1
|
Miranda ML, Salomão KB, Botazzo Delbem AC, Danelon M, Oliveira Barbosa ER, Sampaio C, Campos LA, Brighenti FL. Arginine combination with fluoride and calcium glycerophosphate: effects of concentration and on biofilm fluid. Future Microbiol 2024:1-12. [PMID: 39508342 DOI: 10.1080/17460913.2024.2411921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Aim: To study the influence of varying concentrations of arginine (Arg) combined with fluoride (F) and/or calcium glycerophosphate (CaGP) on biofilms.Materials & methods: Biofilms were analyzed for acidogenicity, microbial viability and Ca, F and inorganic phosphorus (P) concentrations.Results: For total bacteria, the lowest viability was found in F-containing groups, regardless of the arginine concentrations and presence of CaGP. For aciduric bacteria, no significant differences were found among arginine concentrations in the presence of F. For MS, arginine concentrations did not influence MS viability in the presence of fluoride and CaGP only decreased viability at 3.2% Arg concentration. The arginine-treated groups showed the lowest acidogenicity. For ion concentrations in biofilms, CaGP showed the highest values for P; Arg+F for F; and CaGP/Arg+CaGP for Ca.Conclusion: Different concentrations of arginine did not affect the microbial viability or acidogenicity of biofilms. Moreover, 0.8% Arg did not increase ion concentration in biofilm fluid.
Collapse
Affiliation(s)
- Marina Lins Miranda
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Morfologia e Clinica Infantil, Araraquara, SP, 14801-903, Brasil
| | - Karina Borges Salomão
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Morfologia e Clinica Infantil, Araraquara, SP, 14801-903, Brasil
| | - Alberto Carlos Botazzo Delbem
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Odontologia Preventiva e Restauradora, Araçatuba, SP, 16015-050, Brasil
| | - Marcelle Danelon
- Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden, 01307, Germany
| | - Elis Rodrigues Oliveira Barbosa
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Morfologia e Clinica Infantil, Araraquara, SP, 14801-903, Brasil
| | - Caio Sampaio
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Odontologia Preventiva e Restauradora, Araçatuba, SP, 16015-050, Brasil
| | - Lucas Arrais Campos
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
- Dental Sciences Graduate Program, São Paulo State University (UNESP), School of Dentistry, Araraquara, 14801-903,Brazil
- Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33520, Finland
- Department of Ear & Oral Diseases, Tampere University Hospital, Tampere, FI-33520, Finland
| | - Fernanda Lourenção Brighenti
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Morfologia e Clinica Infantil, Araraquara, SP, 14801-903, Brasil
| |
Collapse
|
2
|
Sales LS, de Farias AL, Meneguin AB, Barud HDS, Brighenti FL. Carvacrol incorporation into novel controlled-release mucoadhesive systems for oral polymicrobial biofilm control. BIOFOULING 2024; 40:893-903. [PMID: 39555709 DOI: 10.1080/08927014.2024.2426759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
The aim of this study was to evaluate carvacrol antimicrobial activity in polymicrobial biofilms using a novel controlled-release mucoadhesive systems developed from biopolymers. The natural polymers gellan gum and sodium alginate were used in different concentrations for the development of films, tablets and microparticles containing carvacrol. The systems were characterized as regard their morphological characteristics, carvacrol release and mucoadhesion. Furthermore, the antimicrobial activity of the systems was evaluated on polymicrobial biofilms through biomass quantification and microbial viability assessment. Carvacrol release profile from films, tablets and microparticles was similar; nearly 100% of the carvacrol was released within 15 min. Films showed the best mucoadhesion values. Scanning Electron Microscopy images showed that the films presented a continuous and smooth surface, and the tablets showed a continuous surface with a polymer web appearance. The microparticles were spherical in shape. The films containing carvacrol showed the highest biomass and microbial viability reduction, followed by the tablets. The findings of this study showed that carvacrol incorporated into films and tablets presented antimicrobial activity on polymicrobial biofilm. Controlled-release mucoadhesive systems is a process little explored in dentistry, being the differential of this work, and with great innovative potential for the management of dental diseases.
Collapse
Affiliation(s)
- Luciana Solera Sales
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | | | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Araraquara, Brazil
| | - Fernanda Lourenção Brighenti
- Department of Pediatric Dentistry, Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Araraquara, Araraquara, Brazil
| |
Collapse
|
3
|
Ruchika, Khan N, Dogra SS, Saneja A. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic. Biotechnol Adv 2024; 73:108362. [PMID: 38615985 DOI: 10.1016/j.biotechadv.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Oral thin films (OTFs) are innovative dosage forms that have gained tremendous attention for the delivery of nutraceuticals. They are ultra-thin, flexible sheets that can be easily placed on the tongue, sublingual or buccal mucosa (inner lining of the cheek). These thin films possess several advantages for nutraceutical delivery including ease of administration, rapid disintegration, fast absorption, rapid onset of action, bypass first-pass hepatic metabolism, accurate dosing, enhanced stability, portability, discreetness, dose flexibility and most importantly consumer acceptance. This review highlights the utilization OTFs for nutraceutical delivery, their composition, criteria for excipient selection, methods of development and quality-based design (QbD) approach to achieve quality product. We have also provided recent case studies representing OTFs as promising platform in delivery of nutraceuticals (plant extracts, bioactive molecules, vitamins, minerals and protein/peptides) and probiotics. Finally, we provided advancement in technologies, recent patents, market analysis, challenges and future perspectives associated with this unique dosage form.
Collapse
Affiliation(s)
- Ruchika
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabab Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Sanjivv Dogra
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ankit Saneja
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
De Gaetano F, Margani F, Barbera V, D’Angelo V, Germanò MP, Pistarà V, Ventura CA. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2209. [PMID: 37765179 PMCID: PMC10536596 DOI: 10.3390/pharmaceutics15092209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Morin (MRN) is a natural compound with antiangiogenic, antioxidant, anti-inflammatory, and anticancer activity. However, it shows a very low water solubility (28 μg/mL) that reduces its oral absorption, making bioavailability low and unpredictable. To improve MRN solubility and positively affect its biological activity, particularly its antiangiogenic activity, in this work, we prepared the inclusion complexes of MNR with sulfobutylether-β-cyclodextrin (SBE-β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes obtained by the freeze-drying method were extensively characterized in solution (phase-solubility studies, UV-Vis titration, and NMR spectroscopy) and in the solid state (TGA, DSC, and WAXD analysis). The complexation significantly increased the water solubility by about 100 times for MRN/HP-β-CD and 115 times for MRN/SBE-β-CD. Furthermore, quantitative dissolution of the complexes was observed within 60 min, whilst 1% of the free drug dissolved in the same experimental time. 1H NMR and UV-Vis titration studies demonstrated both CDs well include the benzoyl moiety of the drug. Additionally, SBE-β-CD could interact with the cinnamoyl moiety of MRN too. The complexes are stable in solution, showing a high value of association constant, that is, 3380 M-1 for MRN/HP-β-CD and 2870 M-1 for MRN/SBE-β-CD. In vivo biological studies on chick embryo chorioallantoic membrane (CAM) and zebrafish embryo models demonstrated the high biocompatibility of the inclusion complexes and the effective increase in antiangiogenic activity of complexed MRN with respect to the free drug.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Fatima Margani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Valeria D’Angelo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| |
Collapse
|
5
|
Scaffa PMC, Kendall A, Icimoto MY, Fugolin APP, Logan MG, DeVito-Moraes AG, Lewis SH, Zhang H, Wu H, Pfeifer CS. The potential use of glycosyl-transferase inhibitors for targeted reduction of S. mutans biofilms in dental materials. Sci Rep 2023; 13:11889. [PMID: 37482546 PMCID: PMC10363545 DOI: 10.1038/s41598-023-39125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023] Open
Abstract
Streptococcus mutans is the primary oral caries-forming bacteria, adept at producing "sticky" biofilms via the synthesis of insoluble extracellular polysaccharides (EPS), catalyzed by glucosyltransferases (GTFs). To circumvent the use of broad-spectrum antibiotics to combat these bacteria, this study sought to modify existing EPS-targeting small molecules with the ultimate goal of producing anti-biofilm polymer surfaces specifically targeting S. mutans. To achieve this, a known GTF inhibitor (G43) was modified with methoxy or tetraethyleneglycol substitutions in different positions (nine derivatives, tested at 50-µM) to pinpoint potential sites for future methacrylate functionalization, and then assessed against single-species S. mutans biofilms. As expected, the compounds did not diminish the bacterial viability. In general, the compounds with methoxy substitution were not effective in reducing EPS formation, whereas the tetraethyleneglycol substitution (G43-C3-TEG) led to a decrease in the concentration of insoluble EPS, although the effect is less pronounced than for the parent G43. This aligns with the reduced GTF-C activity observed at different concentrations of G43-C3-TEG, as well as the consequent decrease in EPS formation, and notable structural changes. In summary, this study determined that G43-C3-TEG is non-bactericidal and can selectively reduce the biofilm formation, by decreasing the production of EPS. This molecule will serve to functionalize surfaces of materials to be tested in future research.
Collapse
Affiliation(s)
- Polliana Mendes Candia Scaffa
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Alexander Kendall
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Marcelo Yudi Icimoto
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
- Department of Biophysics, Federal University of Sao Paulo, UNIFESP-EPM, R. Sena Madureira, 1500, Sao Paulo, SP, 04021-001, Brazil
| | - Ana Paula Piovezan Fugolin
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Matthew G Logan
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Andre G DeVito-Moraes
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Steven H Lewis
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Hua Zhang
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Hui Wu
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA
| | - Carmem S Pfeifer
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, OHSU, 2730 S Moody Ave., Portland, OR, 97201, USA.
| |
Collapse
|
6
|
Rudin L, Bornstein MM, Shyp V. Inhibition of biofilm formation and virulence factors of cariogenic oral pathogen Streptococcus mutans by natural flavonoid phloretin. J Oral Microbiol 2023; 15:2230711. [PMID: 37416858 PMCID: PMC10321187 DOI: 10.1080/20002297.2023.2230711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objectives To evaluate the effect and mechanism of action of the flavonoid phloretin on the growth and sucrose-dependent biofilm formation of Streptococcus mutans. Methods Minimum inhibitory concentration, viability, and biofilm susceptibility assays were conducted to assess antimicrobial and antibiofilm effect of phloretin. Biofilm composition and structure were analysed with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Water-soluble (WSG) and water-insoluble glucan (WIG) were determined using anthrone method. Lactic acid measurements and acid tolerance assay were performed to assess acidogenicity and aciduricity. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of virulence genes essential for surface attachment, biofilm formation, and quorum sensing. Results Phloretin inhibited S. mutans growth and viability in a dose-dependent manner. Furthermore, it reduced gtfB and gtfC gene expression, correlating with the reduction of extracellular polysaccharides (EPS)/bacteria and WIG/WSG ratio. Inhibition of comED and luxS gene expression, involved in stress tolerance, was associated with compromised acidogenicity and aciduricity of S. mutans. Conclusions Phloretin exhibits antibacterial properties against S. mutans, modulates acid production and tolerance, and reduces biofilm formation. Clinical significance Phloretin is a promising natural compound with pronounced inhibitory effect on key virulence factors of the cariogenic pathogen, S. mutans.
Collapse
Affiliation(s)
- Lucille Rudin
- Department Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of BaselBaselSwitzerland
- Head of the Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel. Mattenstrasse 40, Basel, Switzerland
| | - Viktoriya Shyp
- Postdoctoral Researcher. Department Research, University Center for Dental Medicine Basel UZB
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel. Mattenstrasse 40, Basel, Switzerland
| |
Collapse
|
7
|
Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms. Pathogens 2022; 11:pathogens11101067. [PMID: 36297124 PMCID: PMC9607486 DOI: 10.3390/pathogens11101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to evaluate the effect of the Cymbopogon citratus essential oil and its association with chlorhexidine on cariogenic microcosm biofilm composition and acidogenicity. Minimum inhibitory and bactericide concentrations from the essential oil and chlorhexidine were determined by broth microdilution assay. Microcosms (polymicrobial) biofilms were produced on glass coverslips, using inoculum from human saliva in McBain culture medium (0.5% sucrose exposure for 6 h/day) for 3 days in 24-well plates. The biofilms were treated twice a day and their composition was evaluated by microorganism quantification. The acidogenicity was evaluated by measuring the pH of the spent culture medium in contact with the biofilm. Overall, the association of C. citratus and chlorhexidine reduced total bacterial counts and aciduric bacteria (maximum reduction of 3.55 log UFC/mL) in microcosm biofilms. This group also presented the lowest acidogenicity even when exposed to sucrose-containing medium. C. citratus essential oil increases the effect of digluconate chlorhexidine on microcosm biofilms. Based on these findings, this study can contribute to the development of new formulations that might allow for the use of mouthwashes for a shorter period, which may reduce undesirable effects and increase patient compliance to the treatment.
Collapse
|