pave the way towards developing innovative glues with reversible adhesive properties. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Teresa Hofer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Birgit Lengerer
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Stefan Coassin
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Claus-Peter Stelzer
- Research Institute for Limnology, University of Innsbruck, 5310 Mondsee, Austria
| | - Michael W. Hess
- Division of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
41
|
Mohanram H, Kumar A, Verma CS, Pervushin K, Miserez A. Three-dimensional structure of Megabalanus rosa Cement Protein 20 revealed by multi-dimensional NMR and molecular dynamics simulations. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190198. [PMID: 31495314 PMCID: PMC6745475 DOI: 10.1098/rstb.2019.0198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 11/12/2022] Open
Abstract
Barnacles employ a protein-based cement to firmly attach to immersed substrates. The cement proteins (CPs) have previously been identified and sequenced. However, the molecular mechanisms of adhesion are not well understood, in particular, because the three-dimensional molecular structure of CPs remained unknown to date. Here, we conducted multi-dimensional nuclear magnetic resonance (NMR) studies and molecular dynamics (MD) simulations of recombinant Megabalanus rosa Cement Protein 20 (rMrCP20). Our NMR results show that rMrCP20 contains three main folded domain regions intervened by two dynamic loops, resulting in multiple protein conformations that exist in equilibrium. We found that 12 out of 32 Cys in the sequence engage in disulfide bonds that stabilize the β-sheet domains owing to their placement at the extremities of β-strands. Another feature unveiled by NMR is the location of basic residues in turn regions that are exposed to the solvent, playing an important role for intermolecular contact with negatively charged surfaces. MD simulations highlight a highly stable and conserved β-motif (β7-β8), which may function as nuclei for amyloid-like nanofibrils previously observed in the cured adhesive cement. To the best of our knowledge, this is the first report describing the tertiary structure of an extracellular biological adhesive protein at the molecular level. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Akshita Kumar
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ali Miserez
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
42
|
Tilbury MA, McCarthy S, Domagalska M, Ederth T, Power AM, Wall JG. The expression and characterization of recombinant cp19k barnacle cement protein from Pollicipes pollicipes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190205. [PMID: 31495308 DOI: 10.1098/rstb.2019.0205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adhesive proteins of barnacle cement have potential as environmentally friendly adhesives owing to their ability to adhere to various substrates in aqueous environments. By understanding the taxonomic breath of barnacles with different lifestyles, we may uncover commonalities in adhesives produced by these specialized organisms. The 19 kDa cement protein (cp19k) of the stalked barnacle Pollicipes pollicipes was expressed in Escherichia coli BL21 to investigate its adhesive properties. Initial expression of hexahistidine-tagged protein (rPpolcp19k-his) yielded low levels of insoluble protein. Co-overproduction of E. coli molecular chaperones GroEL-GroES and trigger factor (TF) increased soluble protein yields, although TF co-purified with the target protein (TF-rPpolcp19k-his). Surface coat analysis revealed high levels of adsorption of the TF-rPpolcp19k-his complex and of purified E. coli TF on both hydrophobic and hydrophilic surfaces, while low levels of adsorption were observed for rPpolcp19k-his. Tag-free rPpolcp19k protein also exhibited low adsorption compared to fibrinogen and Cell-Tak controls on hydrophobic, neutral hydrophilic and charged self-assembled monolayers under surface plasmon resonance assay conditions designed to mimic the barnacle cement gland or seawater. Because rPpolcp19k protein displays low adhesive capability, this protein is suggested to confer the ability to self-assemble into a plaque within the barnacle cement complex. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Maura A Tilbury
- Microbiology, School of Natural Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sean McCarthy
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Magdalena Domagalska
- Microbiology, School of Natural Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas Ederth
- Division of Molecular Physics, IFM, Linköping University, 581 83 Linköping, Sweden
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - J Gerard Wall
- Microbiology, School of Natural Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
43
|
Jose J, Swaminathan N. Response of adhesive polymer interfaces to repeated mechanical loading and the spatial variation of diffusion coefficient and stresses in a deforming polymer film. Phys Chem Chem Phys 2019; 21:11266-11283. [PMID: 31099805 DOI: 10.1039/c9cp00576e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive molecular simulations are conducted to show that polymer crosslinks preserve the strength of solid-polymer (melt) interfaces when they are subjected to repeated mechanical loading. The spatial variation of the diffusion coefficient and local stresses is also investigated along the polymer thickness, during deformation. After each loading cycle, a reduction in entanglement strength is observed at the fracture site. The work of adhesion also decreases over consecutive loading cycles, when fracture is induced at the same site. Reduction in both, the work of adhesion and the entanglement strength, decreases as the crosslink density increases. Diffusion coefficient and stresses vary significantly and in a complex manner along the film thickness during the entire deformation process. These variations were due to peculiar configurations occurring at each instance of separation, which are analyzed and explained in this work. The variation of diffusion coefficient during deformation suggests that other dynamic properties, such as viscosity, also vary spatially during polymer deformation.
Collapse
Affiliation(s)
- Jeeno Jose
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Narasimhan Swaminathan
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
44
|
Antunes J, Leão P, Vasconcelos V. Marine biofilms: diversity of communities and of chemical cues. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:287-305. [PMID: 30246474 DOI: 10.1111/1758-2229.12694] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Surfaces immersed in seawater are rapidly colonized by various microorganisms, resulting in the formation of heterogenic marine biofilms. These communities are known to influence the settlement of algae spores and invertebrate larvae, triggering a succession of fouling events, with significant environmental and economic impacts. This review covers recent research regarding the differences in composition of biofilms isolated from different artificial surface types and the influence of environmental factors on their formation. One particular phenomenon - bacterial quorum sensing (QS) - allows bacteria to coordinate swarming, biofilm formation among other phenomena. Some other marine biofilm chemical cues are believed to modulate the settlement and the succession of macrofouling organisms, and they are also reviewed here. Finally, since the formation of a marine biofilm is considered to be an initial, QS-dependent step in the development of marine fouling events, QS inhibition is discussed on its potential as a tool for antibiofouling control in marine settings.
Collapse
Affiliation(s)
- Jorge Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Pedro Leão
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| |
Collapse
|
45
|
So CR, Yates EA, Estrella LA, Fears KP, Schenck AM, Yip CM, Wahl KJ. Molecular Recognition of Structures Is Key in the Polymerization of Patterned Barnacle Adhesive Sequences. ACS NANO 2019; 13:5172-5183. [PMID: 30986028 DOI: 10.1021/acsnano.8b09194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The permanent adhesive produced by adult barnacles is held together by tightly folded proteins that form amyloid-like materials distinct among marine foulants. In this work, we link stretches of alternating charged and noncharged linear sequences from a family of adhesive proteins to their role in forming fibrillar nanomaterials. Using recombinant proteins and short barnacle cement derived peptides (BCPs), we find a central sequence with charged motifs of the pattern [Gly/Ser/Val/Thr/Ala-X], where X are charged amino acids, to exert specific control over timing, structure, and morphology of fibril formation. While most BCPs remain dormant, the core segment demonstrates rapid polymerization as well as an ability to template other peptides with no propensity for self-assembly. Patterned charge domains assemble dormant peptides through a specific antiparallel β-sheet structure as measured by FTIR. While charged domains favor an antiparallel structure, BCPs without charged domains switch fibril assembly to favor simpler parallel β-sheet aggregates. In addition to activation, charged domains direct nanofibers to grow into discrete microns long fibrils similar to the natural adhesive, while segments without such domains only form short branched aggregates. The assembly of adhesive sequences through recognition of structured templates outlines a strategy used by barnacles to control physical mechanisms of underwater adhesive delivery, activation, and curing based on molecular recognition between proteins.
Collapse
Affiliation(s)
- Christopher R So
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| | - Elizabeth A Yates
- US Naval Academy Faculty Sited in Code 6176 , US Naval Research Laboratory , Washington , DC 20375-5342 , United States
| | - Luis A Estrella
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| | - Kenan P Fears
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| | - Ashley M Schenck
- US Naval Academy Midshipmen Sited in Code 6176 , US Naval Research Laboratory , Washington , DC 20375-5342 , United States
| | - Catherine M Yip
- US Naval Academy Midshipmen Sited in Code 6176 , US Naval Research Laboratory , Washington , DC 20375-5342 , United States
| | - Kathryn J Wahl
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| |
Collapse
|
46
|
Wunderer J, Lengerer B, Pjeta R, Bertemes P, Kremser L, Lindner H, Ederth T, Hess MW, Stock D, Salvenmoser W, Ladurner P. A mechanism for temporary bioadhesion. Proc Natl Acad Sci U S A 2019; 116:4297-4306. [PMID: 30782790 PMCID: PMC6410801 DOI: 10.1073/pnas.1814230116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The flatworm Macrostomum lignano features a duo-gland adhesive system that allows it to repeatedly attach to and release from substrates in seawater within a minute. However, little is known about the molecules involved in this temporary adhesion. In this study, we show that the attachment of M. lignano relies on the secretion of two large adhesive proteins, M. lignano adhesion protein 1 (Mlig-ap1) and Mlig-ap2. We revealed that both proteins are expressed in the adhesive gland cells and that their distribution within the adhesive footprints was spatially restricted. RNA interference knockdown experiments demonstrated the essential function of these two proteins in flatworm adhesion. Negatively charged modified sugars in the surrounding water inhibited flatworm attachment, while positively charged molecules impeded detachment. In addition, we found that M. lignano could not adhere to strongly hydrated surfaces. We propose an attachment-release model where Mlig-ap2 attaches to the substrate and Mlig-ap1 exhibits a cohesive function. A small negatively charged molecule is secreted that interferes with Mlig-ap1, inducing detachment. These findings are of relevance for fundamental adhesion science and efforts to mitigate biofouling. Further, this model of flatworm temporary adhesion may serve as the starting point for the development of synthetic reversible adhesion systems for medicinal and industrial applications.
Collapse
Affiliation(s)
- Julia Wunderer
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center of Molecular Bioscience Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Birgit Lengerer
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center of Molecular Bioscience Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Robert Pjeta
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center of Molecular Bioscience Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Philip Bertemes
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center of Molecular Bioscience Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Thomas Ederth
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Michael W Hess
- Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - David Stock
- Institute for Material Technology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center of Molecular Bioscience Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria;
- Center of Molecular Bioscience Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
47
|
Li S, Huang X, Chen Y, Li X, Zhan A. Identification and characterization of proteins involved in stolon adhesion in the highly invasive fouling ascidian Ciona robusta. Biochem Biophys Res Commun 2019; 510:91-96. [DOI: 10.1016/j.bbrc.2019.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023]
|
48
|
Rocha M, Antas P, Castro LFC, Campos A, Vasconcelos V, Pereira F, Cunha I. Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:38-51. [PMID: 30413912 DOI: 10.1007/s10126-018-9856-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Adhesion in barnacles is still poorly understood. The cement gland secretes an insoluble multi-protein complex, which adheres very strongly to a variety of substrates in the presence of water. This adhesion mechanism is bioinspiring for the engineering of new adhesive materials, but to replicate this adhesive system, the genes coding for the cement constitutive proteins must be identified and elucidated, and their products characterised. Here, the complete sequences of three cement protein (CP) genes (CP-100K, CP-52K, and CP-19K) isolated from the cement gland of the stalked barnacle Pollicipes pollicipes (order Scalpelliformes) were obtained using RACE PCR. The three genes were compared to the 23 other acorn barnacle CP genes so far sequenced (order Sessilia) to determine common and differential patterns and molecular properties, since the adhesives of both orders have visibly different characteristics. A shotgun proteomic analysis was performed on the cement, excreted at the membranous base of specimens, where the products of the three genes sequenced in the gland were identified, validating their function as CPs. A principal component analysis (PCA) was performed, to cluster CPs into groups with similar amino acid composition. This analysis uncovered three CP groups, each characterised by similar residue composition, features in secondary structure, and some biochemical properties, including isoelectric point and residue accessibility to solvents. The similarity among proteins in each defined group was low despite comparable amino acid composition. PCA can identify putative adhesive proteins from NGS transcriptomic data regardless of their low homology. This analysis did not highlight significant differences in residue composition between homologous acorn and stalked barnacle CPs. The characteristics responsible for the structural differences between the cement of stalked and acorn barnacles are described, and the presence of nanostructures, such as repetitive homologous domains and low complexity regions, and repetitive β-sheets are discussed relatively to self-assembly and adhesion.
Collapse
Affiliation(s)
- Miguel Rocha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Paulo Antas
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Filipe Pereira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - Isabel Cunha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
49
|
DeMartini DG, Errico JM, Sjoestroem S, Fenster A, Waite JH. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. J R Soc Interface 2018; 14:rsif.2017.0151. [PMID: 28592662 DOI: 10.1098/rsif.2017.0151] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion.
Collapse
Affiliation(s)
- Daniel G DeMartini
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA
| | - John M Errico
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA
| | - Sebastian Sjoestroem
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA
| | - April Fenster
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA
| | - J Herbert Waite
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA
| |
Collapse
|
50
|
He LS, Zhang G, Wang Y, Yan GY, Qian PY. Toward understanding barnacle cementing by characterization of one cement protein-100kDa in Amphibalanus amphitrite. Biochem Biophys Res Commun 2018; 495:969-975. [DOI: 10.1016/j.bbrc.2017.11.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|