1
|
Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R. Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS One 2024; 19:e0309304. [PMID: 39173020 PMCID: PMC11341049 DOI: 10.1371/journal.pone.0309304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this study was to investigate the prevalence of Vibrionaceae family in retail seafood products available in the Qidong market during the summer of 2023 and to characterize Vibrio parahaemolyticus isolates, given that this bacterium is the leading cause of seafood-associated food poisoning. We successfully isolated a total of 240 Vibrionaceae strains from a pool of 718 seafood samples. The breakdown of the isolates included 146 Photobacterium damselae, 59 V. parahaemolyticus, 18 V. campbellii, and 11 V. alginolyticus. Among these, P. damselae and V. parahaemolyticus were the predominant species, with respective prevalence rates of 20.3% and 8.2%. Interestingly, all 59 isolates of V. parahaemolyticus were identified as non-pathogenic. They demonstrated proficiency in swimming and swarming motility and were capable of forming biofilms across a range of temperatures. In terms of antibiotic resistance, the V. parahaemolyticus isolates showed high resistance to ampicillin, intermediate resistance to cefuroxime and cefazolin, and were sensitive to the other antibiotics evaluated. The findings of this study may offer valuable insights and theoretical support for enhancing seafood safety measures in Qidong City.
Collapse
Affiliation(s)
- Qinglian Huang
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinjun Wang
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xianyi Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Rongrong Chen
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Renfei Lu
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Bai X, Chen X, Zhang D, Liu X, Li J. Targeted phytogenic compounds against Vibrio parahaemolyticus biofilms. Crit Rev Food Sci Nutr 2024:1-12. [PMID: 38189321 DOI: 10.1080/10408398.2023.2299949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As one of main culprit of seafood-associated human illness, Vibrio parahaemolyticus can readily accumulate on biotic or abiotic surfaces to form biofilms in the seafood processing environment. Biofilm formation on various surfaces can provide a protective barrier for viable bacterial cells that are resistant to most traditional bacteriostatic measures. This underscores the necessity and urgency of developing effective alternative strategies to control V. parahaemolyticus biofilms. Plants have always provided an extensive and infinite source of biologically active compounds for "green" antibiofilm agents. This review summarizes recent developments in promising multitargeted phytogenic compounds against V. parahaemolyticus biofilms. This review provides valuable insights into potential research targets that can be pursued further to identify potent natural antibiofilm agents in the food industry.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xiaoli Chen
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Defu Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuefei Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
3
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
4
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Ndraha N, Huang L, Wu VC, Hsiao HI. Vibrio parahaemolyticus in seafood: Recent progress in understanding influential factors at harvest and food safety intervention approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ghannay S, Aouadi K, Kadri A, Snoussi M. In Vitro and In Silico Screening of Anti-Vibrio spp., Antibiofilm, Antioxidant and Anti-Quorum Sensing Activities of Cuminum cyminum L. Volatile Oil. PLANTS 2022; 11:plants11172236. [PMID: 36079620 PMCID: PMC9459890 DOI: 10.3390/plants11172236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Cuminum cyminum L. essential oil (cumin EO) was studied for its chemical composition, antioxidant and vibriocidal activities. Inhibition of biofilm formation and secretion of some virulence properties controlled by the quorum sensing system in Chromobacterium violaceum and Pseudomonas aeruginosa strains were also reported. The obtained results showed that cuminaldehyde (44.2%) was the dominant compound followed by β-pinene (15.1%), γ-terpinene (14.4%), and p-cymene (14.2%). Using the disc diffusion assay, cumin EO (10 mg/disc) was particularly active against all fifteen Vibrio species, and the highest diameter of growth inhibition zone was recorded against Vibrio fluvialis (41.33 ± 1.15 mm), Vibrio parahaemolyticus (39.67 ± 0.58 mm), and Vibrio natrigens (36.67 ± 0.58 mm). At low concentration (MICs value from 0.023–0.046 mg/mL), cumin EO inhibited the growth of all Vibrio strains, and concentrations as low as 1.5 mg/mL were necessary to kill them (MBCs values from 1.5–12 mg/mL). Using four antioxidant assays, cumin EO exhibited a good result as compared to standard molecules (DPPH = 8 ± 0.54 mg/mL; reducing power = 3.5 ± 0.38 mg/mL; β-carotene = 3.8 ± 0.34 mg/mL; chelating power = 8.4 ± 0.14 mg/mL). More interestingly, at 2x MIC value, cumin EO inhibited the formation of biofilm by Vibrio alginolyticus (9.96 ± 1%), V. parahaemolyticus (15.45 ± 0.7%), Vibrio cholerae (14.9 ± 0.4%), and Vibrio vulnificus (18.14 ± 0.3%). In addition, cumin EO and cuminaldehyde inhibited the production of violacein on Lauria Bertani medium (19 mm and 35 mm, respectively). Meanwhile, 50% of violacein inhibition concentration (VIC50%) was about 2.746 mg/mL for cumin EO and 1.676 mg/mL for cuminaldehyde. Moreover, elastase and protease production and flagellar motility in P. aeruginosa were inhibited at low concentrations of cumin EO and cuminaldehyde. The adopted in-silico approach revealed good ADMET properties as well as a high binding score of the main compounds with target proteins (1JIJ, 2UV0, 1HD2, and 3QP1). Overall, the obtained results highlighted the effectiveness of cumin EO to prevent spoilage with Vibrio species and to interfere with the quorum sensing system in Gram-negative bacteria by inhibiting the flagellar motility, formation of biofilm, and the secretion of some virulence enzymes.
Collapse
Affiliation(s)
- Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, Hail University, P.O. Box 2440, Ha’il 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
- Correspondence:
| |
Collapse
|
7
|
Lim AC, Tang SGH, Zin NM, Maisarah AM, Ariffin IA, Ker PJ, Mahlia TMI. Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules 2022; 27:4895. [PMID: 35956846 PMCID: PMC9370046 DOI: 10.3390/molecules27154895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 μg/mL and EC50 of 20.03 μg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 μL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.
Collapse
Affiliation(s)
- Ann Chie Lim
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Noraziah Mohamad Zin
- Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Abdul Mutalib Maisarah
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Indang Ariati Ariffin
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Pin Jern Ker
- Institute of Sustainable Energy, Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Teuku Meurah Indra Mahlia
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
8
|
Hossain MI, Rahaman Mizan MF, Toushik SH, Roy PK, Jahid IK, Park SH, Ha SD. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V. Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential a*ntibiofilm property. Int J Biol Macromol 2022; 211:741-753. [PMID: 35504418 DOI: 10.1016/j.ijbiomac.2022.04.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
The lipase gene from Psychrobacter celer PU3 was cloned into pET-28a(+) expression vector and overexpressed in E. coli BL21 (DE3) pLysS cells. The purified Psychrobacter celer lipase (PCL) was characterized as an alkaline active enzyme and has a molecular mass of around 30 kDa. The PCL was active even at a low temperature and the optimum range was observed between 10 and 40 °C temperatures. MALDI-TOF and phylogenetic analysis ensued that Psychrobacter celer PU3 lipase (PCL) was closely related to P. aureginosa lipase (PAL). MD simulation results suggests that temperature change did not affect overall structure of PCL, but it may alter temperature- dependent PCL structural changes. R1 (129-135 AA) and R2 (187-191 AA) regions could be important for temperature-dependent PCL function as they fluctuate much at 35 °C temperature. PMSF completely inhibited PCL lipase activity and it demonstrates the presence of serine residues in the active site of PCL. PCL is moderately halophilic and most of the tested organic solvents found to be inhibiting the lipase activity except the solvents ethanol and methanol. PCL activity was increased with surfactants (SDS and CTAB) and bleaching agents (hydrogen peroxide). The effect of different metal ions on PCL resulted that only mercuric chloride was found as the enhancer of the lipase activity. Antibiofilm property of PCL was evaluated against pathogenic Vibrio parahaemolyticus isolated from the diseased shrimp and MIC value was 500 U. PCL significantly altered the morphology and biofilm density of V. parahaemolyticus and the same was observed through scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) imaging. RT-PCR analysis revealed that the mRNA expression level of biofilm, colony morphology and major toxin-related (aphA, luxS, opaR, tolC, toxR) genes of V. parahaemolyticus were significantly downregulated with PCL treatment.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Christian Bharathi
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Repally Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Natwar Jha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Ponnuraj Karthe
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
10
|
Ghannay S, Aouadi K, Kadri A, Snoussi M. GC-MS Profiling, Vibriocidal, Antioxidant, Antibiofilm, and Anti-Quorum Sensing Properties of Carum carvi L. Essential Oil: In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2022; 11:1072. [PMID: 35448799 PMCID: PMC9032858 DOI: 10.3390/plants11081072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/12/2023]
Abstract
The main objectives of the present study were to investigate anti-Vibrio spp., antibiofilms, and anti-quorum-sensing (anti-QS) properties of caraway essential oil in relation to their phytochemical composition. The results obtained show the identification of twelve compounds, with carvone (58.2%) and limonene (38.5%) being the main ones. The obtained essential oil (EO) is particularly active against all Vibrio spp. species, with bacteriostatic action against all tested strains (MBC/MIC ratio ≥ 4) and with inhibition zones with high diameters of growth, ranging from 8.66 ± 0.58 mm for V. furnisii ATCC 35016 to 37.33 ± 0.58 mm for V. alginolyticus ATCC 17749. Caraway essential oil (Carvone/limonene chemotype) exhibits antioxidant activities by using four tests (DPPH = 15 ± 0.23 mg/mL; reducing power = 7.8 ± 0.01 mg/mL; β-carotene = 3.9 ± 0.025 mg/mL; chelating power = 6.8 ± 0.05 mg/mL). This oil is particularly able to prevent cell-to-cell communication by inhibiting swarming motility, production of elastase and protease in Pseudomonas aeruginosa PAO1, and violacein production in C. violaceum in a concentration-dependent manner. A molecular docking approach shows good interaction of the identified bioactive molecules in caraway EO, with known target enzymes involved in antioxidant, antibacterial, and anti-QS activities having high binding energy. Overall, the obtained results highlight the possible use of caraway essential oil against pathogenic Vibrio species and to attenuate the secretion of virulence-related factors controlled by QS systems in Gram-negative bacteria. Therefore, this oil can be used by food industries to prevent biofilm formation on abiotic surfaces by Vibrio strains.
Collapse
Affiliation(s)
- Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.G.); (K.A.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.G.); (K.A.)
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, BP1171, Sfax 3000, Tunisia;
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, Hail University, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
11
|
Ashrafudoulla M, Na KW, Hossain MI, Mizan MFR, Nahar S, Toushik SH, Roy PK, Park SH, Ha SD. Molecular and pathogenic characterization of Vibrio parahaemolyticus isolated from seafood. MARINE POLLUTION BULLETIN 2021; 172:112927. [PMID: 34526263 DOI: 10.1016/j.marpolbul.2021.112927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Gastroenteritis infections in humans are mainly associated with consumption of Vibrio parahaemolyticus contaminated shellfish, which causes health and economic loss. Virulence factor production, antibiotic resistance profile, and biofilm-forming capacity of Vibrio parahaemolyticus isolates on food and food contact surfaces at 30 °C were investigated to evaluate the antibiotic sensitivity and pathogenic level. Strains of V. parahaemolyticus were isolated from shellfish (e.g., Crassostrea gigas, Venerupis philippinarum, Mytilus coruscus, Anadara kagoshimensis) in Korea. When examined for 17 virulence factor-encoding genes, 53.3, 73.1, 87.1, 87.9, and 90.9% of the isolates were positive for genes encoding TDH, T6SS, T3SS1, T3SS2, and Type I pilus, respectively. All isolates showed resistance to vancomycin, tetracyclines, penicillin, nalidixic acid, and doxycycline, among 26 antibiotics tested, with most isolates resistant to kanamycin (93.5%), ampicillin (96.8%), clindamycin (96.8%), tobramycin (88.7%), amikacin (83.97%), and minocycline (80.7%). Biofilm formation, cell-cell attachment, and motility were high in most isolates. These findings may assist in monitoring the epidemics of the pathogen. Continuous monitoring could help to decrease V. parahaemolyticus infections and improve seafood safety.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | - Kyung Won Na
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | - Md Iqbal Hossain
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | | | - Shamsun Nahar
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | | | - Pantu Kumar Roy
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR 97331, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Republic of Korea.
| |
Collapse
|
12
|
Roy PK, Mizan MFR, Hossain MI, Han N, Nahar S, Ashrafudoulla M, Toushik SH, Shim WB, Kim YM, Ha SD. Elimination of Vibrio parahaemolyticus biofilms on crab and shrimp surfaces using ultraviolet C irradiation coupled with sodium hypochlorite and slightly acidic electrolyzed water. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Miguel MG, Lourenço JP, Faleiro ML. Superparamagnetic Iron Oxide Nanoparticles and Essential Oils: A New Tool for Biological Applications. Int J Mol Sci 2020; 21:E6633. [PMID: 32927821 PMCID: PMC7555169 DOI: 10.3390/ijms21186633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Essential oils are complex mixtures of volatile compounds with diverse biological properties. Antimicrobial activity has been attributed to the essential oils as well as their capacity to prevent pathogenic microorganisms from forming biofilms. The search of compounds or methodologies with this capacity is of great importance due to the fact that the adherence of these pathogenic microorganisms to surfaces largely contributes to antibiotic resistance. Superparamagnetic iron oxide nanoparticles have been assayed for diverse biomedical applications due to their biocompatibility and low toxicity. Several methods have been developed in order to obtain functionalized magnetite nanoparticles with adequate size, shape, size distribution, surface, and magnetic properties for medical applications. Essential oils have been evaluated as modifiers of the surface magnetite nanoparticles for improving their stabilization but particularly to prevent the growth of microorganisms. This review aims to provide an overview on the current knowledge about the use of superparamagnetic iron oxide nanoparticles and essential oils on the prevention of microbial adherence and consequent biofilm formation with the goal of being applied on the surface of medical devices. Some limitations found in the studies are discussed.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Paulo Lourenço
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Centro de Investigação em Química do Algarve (CIQA), Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- CBMR, Algarve Biomedical Center, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|