1
|
Han JH, Chung YH, Lim CH. Histopathological changes in the lungs of rats instilled with Korean chrysotile. Environ Anal Health Toxicol 2021; 36:e2021014-0. [PMID: 34353004 PMCID: PMC8598405 DOI: 10.5620/eaht.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
To evaluate the pulmonary toxicity of Korean chrysotile (KC), 1 or 2 mg of KC (low- and high-concentration groups, respectively) was instilled in the lungs of Sprague-Dawley rats by a single intratracheal instillation. The lungs were examined using a light microscope at several time points (5 days, 5 weeks, and 10 weeks). Up to 10 weeks after KC instillation, differences were observed in the pathological reactions and ultimately in lung recovery between the two groups. At 5 days after KC instillation, lung weight increased and severe bronchiolitis obliterans developed in proportion to the KC concentration administered. From 5 to 10 weeks after KC administration, the lung weight of the low-concentration group increased and bronchiolitis obliterans worsened. In the high-concentration group, the lung weight and the severity of bronchiolitis obliterans at 10 weeks after administration of KC declined compared to those at 5 weeks. In conclusion, the effects of KC on lung tissue were initially found to be more influenced by the amount of fiber, but over time, the effects were influenced by the residual fibrous material in the lung tissue and its biodurability.
Collapse
Affiliation(s)
- Jeong Hee Han
- Chemicals Safety and Health Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency
| | - Yong Hyun Chung
- Korean Medicine Preclinical Trial Center, National Institute for Korean Medicine Development, Republic of Korea
| | - Cheol Hong Lim
- Chemicals Safety and Health Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency
| |
Collapse
|
2
|
Gao H, Hammer T, Zhang X, He W, Xu G, Wang J. Quantifying respiratory tract deposition of airborne graphene nanoplatelets: The impact of plate-like shape and folded structure. NANOIMPACT 2021; 21:100292. [PMID: 35559781 DOI: 10.1016/j.impact.2021.100292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 06/15/2023]
Abstract
The booming development of commercial products containing graphene nanoplatelets (GNPs) triggers growing concerns over their release into the air. Precise prediction of human respiratory system deposition of airborne GNPs, especially in alveolar region, is very important for inhalation exposure assessment. In this study, the pulmonary deposition of airborne GNPs was predicted by the multiple-path particle dosimetry (MPPD) model with consideration of GNPs plate-like shape and folded structure effect. Different equivalent diameters of GNPs were derived and utilized to describe different deposition mechanisms in the MPPD model. Both of small GNPs (geometric lateral size dg < 0.1 μm) and large GNPs (dg > 10 μm) had high deposition fractions in human respiratory system. The total deposition fractions for 0.1 and 30 μm GNPs were 41.6% and 75.6%, respectively. Most of the small GNPs deposited in the alveolar region, while the large GNPs deposited in the head airways. The aerodynamic diameter of GNPs was much smaller than the geometric lateral dimension due to the nanoscale thickness. For GNPs with geometric lateral size of 30 μm, the aerodynamic diameter was 2.98 μm. The small aerodynamic diameter of plate-like GNPs enabled deposition in the alveolar region, and folded GNPs had higher alveolar deposition than planar GNPs. Heavy breathing led to higher GNPs deposition fraction in head airways and lower deposition fractions in the alveolar region than resting breathing.
Collapse
Affiliation(s)
- Hanchao Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China; Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
| | - Tobias Hammer
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
| | - Guangbiao Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, Dübendorf 8600, Switzerland.
| |
Collapse
|
3
|
Abstract
One of the open questions regarding the asbestos problem is the fate of the mineral fibres in the body once inhaled and deposited in the deep respiratory system. In this context, the present paper reports the results of an electron microscopy study of both mineral fibres and asbestos bodies found in the lung tissue of a patient who died of malignant mesothelioma due to past occupational exposure. In concert with previous in vivo animal studies, our data provide evidence that amphibole asbestos fibres are durable in the lungs, whereas chrysotile fibres are transformed into a silica‐rich product, which can be easily cleared. Amphibole fibres recovered from samples of tissue of the deceased display a high degree of crystallinity but also show a very thin amorphous layer on their surface; 31% of the fibres are coated with asbestos bodies consisting of a mixture of ferroproteins (mainly ferritin). Here, we propose an improved model for the coating process. Formation of a coating on the fibres is a defence mechanism against fibres that are longer than 10 µm and thinner than 0.5 µm, which macrophages cannot engulf. The mature asbestos bodies show signs of degradation, and the iron stored in ferritin may be released and potentially increase oxidative stress in the lung tissue.
Collapse
|
4
|
Algranti E, Ramos-Bonilla JP, Terracini B, Santana VS, Comba P, Pasetto R, Mazzeo A, Cavariani F, Trotta A, Marsili D. Prevention of Asbestos Exposure in Latin America within a Global Public Health Perspective. Ann Glob Health 2019; 85:49. [PMID: 30924615 PMCID: PMC6634328 DOI: 10.5334/aogh.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Asbestos consumption in Latin America (LA) amounts to 10% of yearly global production. Little is known about the impact of asbestos exposure in the region. OBJECTIVE To discuss scientific and socio-economic issues and conflicts of interest and to summarize epidemiological data of asbestos health effects in LA. DISCUSSION Recent data on chrysotile strengthened the evidence of its carcinogenicity and showed an excessive risk of lung cancer at cumulative exposure levels as low as 1.5 fibre-years/ml. Technology for substitution is available for all asbestos-containing products and ceasing asbestos production and manufacturing will not result in unemployment and loss of income, except for the mining industry. The flawed arguments used by the industry to maintain its market, both to the public and in courtrooms, strongly relies on the lack of local evidence of the ill effects and on the invisibility of asbestos-related diseases in LA, due to the limited number of studies and the exposed workers' difficulty accessing health services. The few epidemiological studies available show clear evidence of clusters of mesothelioma in municipalities with a history of asbestos consumption and a forecasted rise in its incidence in Argentina and Brazil for the next decade. In Brazil, non-governmental organizations of asbestos workers were pivotal to counterbalance misinformation and inequities, ending recently in a Supreme Court decision backing an asbestos ban. In parallel, continuous efforts should be made to stimulate the growth of competent and ethical researchers to convey adequate information to the scientific community and to the general public.
Collapse
Affiliation(s)
| | | | | | - Vilma S. Santana
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BR
| | - Pietro Comba
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, IT
| | - Roberto Pasetto
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, IT
| | - Agata Mazzeo
- School of Arts, Humanities, and Cultural Heritage, University of Bologna, Bologna, IT
| | - Fulvio Cavariani
- Centro Regionale Amianto Lazio Dipartimento di Prevenzione, Unità Sanitaria Locale, Viterbo, IT
| | - Andrés Trotta
- Instituto de Salud Colectiva (ISCo)/Institute of Collective Health, Universidad Nacional de Lanús (UNLa)/National University of Lanús, Buenos Aires, AR
| | - Daniela Marsili
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, IT
| |
Collapse
|
5
|
Standardized methods for preparation and bi-variate length & diameter counting/sizing of aerosol and tissue digestion fiber samples. Toxicol Appl Pharmacol 2018; 361:174-184. [PMID: 29705294 DOI: 10.1016/j.taap.2018.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022]
Abstract
Most fiber length distributions fit a log-normal distribution with their being many more shorter fibers present as compared to the longer fibers. As the longer fibers have been suggested to be more important for possible pathogenesis giving equal weight to all fiber lengths when sizing fibers will under sample the longer fibers. The methods described here, are based upon the optimization of fiber counting/sizing rules over a number years of experience and have been developed to provide a stable estimate of the mean number of particles and fibers present in the size ranges: particles, fibers < 5 μm; 5-20 μm; and >20 μm. These methods were first applied using TEM, however, with the development of high resolution SEM, it was found that higher reproducibility could be obtained with SEM.
Collapse
|
6
|
|
7
|
Abstract
PURPOSE OF REVIEW The word asbestos is a poorly attributed term, as it refers to two very different minerals with very different characteristics. One is the serpentine mineral of which the white asbestos, chrysotile, is the most common. The other is the amphibole asbestos, which includes the blue asbestos crocidolite and the brown asbestos amosite. Although today chrysotile is the only type used commercially, the legacy of past use of amphibole asbestos remains. This review clarifies the differences between the two mineral families referred to as asbestos and summarizes the scientific basis for understanding the important differences in the toxicology and epidemiology of these two minerals. RECENT FINDINGS Biopersistence and sub-chronic inhalation toxicology studies have shown that exposure to chrysotile at up to 5000 times the current threshold limit value (0.1 fibers/cm) produces no pathological response. These studies demonstrate as well that following short-term exposure the longer chrysotile fibers rapidly clear from the lung and are not observed in the pleural cavity. In contrast, short-term exposure to amphibole asbestos results quickly in the initiation of a pathological response in the lung and the pleural cavity. SUMMARY Significant progress has been made in understanding the factors that influence inhalation toxicology studies of fibers and epidemiological studies of workers. Evaluation of the toxicology and epidemiology studies of chrysotile indicates that it can be used safely under controlled use. In contrast, even short-term exposure to amphibole asbestos can result in disease.
Collapse
|
8
|
Boulanger G, Andujar P, Pairon JC, Billon-Galland MA, Dion C, Dumortier P, Brochard P, Sobaszek A, Bartsch P, Paris C, Jaurand MC. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health 2014; 13:59. [PMID: 25043725 PMCID: PMC4112850 DOI: 10.1186/1476-069x-13-59] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/10/2014] [Indexed: 05/06/2023]
Abstract
The fibrogenicity and carcinogenicity of asbestos fibers are dependent on several fiber parameters including fiber dimensions. Based on the WHO (World Health Organization) definition, the current regulations focalise on long asbestos fibers (LAF) (Length: L ≥ 5 μm, Diameter: D < 3 μm and L/D ratio > 3). However air samples contain short asbestos fibers (SAF) (L < 5 μm). In a recent study we found that several air samples collected in buildings with asbestos containing materials (ACM) were composed only of SAF, sometimes in a concentration of ≥10 fibers.L-1. This exhaustive review focuses on available information from peer-review publications on the size-dependent pathogenetic effects of asbestos fibers reported in experimental in vivo and in vitro studies. In the literature, the findings that SAF are less pathogenic than LAF are based on experiments where a cut-off of 5 μm was generally made to differentiate short from long asbestos fibers. Nevertheless, the value of 5 μm as the limit for length is not based on scientific evidence, but is a limit for comparative analyses. From this review, it is clear that the pathogenicity of SAF cannot be completely ruled out, especially in high exposure situations. Therefore, the presence of SAF in air samples appears as an indicator of the degradation of ACM and inclusion of their systematic search should be considered in the regulation. Measurement of these fibers in air samples will then make it possible to identify pollution and anticipate health risk.
Collapse
Affiliation(s)
- Guillaume Boulanger
- ANSES (French Agency for Food, Environmental and Occupational Health Safety), Maisons-Alfort, France
| | - Pascal Andujar
- INSERM, U955, Equipe 4, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie Professionnelle, Créteil, France
| | - Jean-Claude Pairon
- INSERM, U955, Equipe 4, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie Professionnelle, Créteil, France
| | | | - Chantal Dion
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail du Québec (IRSST), Montréal, Québec, Canada
- Département de santé environnementale et santé au travail, Université de Montréal, Montréal, Québec, Canada
| | - Pascal Dumortier
- Hôpital Erasme, Université libre de Bruxelles, Bruxelles, Belgique
| | - Patrick Brochard
- Laboratoire Santé Travail Environnement LSTE, EA 3672, Université de Bordeaux II, Bordeaux, France
| | - Annie Sobaszek
- Université Lille 2, Lille, France
- CHRU Lille, Lille, France
| | | | | | - Marie-Claude Jaurand
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM, UMR-674, Labex Immuno-oncology, Paris, France
| |
Collapse
|
9
|
Electricians’ chrysotile asbestos exposure from electrical products and risks of mesothelioma and lung cancer. Regul Toxicol Pharmacol 2014; 68:8-15. [DOI: 10.1016/j.yrtph.2013.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/17/2013] [Accepted: 10/27/2013] [Indexed: 11/23/2022]
|
10
|
Treumann S, Ma-Hock L, Gröters S, Landsiedel R, van Ravenzwaay B. Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats. Toxicol Sci 2013; 134:103-10. [PMID: 23570993 DOI: 10.1093/toxsci/kft089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For hazard assessment of multiwalled carbon nanotubes (MWCNTs), a 90-day inhalation toxicity study has been performed with Nanocyl NC 7000 in accordance with OECD 413 test guideline. MWCNTs produced no systemic toxicity. However, increased lung weights, multifocal granulomatous inflammation, diffuse histiocytic and neutrophilic infiltrates, and intra-alveolar lipoproteinosis were observed in lung and lung-associated lymph nodes at 0.5 and 2.5mg/m(3). Additional investigations of the lungs were performed, including special stains for examination of connective tissue, and electron microscopy was performed to determine the location of the MWCNTs. The alveolar walls revealed no increase of collagen fibers, whereas within the microgranulomas a slight increase of collagen fibers was observed. The pleura did not reveal any increase in collagen fibers. Only a slight increase in reticulin fibers in the alveolar walls in animals of the 0.5 and 2.5mg/m(3) concentration group was noted. In the 0.1mg/m(3) group, the only animal revealing minimal granulomas exhibited a minimal increase in collagen within the granuloma. No increase in reticulin was observed. Electron microscopy demonstrated entangled MWCNTs within alveolar macrophages. Occasionally electron dense particles/detritus were observed within membrane-bound vesicles (interpreted as phagosomes), which could represent degraded MWCNTs. If so, MWCNTs were degradable by alveolar macrophages and not persistent within the lung. Inhalation of MWCNTs caused granulomatous inflammation within the lung parenchyma but not the pleura in any of the concentration groups. Thus, there are some similarities to effects caused by inhaled asbestos, but the hallmark effects, namely pleural inflammation and/or fibrosis leading to mesotheliomas, are absent.
Collapse
Affiliation(s)
- Silke Treumann
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | | |
Collapse
|
11
|
Bernstein D, Dunnigan J, Hesterberg T, Brown R, Velasco JAL, Barrera R, Hoskins J, Gibbs A. Health risk of chrysotile revisited. Crit Rev Toxicol 2013; 43:154-83. [PMID: 23346982 PMCID: PMC3581056 DOI: 10.3109/10408444.2012.756454] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/20/2022]
Abstract
This review provides a basis for substantiating both kinetically and pathologically the differences between chrysotile and amphibole asbestos. Chrysotile, which is rapidly attacked by the acid environment of the macrophage, falls apart in the lung into short fibers and particles, while the amphibole asbestos persist creating a response to the fibrous structure of this mineral. Inhalation toxicity studies of chrysotile at non-lung overload conditions demonstrate that the long (>20 µm) fibers are rapidly cleared from the lung, are not translocated to the pleural cavity and do not initiate fibrogenic response. In contrast, long amphibole asbestos fibers persist, are quickly (within 7 d) translocated to the pleural cavity and result in interstitial fibrosis and pleural inflammation. Quantitative reviews of epidemiological studies of mineral fibers have determined the potency of chrysotile and amphibole asbestos for causing lung cancer and mesothelioma in relation to fiber type and have also differentiated between these two minerals. These studies have been reviewed in light of the frequent use of amphibole asbestos. As with other respirable particulates, there is evidence that heavy and prolonged exposure to chrysotile can produce lung cancer. The importance of the present and other similar reviews is that the studies they report show that low exposures to chrysotile do not present a detectable risk to health. Since total dose over time decides the likelihood of disease occurrence and progression, they also suggest that the risk of an adverse outcome may be low with even high exposures experienced over a short duration.
Collapse
|
12
|
Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:76-121. [PMID: 21534086 PMCID: PMC3118517 DOI: 10.1080/10937404.2011.556047] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Morimoto Y, Hirohashi M, Kasai T, Oyabu T, Ogami A, Myojo T, Murakami M, Nishi KI, Kadoya C, Todoroki M, Yamamoto M, Kawai K, Kasai H, Tanaka I. Effect of polymerized toner on rat lung in chronic inhalation study. Inhal Toxicol 2009; 21:898-905. [DOI: 10.1080/08958370802641938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Pezerat H. Chrysotile biopersistence: the misuse of biased studies. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2009; 15:102-6. [PMID: 19267128 DOI: 10.1179/107735209799449770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although it is widely accepted that exposure to any asbestos type can increase the likelihood of lung cancer, mesothelioma, and non-malignant lung and pleural disorders, manufacturers and some chrysotile miners' unions contend that chrysotile either does not cause disease or that there is insufficient evidence to reach a conclusion. At the same time, Dr. D.M. Bernstein has published several animal studies, financed by the Québec Chrysotile Institute, to determine chrysotile biopersistence in the lungs. Bernstein's study protocol induces a very short fiber half-life, from which he concludes weak chrysotile carcinogenicity. Bernstein's findings contradict results obtained by independent scientists. Bernstein's results can only be explained by an aggressive pre-treatment of fibers, inducing many faults and fragility in the fibers' structure, leading to rapid hydration and breaking of long fibers in the lungs.
Collapse
Affiliation(s)
- Henri Pezerat
- National Center for Scientific Research, 3 rue Michel Ange, 75794 Paris Cedex 16, France.
| |
Collapse
|
15
|
Stettler LE, Sharpnack DD, Krieg EF. Chronic inhalation of short asbestos: lung fiber burdens and histopathology for monkeys maintained for 11.5 years after exposure. Inhal Toxicol 2008; 20:63-73. [PMID: 18236224 DOI: 10.1080/08958370701665566] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In an earlier report, Platek et al. (1985) presented the results of an 18-month inhalation exposure of rats and monkeys to short chrysotile asbestos. The mean chamber exposure level was 1.0 mg/m(3) with an average of 0.79 fibers/ml > 5 microm in length. Gross and histopathological examination of exposed and control rats indicated no treatment-related lesions. Asbestos bodies adjacent to the terminal bronchioles, but no fibrosis, were found in lung biopsy tissue taken from the exposed monkeys at 10 months post-exposure. Fifteen monkeys (9 exposed and 6 controls) from this study were maintained for 11.5 years following exposure. Lung fiber burdens were determined by transmission electron microscopy. The mean lung burden (+/- standard deviation) for 59 samples from exposed monkeys was 63 +/- 30 x 10(6) fibers/g dry lung (range, 18-139 x 10(6)). The geometric mean fiber length was 3.5 microm with 35% of the fibers being > 5 microm in length. These data indicate some chrysotile fibers are durable in vivo for a significant period of time. Lungs were examined grossly and microscopically. No lesions attributable to the inhalation exposure were noted. Asbestos bodies were seen in the lungs of treated monkeys, primarily in the interstitium near bronchioles or small pulmonary blood vessels (which also may have been near to bronchioles just out of the plane of section).
Collapse
Affiliation(s)
- Lloyd E Stettler
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45040, USA
| | | | | |
Collapse
|
16
|
Bernstein DM, Hoskins JA. The health effects of chrysotile: current perspective based upon recent data. Regul Toxicol Pharmacol 2006; 45:252-64. [PMID: 16814911 DOI: 10.1016/j.yrtph.2006.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Indexed: 11/24/2022]
Abstract
This review substantiates kinetically and pathologically the differences between chrysotile and amphiboles. The serpentine chrysotile is a thin walled sheet silicate while the amphiboles are double-chain silicates. These different chemistries result in chrysotile clearing very rapidly from the lung (T(1/2)=0.3 to 11 days) while amphiboles are among the slowest clearing fibers known (T(1/2)=500 days to infinity). Across the range of mineral fiber solubilities chrysotile lies towards the soluble end of the scale. Chronic inhalation toxicity studies with chrysotile in animals have unfortunately been performed at very high exposure concentrations resulting in lung overload. Consequently their relevance to human exposures is extremely limited. Chrysotile following subchronic inhalation at a mean exposure of 76 fibers L>20 microm/cm(3) (3413 total fibers/cm(3)) resulted in no fibrosis (Wagner score 1.8-2.6), at any time point and no difference with controls in BrdU response or biochemical and cellular parameters. The long chrysotile fibers were observed to break apart into small particles and smaller fibers. Toxicologically, chrysotile which rapidly falls apart in the lung behaves more like non-fibrous mineral dusts while response to amphibole asbestos reflects its insoluble fibrous structure. Recent quantitative reviews of epidemiological studies of mineral fibers have determined the potency of chrysotile and amphibole asbestos for causing lung cancer and mesothelioma in relation to fiber type have also differentiated between these two minerals. The most recent analyses also concluded that it is the longer, thinner fibers that have the greatest potency as has been reported in animal inhalation toxicology studies. However, one of the major difficulties in interpreting these studies is that the original exposure estimates rarely differentiated between chrysotile and amphiboles. Not unlike some other respirable particulates, to which humans are, or have been heavily occupationally exposed, there is evidence that heavy and prolonged exposure to chrysotile can produce lung cancer. The value of the present and other similar studies is that they show that low exposures to pure chrysotile do not present a detectable risk to health. Since total dose over time decides the likelihood of disease occurrence and progression, they also suggest that the risk of an adverse outcome may be low if even any high exposures experienced were of short duration.
Collapse
|