1
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
2
|
Lundberg B, Gruzieva O, Eneroth K, Melén E, Persson Å, Hallberg J, Pershagen G. Air pollution exposure impairs lung function in infants. Acta Paediatr 2022; 111:1788-1794. [PMID: 35582781 PMCID: PMC9543871 DOI: 10.1111/apa.16412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
Aim To assess associations between air pollution exposure and infant lung function. Methods Healthy infants from Stockholm were recruited to two cohorts (n = 99 and n = 78). Infant spirometry included plethysmography and raised volume forced expiratory flows. In pooled analyses, lung function at ~6 months of age was related to time‐weighted average air pollution levels at residential addresses from birth until the lung function test. The pollutants included particulate matter with an aerodynamic diameter < 10 μm (PM10) or <2.5 μm and nitrogen dioxide. Results There were significant inverse relations between air pollution exposure during infancy and forced expiratory volume at 0.5 s (FEV0.5) as well as forced vital capacity (FVC) for all pollutants. For example, the decline was 10.1 ml (95% confidence interval 1.3–18.8) and 10.3 ml (0.5–20.1) in FEV0.5 and FVC, respectively, for an interquartile increment of 5.3 μg/m3 in PM10. Corresponding associations for minute ventilation and functional residual capacity were 43.3 ml/min (−9.75–96.3) and 0.84 ml (−4.14–5.82). Conclusions Air pollution exposure was associated with impaired infant lung function measures related to airway calibre and lung volume, suggesting that comparatively low levels of air pollution negatively affect lung function in early life.
Collapse
Affiliation(s)
- Björn Lundberg
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm Stockholm Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB‐analys Stockholm Sweden
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Åsa Persson
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Jenny Hallberg
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset Stockholm Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm Stockholm Sweden
| |
Collapse
|
3
|
Smyth T, Veazey J, Eliseeva S, Chalupa D, Elder A, Georas SN. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein Tricellulin. Part Fibre Toxicol 2020; 17:52. [PMID: 33059747 PMCID: PMC7560077 DOI: 10.1186/s12989-020-00383-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While exposure to diesel exhaust particles has been linked to aberrant immune responses in allergic diseases such as asthma, little attention has been paid to their effects on the airway epithelial barrier. In this study, we sought to determine the effect of diesel exhaust exposure on airway epithelial barrier function and composition using in vitro and in vivo model systems. METHODS 16HBE14o- human bronchial epithelial cells were grown on collagen coated Transwell inserts and exposed to 5 to 50 μg/cm2 SRM 2975 diesel particulate matter (DEP) suspended in cell culture medium or vehicle controls. Changes in barrier function were assessed by measuring transepithelial electrical resistance (TEER) and permeability to 4 kDa FITC Dextran. Neonatal BALB/c mice were exposed to aerosolized DEP (255 ± 89 μg/m3; 2 h per day for 5 days) and changes in the tight junction protein Tricellulin were assessed 2 weeks post exposure. RESULTS A six-hour incubation of epithelial cells with diesel exhaust particles caused a significant concentration-dependent reduction in epithelial barrier integrity as measured by decreased TEER and increased permeability to 4 kDa FITC-Dextran. This reduction in epithelial barrier integrity corresponded to a significant reduction in expression of the tight junction protein Tricellulin. siRNA mediated knockdown of Tricellulin recapitulated changes in barrier function caused by DEP exposure. Neonatal exposure to aerosolized DEP caused a significant reduction in lung Tricellulin 2 weeks post exposure at both the protein and mRNA level. CONCLUSION Short term exposure to DEP causes a significant reduction in epithelial barrier integrity through a reduction in the tight junction protein Tricellulin. Neonatal exposure to aerosolized DEP caused a significant and sustained reduction in Tricellulin protein and mRNA in the lung, suggesting that early life exposure to inhaled DEP may cause lasting changes in airway epithelial barrier function.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Janelle Veazey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Sophia Eliseeva
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Box 692, 601 Elmwood Ave, University of Rochester, Rochester, NY, 14627, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Box 692, 601 Elmwood Ave, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
4
|
Himly M, Geppert M, Hofer S, Hofstätter N, Horejs-Höck J, Duschl A. When Would Immunologists Consider a Nanomaterial to be Safe? Recommendations for Planning Studies on Nanosafety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907483. [PMID: 32239645 DOI: 10.1002/smll.201907483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The immune system is professional in recognizing and responding to non-self, including nanomaterials. Immune responses by professional and nonprofessional immune cells are thus nearly inevitable upon exposure of cells and organisms to such materials. The state of research into taking the immune system into account in nanosafety studies is reviewed and three aspects in which further improvements are desirable are identified: 1) Due to technical limitations, more stringent testing for endotoxin contamination should be made. 2) Since under overdose conditions immunity shows unphysiological responses, all doses used should be justified by being equivalent to tissue-delivered doses. 3) When markers of acute inflammation or cell stress are observed, functional assays are necessary to distinguish between homeostatic fluctuation and genuine defensive or tolerogenic responses. Since immune activation can also indicate that the immune system considers a stimulus to be harmless and induces tolerance, activation markers by themselves do not necessarily imply a danger to the body. Guidelines such as these are necessary to approach the point where specific nanomaterials are classified as safe based on reliable testing strategies.
Collapse
Affiliation(s)
- Martin Himly
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Mark Geppert
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Sabine Hofer
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Norbert Hofstätter
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Jutta Horejs-Höck
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Albert Duschl
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| |
Collapse
|
5
|
Pinkerton KE, Chen CY, Mack SM, Upadhyay P, Wu CW, Yuan W. Cardiopulmonary Health Effects of Airborne Particulate Matter: Correlating Animal Toxicology to Human Epidemiology. Toxicol Pathol 2019; 47:954-961. [PMID: 31645209 DOI: 10.1177/0192623319879091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of particulate matter (PM) on cardiopulmonary health have been studied extensively over the past three decades. Particulate matter is the primary criteria air pollutant most commonly associated with adverse health effects on the cardiovascular and respiratory systems. The mechanisms by which PM exerts its effects are thought to be due to a variety of factors which may include, but are not limited to, concentration, duration of exposure, and age of exposed persons. Adverse effects of PM are strongly driven by their physicochemical properties, sites of deposition, and interactions with cells of the respiratory and cardiovascular systems. The direct translocation of particles, as well as neural and local inflammatory events, are primary drivers for the observed cardiopulmonary health effects. In this review, toxicological studies in animals, and clinical and epidemiological studies in humans are examined to demonstrate the importance of using all three approaches to better define potential mechanisms driving health outcomes upon exposure to airborne PM of diverse physicochemical compositions.
Collapse
Affiliation(s)
- Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, USA
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, USA
| | - Savannah M Mack
- Center for Health and the Environment, University of California, Davis, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, USA
| | - Wanjun Yuan
- Center for Health and the Environment, University of California, Davis, USA.,College of Environmental & Resource Sciences, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Johnson DR. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:67-79. [PMID: 27513371 DOI: 10.1016/j.jhazmat.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INPMWI), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INPMWI due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INPMWI emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INPMWI pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INPMWI mixtures in ambient particulate matter.
Collapse
Affiliation(s)
- David R Johnson
- GHD, 1755 Wittington Place, Suite 500, Dallas, TX 75234, USA.
| |
Collapse
|
7
|
Guasco TL, Cuadra-Rodriguez LA, Pedler BE, Ault AP, Collins DB, Zhao D, Kim MJ, Ruppel MJ, Wilson SC, Pomeroy RS, Grassian VH, Azam F, Bertram TH, Prather KA. Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1324-1333. [PMID: 24328130 DOI: 10.1021/es403203d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the ocean, breaking waves generate air bubbles which burst at the surface and eject sea spray aerosol (SSA), consisting of sea salt, biogenic organic species, and primary biological aerosol particles (PBAP). Our overall understanding of atmospheric biological particles of marine origin remains poor. Here, we perform a control experiment, using an aerosol time-of-flight mass spectrometer to measure the mass spectral signatures of individual particles generated by bubbling a salt solution before and after addition of heterotrophic marine bacteria. Upon addition of bacteria, an immediate increase occurs in the fraction of individual particle mass spectra containing magnesium, organic nitrogen, and phosphate marker ions. These biological signatures are consistent with 21% of the supermicrometer SSA particles generated in a previous study using breaking waves in an ocean-atmosphere wave channel. Interestingly, the wave flume mass spectral signatures also contain metal ions including silver, iron, and chromium. The nascent SSA bioparticles produced in the wave channel are hypothesized to be as follows: (1) whole or fragmented bacterial cells which bioaccumulated metals and/or (2) bacteria-derived colloids or biofilms which adhered to the metals. This study highlights the potential for transition metals, in combination with specific biomarkers, to serve as unique indicators for the presence of marine PBAP, especially in metal-impacted coastal regions.
Collapse
Affiliation(s)
- Timothy L Guasco
- Department of Chemistry and Biochemistry, University of California , San Diego, La Jolla, California, 92093
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M, Cassee F, Sandstrom T, Schwarze PE, Herseth JI. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012; 9:45. [PMID: 23176191 PMCID: PMC3544657 DOI: 10.1186/1743-8977-9-45] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Collapse
Affiliation(s)
| | | | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, University of Gothenburg, Gothenburg, Sweden
| | - Artur Braun
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Roger Westerholm
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Christoffer Bergvall
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Johan Boman
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Hans Jørgen Dahlman
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria Sehlstedt
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Flemming Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Thomas Sandstrom
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Per E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Inge Herseth
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| |
Collapse
|
9
|
Abstract
BACKGROUND Exposure to particulate matter (PM) has been associated with deficits in lung function growth among children in Western countries. However, few studies have explored this association in developing countries, where PM levels are often substantially higher. METHODS Children (n = 3273) 6-12 years of age were recruited from 8 schools in 4 Chinese cities. The lung function parameters of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured using computerized spirometers twice a year for up to 3 years (1993-1996). Dichotomous samplers placed in each schoolyard were used to measure PM2.5 and PM10 (PM with diameter ≤ 2.5 μm and ≤ 10 μm, respectively). Multivariable generalized estimating equations were used to examine the association between the quarterly average PM levels and lung function growth during the period of follow-up. RESULTS Annual average PM2.5 and PM10 levels in the 4 cities ranged from 57 to 158 μg/m and 95 to 268 μg/m, respectively. In multivariable models, an increase of 10 μg/m of PM2.5 was associated with decreases of 2.7 mL FEV1 (95% confidence interval = -3.5 to -2.0), 3.5 mL FVC (-4.3 to -2.7), 1.4 mL/year FEV1 growth (-1.8 to -0.9), and 1.5 mL/year FVC growth (-2.0 to -1.0). Similar results were seen with PM10 exposure. CONCLUSIONS Exposure to ambient particulate matter was associated with decreased growth in lung function among Chinese children.
Collapse
|
10
|
Schüepp K, Sly PD. The developing respiratory tract and its specific needs in regard to ultrafine particulate matter exposure. Paediatr Respir Rev 2012; 13:95-9. [PMID: 22475255 DOI: 10.1016/j.prrv.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoparticles have unique physico-chemical properties compared to larger particles that have the potential to provide promising new possibilities for biomedical applications. Considerable research is currently exploring these potentials of nanotechnology. In contrast, airborne particles as components of indoor air, ambient air pollution associated with traffic-related pollution, industry, power plants, and other combustion sources have the potential to harm children's health. However, a similar research effort into the potential health effects of exposure to nanoparticles is lacking. Children differ markedly from adults in their developmental biology rendering young children the most vulnerable group with regard to potentially harmful effects induced by particulate exposure. This review discusses the differences between children and adults in regard to nanoparticle exposure highlighting the uniqueness and vulnerability of children.
Collapse
Affiliation(s)
- Karen Schüepp
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|
11
|
Borm PJA, Tran L, Donaldson K. The carcinogenic action of crystalline silica: A review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism. Crit Rev Toxicol 2011; 41:756-70. [DOI: 10.3109/10408444.2011.576008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
McGrath-Morrow S. The Transition from Bronchopulmonary Dysplasia to Childhood Chronic Lung Disease. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2011; 24:27-32. [PMID: 35927857 DOI: 10.1089/ped.2011.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The impact of a preterm birth on lung function in later life is not always predictable and the variability of lung phenotype in these children can be striking even among children of the same gestational age. Although many children with a history of bronchopulmonary dysplasia (BPD) improve with age, others continue to manifest significant pulmonary abnormalities. Several different lung phenotypes have been described in older children with a history of BPD. These descriptions have been based in part on chronic respiratory symptoms, pulmonary function abnormalities, and response to respiratory illnesses. These lung phenotypes include large and/or small airway dysfunction, impaired alveolar growth characterized by decreased pulmonary reserve, and pulmonary hypertension found primarily in children with severe chronic lung disease. Children with a history of BPD can manifest 1 or more of these lung phenotypes with varying degrees of severity. Currently, treatment of respiratory symptoms is primarily supportive and symptom based. Although many children improve with age, others continue to have chronic respiratory symptoms into adult life. The development of standardized guidelines for the care of children after discharge from the neonatal intensive care unit may help direct appropriate therapy, limit lung injury, and maximize lung growth potential in this vulnerable group of children.
Collapse
Affiliation(s)
- Sharon McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Van Winkle LS, Chan JKW, Anderson DS, Kumfer BM, Kennedy IM, Wexler AS, Wallis C, Abid AD, Sutherland KM, Fanucchi MV. Age specific responses to acute inhalation of diffusion flame soot particles: cellular injury and the airway antioxidant response. Inhal Toxicol 2010; 22 Suppl 2:70-83. [PMID: 20961279 DOI: 10.3109/08958378.2010.513403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates, and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-h exposure of laboratory generated fine diffusion flame particles (DFP; 170 µg/m(3)), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 h after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased lactate dehydrogenase activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure whereas only 6 genes were altered in the airways of neonates. Glutamate cysteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616-8732, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rule AM, Geyh AS, Ramos-Bonilla JP, Mihalic JN, Margulies JD, Polyak LM, Kesavan J, Breysse PN. Design and characterization of a sequential cyclone system for the collection of bulk particulate matter. ACTA ACUST UNITED AC 2010; 12:1807-14. [PMID: 20676427 DOI: 10.1039/c0em00034e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe the design, development and characterization of a high-volume sequential cyclone system for the collection of size-segregated PM in dry bulk form from the ambient environment in sufficient quantity for physical, chemical and toxicological characterization. The first stage of the system consists of a commercially available high volume PM(10) inlet. The second stage cyclone was designed by us to collect inhalable coarse particles (<10 µm and >2.5 µm). When tested individually with a challenge aerosol, a D(50) cut-size of this stage was found to be 2.3 µm at a flow rate of 1 m(3) min(-1). The third stage, a commercially available cyclone designed for surface dust sampling, had a D(50) cut-size of 0.3 µm when tested at the same flow rate. The purpose of the third stage is to collect the fine particle portion of PM(2.5) or accumulation mode (PM <2.5 µm and >0.1 µm). Thus, the sequential cyclone system will collect bulk samples of both the inhalable coarse particles and the fine particle portion of PM(2.5). The operation and maintenance of the new system are straightforward and allow for reliable collection of dry bulk ambient PM at relatively low cost.
Collapse
Affiliation(s)
- Ana M Rule
- Dept. of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee D, Wallis C, Wexler AS, Schelegle ES, Van Winkle LS, Plopper CG, Fanucchi MV, Kumfer B, Kennedy IM, Chan JKW. Small particles disrupt postnatal airway development. J Appl Physiol (1985) 2010; 109:1115-24. [PMID: 20634362 DOI: 10.1152/japplphysiol.00295.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation.
Collapse
Affiliation(s)
- DongYoub Lee
- Department of Mechanical and Aerospace Engineering, Univ. of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhong CY, Zhou YM, Smith KR, Kennedy IM, Chen CY, Aust AE, Pinkerton KE. Oxidative injury in the lungs of neonatal rats following short-term exposure to ultrafine iron and soot particles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:837-847. [PMID: 20391124 DOI: 10.1080/15287391003689366] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Greater risk of adverse effects from particulate matter (PM) has been noted in susceptible subpopulations, such as children. However, the physicochemical components responsible for these biological effects are not understood. As critical constituents of PM, transition metals were postulated to be involved in a number of pathological processes of the respiratory system through free radical-medicated damage. The purpose of this study was to examine whether oxidative injury in the lungs of neonatal rats could be induced by repeated short-term exposure to iron (Fe) and soot particles. Sprague Dawley rats 10 d of age were exposed by inhalation to two different concentrations of ultrafine iron particles (30 or 100 microg/m(3)) in combination with soot particles adjusted to maintain a total particle concentration of 250 microg/m(3). Exposure at 10 d and again at 23 d of age was for 6 h/d for 3 d. Oxidative stress was observed at both Fe concentrations in the form of significant elevations in glutathione disulfide (GSSG) and GSSG/glutathione (GSH) ratio and a reduction in ferric/reducing antioxidant power in bronchoalveolar lavage. A significant decrease in cell viability associated with significant increases in lactate dehydrogenase (LDH) activity, interleukin-1-beta (IL-1beta), and ferritin expression was noted following exposure to particles containing the highest Fe concentration. Iron from these particles was shown to be bioavailable in an in vitro assay using the physiologically relevant chelator, citrate. Data indicate that combined Fe and soot particle exposure induces oxidative injury, cytotoxicity and pro-inflammatory responses in the lungs of neonatal rats.
Collapse
Affiliation(s)
- Cai-Yun Zhong
- Center for Health and the Environment, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ault AP, Moore MJ, Furutani H, Prather KA. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3500-3506. [PMID: 19544846 DOI: 10.1021/es8018918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.
Collapse
Affiliation(s)
- Andrew P Ault
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
18
|
Donaldson K, Borm PJA, Oberdorster G, Pinkerton KE, Stone V, Tran CL. Concordance BetweenInVitroandInVivoDosimetry in the Proinflammatory Effects of Low-Toxicity, Low-Solubility Particles: The Key Role of the Proximal Alveolar Region. Inhal Toxicol 2008; 20:53-62. [DOI: 10.1080/08958370701758742] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Kocbach A, Herseth JI, Låg M, Refsnes M, Schwarze PE. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures. Toxicol Appl Pharmacol 2008; 232:317-26. [DOI: 10.1016/j.taap.2008.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/27/2008] [Accepted: 07/04/2008] [Indexed: 12/15/2022]
|
20
|
Massaro D, Massaro GD. Developmental alveologenesis: longer, differential regulation and perhaps more danger. Am J Physiol Lung Cell Mol Physiol 2007; 293:L568-9. [PMID: 17631611 DOI: 10.1152/ajplung.00258.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Kajekar R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther 2007; 114:129-45. [PMID: 17408750 DOI: 10.1016/j.pharmthera.2007.01.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 01/12/2007] [Indexed: 11/26/2022]
Abstract
The developing lung is highly susceptible to damage from exposure to environmental toxicants particularly due to the protracted maturation of the respiratory system, extending from the embryonic phase of development in utero through to adolescence. The functional organization of the lungs requires a coordinated ontogeny of critical developmental processes that include branching morphogenesis, cellular differentiation and proliferation, alveolarization, and maturation of the pulmonary immune, vasculature, and neural systems. Therefore, exposure to environmental pollutants during crucial periods of prenatal and/or postnatal development may determine the course of lung morphogenesis and maturation. Depending on the timing of exposure and pathobiological response of the affected tissue, exposure to environmental pollutants can potentially result in long-term alterations that affect the structure and function of the respiratory system. Besides an immature respiratory system at birth, children possess unique differences in their physiology and behavioral characteristics compared to adults that are believed to augment the vulnerability of their developing lungs to perturbations by environmental toxins. Furthermore, an interaction between genetic predisposition and increased opportunity for exposure to chemical and infectious disease increase the hazards and risks for infants and children. In this article, the evidence for perturbations of lung developmental processes by key ambient pollutants (environmental tobacco smoke [ETS], ozone, and particulate matter [PM]) are discussed in terms of biological factors that are intrinsic to infants and children and that influence exposure-related lung development and respiratory outcomes.
Collapse
Affiliation(s)
- Radhika Kajekar
- Immunobiology, Centocor, 145 King of Prussia Road, Radnor, PA 19087, USA.
| |
Collapse
|
22
|
Moshammer H, Bartonova A, Hanke W, van den Hazel P, Koppe JG, Krämer U, Ronchetti R, Sram RJ, Wallis M, Wallner P, Zuurbier M. Air pollution: a threat to the health of our children. Acta Paediatr 2006; 95:93-105. [PMID: 17000576 DOI: 10.1080/08035320600886620] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND/METHODS Current air pollution levels pose a threat to the health of children starting from conception. The scientific evidence is presented for mortality, morbidity, and sub-clinical effects. The first section deals with exposure data, the following sections with the evidence of health effects from epidemiology and toxicology leading to recommendations. RESULTS Improved air quality reduces the number of infants' deaths as well as disease and pain. CONCLUSIONS Medical doctors have a responsibility to know the facts and to advise their patients. Doctors when visiting their patients' homes should be aware of the possibly grave impact of the indoor environment for the respiratory health of their patients. They should recognize and advise the parents on problems associated with environmental tobacco smoke, poor ventilation, mould growth, and maintenance of heating installations. With regard to outdoor air pollution, doctors could serve as role models and also advise their patients and parents on environmentally friendly behaviour. Such behaviour not only calls for personal commitment but also for the right infrastructure to be provided (e.g. public transport, district heating). Doctors should be proactive in the community and in their country as advocates for a healthier environment for our children.
Collapse
Affiliation(s)
- Hanns Moshammer
- Institute for Environmental HealthCentre for Public Health, Medical University, Vienna.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pinkerton KE, Joad JP. Influence of air pollution on respiratory health during perinatal development. Clin Exp Pharmacol Physiol 2006; 33:269-72. [PMID: 16487273 DOI: 10.1111/j.1440-1681.2006.04357.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The respiratory system is a highly ordered structure composed of over 40 cell types involved in a multitude of functions. Development of the lungs spans from embryogenesis to adult life, passing through several distinct stages of growth. 2. Oxidant gases, airborne particles and environmental tobacco smoke are common air pollutants that could have a significant impact on the lungs during both pre- and postnatal periods of life. Although the specific target cells for exposure to these pollutants are not clearly identified, these cells are likely to affect critical signals or mediators expressed during distinct stages of lung development. 3. Neonatal susceptibility to environmental pollutants may be caused by either direct or indirect hits on several cell types to influence cell differentiation, proliferation and/or maturation. Air pollutants may also alter the normal developmental pattern for metabolic, immune and neurological functions that are constantly changing during in utero and postnatal growth. 4. The sensitivity of neonatal cells to environmental insults is likely to be completely different from these same cell types found in the adult. Delivery of an environmental toxicant to the respiratory system is also dramatically different during the fetal compared with the postnatal period. Passage and interaction of environmental factors through other organ systems and the vasculature, as well as maternal influences, must be taken into consideration when evaluating the impact of an environmental toxicant during early life. 5. To understand the heath outcomes of exposure to a variety of environmental factors in the respiratory system of children requires careful consideration that lung development is a multistep process and cannot be based on studies in adults.
Collapse
Affiliation(s)
- Kent E Pinkerton
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | | |
Collapse
|