1
|
Endaryanto A, Darma A, Sundjaya T, Masita BM, Basrowi RW. The Notorious Triumvirate in Pediatric Health: Air Pollution, Respiratory Allergy, and Infection. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1067. [PMID: 37371298 DOI: 10.3390/children10061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A plausible association is suspected among air pollution, respiratory allergic disorder, and infection. These three factors could cause uncontrollable chronic inflammation in the airway tract, creating a negative impact on the physiology of the respiratory system. This review aims to understand the underlying pathophysiology in explaining the association among air pollution, respiratory allergy, and infection in the pediatric population and to capture the public's attention regarding the interaction among these three factors, as they synergistically reduce the health status of children living in polluted countries globally, including Indonesia.
Collapse
Affiliation(s)
- Anang Endaryanto
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Andy Darma
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Tonny Sundjaya
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Bertri Maulidya Masita
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| |
Collapse
|
2
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
3
|
Burbank AJ. Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution. J Asthma Allergy 2023; 16:183-194. [PMID: 36721739 PMCID: PMC9884560 DOI: 10.2147/jaa.s364845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Climate change has both direct and indirect effects on human health, and some populations are more vulnerable to these effects than others. Viral respiratory infections are most common illnesses in humans, with estimated 17 billion incident infections globally in 2019. Anthropogenic drivers of climate change, chiefly the emission of greenhouse gases and toxic pollutants from burning of fossil fuels, and the consequential changes in temperature, precipitation, and frequency of extreme weather events have been linked with increased susceptibility to viral respiratory infections. Air pollutants like nitrogen dioxide, particulate matter, diesel exhaust particles, and ozone have been shown to impact susceptibility and immune responses to viral infections through various mechanisms, including exaggerated or impaired innate and adaptive immune responses, disruption of the airway epithelial barrier, altered cell surface receptor expression, and impaired cytotoxic function. An estimated 90% of the world's population is exposed to air pollution, making this a topic with high relevance to human health. This review summarizes the available epidemiologic and experimental evidence for an association between climate change, air pollution, and viral respiratory infection.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Correspondence: Allison J Burbank, 5008B Mary Ellen Jones Building, 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA, Tel +1 919 962 5136, Fax +1 919 962 4421, Email
| |
Collapse
|
4
|
Kelty J, Kovalchuk N, Uwimana E, Yin L, Ding X, Van Winkle L. In vitro airway models from mice, rhesus macaques, and humans maintain species differences in xenobiotic metabolism and cellular responses to naphthalene. Am J Physiol Lung Cell Mol Physiol 2022; 323:L308-L328. [PMID: 35853015 PMCID: PMC9423729 DOI: 10.1152/ajplung.00349.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
The translational value of high-throughput toxicity testing will depend on pharmacokinetic validation. Yet, popular in vitro airway epithelia models were optimized for structure and mucociliary function without considering the bioactivation or detoxification capabilities of lung-specific enzymes. This study evaluated xenobiotic metabolism maintenance within differentiated air-liquid interface (ALI) airway epithelial cell cultures (human bronchial; human, rhesus, and mouse tracheal), isolated airway epithelial cells (human, rhesus, and mouse tracheal; rhesus bronchial), and ex vivo microdissected airways (rhesus and mouse) by measuring gene expression, glutathione content, and naphthalene metabolism. Glutathione levels and detoxification gene transcripts were measured after 1-h exposure to 80 µM naphthalene (a bioactivated toxicant) or reactive naphthoquinone metabolites. Glutathione and glutathione-related enzyme transcript levels were maintained in ALI cultures from all species relative to source tissues, while cytochrome P450 monooxygenase gene expression declined. Notable species differences among the models included a 40-fold lower total glutathione content for mouse ALI trachea cells relative to human and rhesus; a higher rate of naphthalene metabolism in mouse ALI cultures for naphthalene-glutathione formation (100-fold over rhesus) and naphthalene-dihydrodiol production (10-fold over human); and opposite effects of 1,2-naphthoquinone exposure in some models-glutathione was depleted in rhesus tissue but rose in mouse ALI samples. The responses of an immortalized bronchial cell line to naphthalene and naphthoquinones were inconsistent with those of human ALI cultures. These findings of preserved species differences and the altered balance of phase I and phase II xenobiotic metabolism among the characterized in vitro models should be considered for future pulmonary toxicity testing.
Collapse
Affiliation(s)
- Jacklyn Kelty
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, California
| | - Nataliia Kovalchuk
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Eric Uwimana
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Lei Yin
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xinxin Ding
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, California
| |
Collapse
|
5
|
Smith GJ, Tovar A, Kanke M, Wang Y, Deshane JS, Sethupathy P, Kelada SNP. Ozone-induced changes in the murine lung extracellular vesicle small RNA landscape. Physiol Rep 2021; 9:e15054. [PMID: 34558223 PMCID: PMC8461034 DOI: 10.14814/phy2.15054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023] Open
Abstract
Inhalation exposure to ozone (O3 ) causes adverse respiratory health effects that result from airway inflammation, a complex response mediated in part by changes to airway cellular transcriptional programs. These programs may be regulated by microRNAs transferred between cells (e.g., epithelial cells and macrophages) via extracellular vesicles (EV miRNA). To explore this, we exposed female C57BL/6J mice to filtered air (FA), 1, or 2 ppm O3 by inhalation and collected bronchoalveolar lavage fluid (BALF) 21 h later for markers of airway inflammation, EVs, and EV miRNA. Both concentrations of O3 significantly increased markers of inflammation (neutrophils), injury (total protein), and the number of EV-sized particles in the BALF. Imagestream analysis indicated a substantial portion of particles was positive for canonical EV markers (CD81, CD51), and Siglec-F, a marker of alveolar macrophages. Using high-throughput small RNA sequencing, we identified several differentially expressed (DE) BALF EV miRNAs after 1 ppm (16 DE miRNAs) and 2 ppm (99 DE miRNAs) O3 versus FA exposure. O3 concentration-response patterns in EV miRNA expression were apparent, particularly for miR-2137, miR-126-3p, and miR-351-5p. Integrative analysis of EV miRNA expression and airway cellular mRNA expression identified EV miR-22-3p as a candidate regulator of transcriptomic responses to O3 in airway macrophages. In contrast, we did not identify candidate miRNA regulators of mRNA expression data from conducting airways (predominantly composed of epithelial cells). In summary, our data show that O3 exposure alters EV release and EV miRNA expression, suggesting that further investigation of EVs may provide insight into their effects on airway macrophage function and other mechanisms of O3 -induced respiratory inflammation.
Collapse
Affiliation(s)
- Gregory J Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adelaide Tovar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yong Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Samir N P Kelada
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
7
|
Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med 2020; 151:56-68. [PMID: 32007522 DOI: 10.1016/j.freeradbiomed.2020.01.179] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
A well-functioning immune system is vital for a healthy body. Inadequate and excessive immune responses underlie diverse pathologies such as serious infections, metastatic malignancies and auto-immune conditions. Therefore, understanding the effects of ambient pollutants on the immune system is vital to understanding how pollution causes disease, and how that pathology could be abrogated. The immune system itself consists of multiple types of immune cell that act together to generate (or fail to generate) immune responses and in this article we review evidence of how air pollutants can affect different immune cell types such as particle-clearing macrophages, inflammatory neutrophils, dendritic cells that orchestrate adaptive immune responses and lymphocytes that enact those responses. Common themes that emerge are of the capacity of air pollutants to stimulate pro-inflammatory immune responses across multiple classes of immune cell. Air pollution can enhance T helper lymphocyte type 2 (Th2) and T helper lymphocyte type 17 (Th17) adaptive immune responses, as seen in allergy and asthma, and dysregulate anti-viral immune responses. The clinical effects of air pollution, in particular the known association between elevated ambient pollution and exacerbations of asthma and chronic obstructive pulmonary disease (COPD), are consistent with these identified immunological mechanisms. Further to this, as inhaled air pollution deposits primarily on the respiratory mucosa this review focuses on mechanisms of respiratory disease. However, as discussed in the article, air pollution also affects the wider immune system for example in the neonate and gastrointestinal tract. Whilst the many identified actions of air pollution on the immune system are notably diverse, immunological research does suggest potential strategies to ameliorate such effects, for example with vitamin D supplementation. An in-depth understanding of the immunological effects of ambient pollutants should hopefully yield new ideas on how to reduce the adverse health effects of air pollution.
Collapse
Affiliation(s)
- Drew A Glencross
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Tzer-Ren Ho
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Nuria Camiña
- MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Catherine M Hawrylowicz
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Paul E Pfeffer
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
8
|
To T, Zhu J, Stieb D, Gray N, Fong I, Pinault L, Jerrett M, Robichaud A, Ménard R, van Donkelaar A, Martin RV, Hystad P, Brook JR, Dell S. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J 2020; 55:13993003.00913-2019. [PMID: 31806712 PMCID: PMC7031706 DOI: 10.1183/13993003.00913-2019] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023]
Abstract
Rationale There is growing evidence that air pollution may contribute to the development of childhood asthma and other allergic diseases. In this follow-up of the Toronto Child Health Evaluation Questionnaire (T-CHEQ) study, we examined associations between early life exposures to air pollution and incidence of asthma, allergic rhinitis and eczema from birth through adolescence. Methods 1286 T-CHEQ participants were followed from birth until outcome (March 31, 2016) or loss to follow-up, with a mean of 17 years of follow-up. Concentrations of nitrogen dioxide (NO2), ozone (O3) and particulate matter with a 50% cut-off aerodynamic diameter of 2.5 µm (PM2.5) from January 1, 1999 to December 31, 2012 were assigned to participants based on their postal codes at birth using ground observations, chemical/meteorological models, remote sensing and land-use regression models. Study outcomes included incidence of physician-diagnosed asthma, allergic rhinitis and eczema. Cox proportional hazard regression models were used to estimate hazard ratios per interquartile range of exposures and outcomes, adjusting for potential confounders. Results Hazard ratios of 1.17 (95% CI 1.05–1.31) for asthma and 1.07 (95% CI 0.99–1.15) for eczema were observed for total oxidants (O3 and NO2) at birth. No significant increase in risk was found for PM2.5. Conclusions Exposures to oxidant air pollutants (O3 and NO2) but not PM2.5 were associated with an increased risk of incident asthma and eczema in children. This suggests that improving air quality may contribute to the prevention of asthma and other allergic disease in childhood and adolescence. This study found that exposure to total oxidants at birth increased the risk of developing asthma by 17% and eczema by 7%. Adverse impacts of exposure to air pollutants, particularly ozone and nitrogen dioxide, may have their origins in early life.http://bit.ly/33PClYN
Collapse
Affiliation(s)
- Teresa To
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada .,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Jingqin Zhu
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Dave Stieb
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Natasha Gray
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ivy Fong
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lauren Pinault
- Analytical Studies Branch, Statistics Canada, Ottawa, ON, Canada
| | - Michael Jerrett
- Fielding School of Public Health, The University of California, Los Angeles, CA, USA
| | - Alain Robichaud
- Air Quality Research Division, Environment and Climate Change Canada, Dorval, QC, Canada
| | - Richard Ménard
- Air Quality Research Division, Environment and Climate Change Canada, Dorval, QC, Canada
| | - Aaron van Donkelaar
- Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada.,Dept of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Randall V Martin
- Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada.,Dept of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO, USA.,Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sharon Dell
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Forman HJ, Finch CE. A critical review of assays for hazardous components of air pollution. Free Radic Biol Med 2018; 117:202-217. [PMID: 29407794 PMCID: PMC5845809 DOI: 10.1016/j.freeradbiomed.2018.01.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
Increased mortality and diverse morbidities are globally associated with exposure to ambient air pollution (AAP), cigarette smoke (CS), and household air pollution (HAP). The AAP-CS-HAP aerosols present heterogeneous particulate matter (PM) of diverse chemical and physical characteristics. Some epidemiological models have assumed the same health hazards by PM weight for AAP, CS, and HAP regardless of the composition. While others have recognized that biological activities and toxicity will vary with components, we focus particularly on oxidation because of its major role in assay outcomes. Our review of PM assays considers misinterpretations of some chemical measures used for oxidative activity. Overall, there is low consistency across chemical and cell-based assays for oxidative and inflammatory activity. We also note gaps in understanding how much airborne PM of various sizes enter cells and organs. For CS, the body burden per cigarette may be much below current assumptions. Synergies shown for health hazards of AAP and CS suggest crosstalk in detoxification pathways mediated by AHR, NF-κB, and Nrf2. These complex genomic and biochemical interactions frustrate resolution of the toxicity of specific AAP components. We propose further strategies based on targeted gene expression based on cell-type differences.
Collapse
Affiliation(s)
- Henry Jay Forman
- Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, United States; School of Natural Sciences, University of California, Merced, CA, United States.
| | - Caleb Ellicott Finch
- Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, United States; Dornsife College, The University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Kim YK, Koo SM, Kim K, Uh ST, Jang A, Park CS. Increased antioxidant activity after exposure of ozone in murine asthma model. Asia Pac Allergy 2017; 7:163-170. [PMID: 28765821 PMCID: PMC5537081 DOI: 10.5415/apallergy.2017.7.3.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Background Ozone is well known as an important component of ambient air pollutants. Ozone can aggravate respiratory symptoms in patients with bronchial asthma, but, not in healthy person. We hypothesized asthma itself may show different response to ozone compared to nonasthma. Objective This study was performed to evaluate the differences of response to ozone between normal and asthmatic mice model in terms of status of oxidant injury and antioxidant activity. Methods Three parts per million of ozone was exposed to ovalbumin (OVA)-induced murine asthma model for 3 hours at 3, 7, 14, 21 days after completion of asthma model. Airway responsiveness to methacholine was measured after completion of asthma model. Bronchoalveolar lavage (BAL), protein extraction from lung for Western blot and immunohistochemistry of 4-hydroxy-2-nonenal (4-HNE), proliferating cell nuclear antigen (PCNA), NF-E2 related factor 2 (Nrf-2), and activity of glutathione were performed at before and each ozone exposure day. Results Airway hyper-responsiveness and increased eosinophils in BAL fluid were observed in asthma model. In asthma model, the expression of 4-HNE already more increased at baseline (without ozone) compared to those in sham model. This increased expression is more enhanced at 3 days after ozone exposure. The expression of PCNA was significantly increased in OVA-model compared to those in sham model. The expression of Nrf-2 was observed at baseline, and 3 and 7 days after exposure ozone in asthma model, but not in sham model. The activity of glutathione increased significantly after exposure of ozone, but not in sham model. Conclusion Murine asthma model has enhanced oxygen toxicity and antioxidant activity response to ozone.
Collapse
Affiliation(s)
- Yang Ki Kim
- Division of Respiratory and Allergy Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - So My Koo
- Division of Respiratory and Allergy Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Kiup Kim
- Division of Respiratory and Allergy Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Soo-Taek Uh
- Division of Respiratory and Allergy Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Ahnsoo Jang
- Division of Respiratory and Allergy Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Choon-Sik Park
- Division of Respiratory and Allergy Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| |
Collapse
|
11
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Hatch GE, Crissman K, Schmid J, Richards JE, Ward WO, Schladweiler MC, Ledbetter AD, Kodavanti UP. Strain differences in antioxidants in rat models of cardiovascular disease exposed to ozone. Inhal Toxicol 2016; 27 Suppl 1:54-62. [PMID: 26667331 DOI: 10.3109/08958378.2014.954170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the hypothesis that antioxidant substances and enzymes in lung, heart and in bronchoalveolar lavage fluid (BALF) are altered in response to O3 in cardiovascular disease and/or metabolic syndrome (CVD)-prone rat models. CVD strains [spontaneously hypertensive (SH), SH stroke-prone (SHSP), SHHF/Mcc heart failure obese (SHHF), insulin-resistant JCR:LA-cp obese (JCR) and Fawn-Hooded hypertensive (FHH)] were compared with normal strains [Wistar, Sprague-Dawley (SD) and Wistar Kyoto (WKY)]. Total glutathione (GSH + GSSG or GSx), reduced ascorbate (AH2), uric acid (UA) and antioxidant enzymes were determined in lung, heart and BALF immediately (0 h) or 20-h post 4-h nose-only exposure to 0.0, 0.25, 0.5 and 1.0 ppm O3. Basal- and O3-induced antioxidant substances in tissues varied widely among strains. Wistar rats had a robust O3-induced increase in GSx and AH2 in the lung. Two CVD strains (JCR and SHHF) had high basal levels of AH2 and GSx in BALF as well as high basal lung UA. Across all strains, high BALF GSx was only observed when high BALF AH2 was present. CVD rats tended to respond less to O3 than normal. High-basal BALF AH2 levels were associated with decreased O3 toxicity. In summary, large differences were observed between both normal and CVD rat strains in low-molecular weight antioxidant concentrations in lung, BALF and heart tissue. Wistar (normal) and JCR and SHHF (CVD) rats appeared to stand out as peculiar in terms of basal- or O3-induced changes. Results elucidate interactions among antioxidants and air pollutants that could enhance understanding of cardiopulmonary disease.
Collapse
Affiliation(s)
- Gary E Hatch
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Kay Crissman
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Judy Schmid
- b Research Cores Unit , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Judy E Richards
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - William O Ward
- b Research Cores Unit , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Mette C Schladweiler
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Allen D Ledbetter
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Urmila P Kodavanti
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| |
Collapse
|
13
|
Bromberg PA. Mechanisms of the acute effects of inhaled ozone in humans. Biochim Biophys Acta Gen Subj 2016; 1860:2771-81. [PMID: 27451958 DOI: 10.1016/j.bbagen.2016.07.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Ambient air ozone (O3) is generated photochemically from oxides of nitrogen and volatile hydrocarbons. Inhaled O3 causes remarkably reversible acute lung function changes and inflammation. Approximately 80% of inhaled O3 is deposited on the airways. O3 reacts rapidly with CC double bonds in hydrophobic airway and alveolar surfactant-associated phospholipids and cholesterol. Resultant primary ozonides further react to generate bioactive hydrophilic products that also initiate lipid peroxidation leading to eicosanoids and isoprostanes of varying electrophilicity. Airway surface liquid ascorbate and urate also scavenge O3. Thus, inhaled O3 may not interact directly with epithelial cells. Acute O3-induced lung function changes are dominated by involuntary inhibition of inspiration (rather than bronchoconstriction), mediated by stimulation of intraepithelial nociceptive vagal C-fibers via activation of transient receptor potential (TRP) A1 cation channels by electrophile (e.g., 4-oxo-nonenal) adduction of TRPA1 thiolates enhanced by PGE2-stimulated sensitization. Acute O3-induced neutrophilic airways inflammation develops more slowly than the lung function changes. Surface macrophages and epithelial cells are involved in the activation of epithelial NFkB and generation of proinflammatory mediators such as IL-6, IL-8, TNFa, IL-1b, ICAM-1, E-selectin and PGE2. O3-induced partial depolymerization of hyaluronic acid and the release of peroxiredoxin-1 activate macrophage TLR4 while oxidative epithelial cell release of EGFR ligands such as TGFa or EGFR transactivation by activated Src may also be involved. The ability of lipid ozonation to generate potent electrophiles also provides pathways for Nrf2 activation and inhibition of canonical NFkB activation. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
14
|
Dove RE, Leong-Smith P, Roos-Engstrand E, Pourazar J, Shah M, Behndig AF, Mudway IS, Blomberg A. Cigarette smoke-induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD. Eur Clin Respir J 2015; 2:27837. [PMID: 26557249 PMCID: PMC4629722 DOI: 10.3402/ecrj.v2.27837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. METHODS Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). RESULTS Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. CONCLUSIONS We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke-induced increase in intra-cellular antioxidant enzyme activities only within the smokers with normal lung function, implying that patients with COPD who continue to smoke will experience enhanced oxidative stress, prompting disease progression.
Collapse
Affiliation(s)
- Rosamund E. Dove
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
- MRC-PHE Centre for Environment and Health, School of Biomedical Sciences, Kings College London, London, UK
| | - Pheneatia Leong-Smith
- MRC-PHE Centre for Environment and Health, School of Biomedical Sciences, Kings College London, London, UK
| | - Ester Roos-Engstrand
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Mittal Shah
- MRC-PHE Centre for Environment and Health, School of Biomedical Sciences, Kings College London, London, UK
| | - Annelie F. Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Ian S. Mudway
- MRC-PHE Centre for Environment and Health, School of Biomedical Sciences, Kings College London, London, UK
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Larsson N, Rankin GD, Bicer EM, Roos-Engstrand E, Pourazar J, Blomberg A, Mudway IS, Behndig AF. Identification of vitamin C transporters in the human airways: a cross-sectional in vivo study. BMJ Open 2015; 5:e006979. [PMID: 25854967 PMCID: PMC4390727 DOI: 10.1136/bmjopen-2014-006979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Vitamin C is an important low-molecular weight antioxidant at the air-lung interface. Despite its critical role as a sacrificial antioxidant, little is known about its transport into the respiratory tract lining fluid (RTLF), or the underlying airway epithelial cells. While several vitamin C transporters have been identified, such as sodium-ascorbate cotransporters (SVCT1/2) and glucose transporters (GLUTs), the latter transporting dehydroascorbate, knowledge of their protein distribution within the human lung is limited, in the case of GLUTs or unknown for SVCTs. SETTING AND PARTICIPANTS Protein expression of vitamin C transporters (SVCT1/2 and GLUT1-4) was examined by immunohistochemistry in endobronchial biopsies, and by FACS in airway leucocytes from lavage fluid, obtained from 32 volunteers; 16 healthy and 16 mild asthmatic subjects. In addition, antioxidant concentrations were determined in RTLF. The study was performed at one Swedish centre. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome measure was to establish the location of vitamin C transporters in the human airways. As secondary outcome measures, RTLF vitamin C concentration was measured and related to transporter expression, as well as bronchial epithelial inflammatory and goblet cells numbers. RESULTS Positive staining was identified for SVCT1 and 2 in the vascular endothelium. SVCT2 and GLUT2 were present in the apical bronchial epithelium, where SVCT2 staining was predominately localised to goblet cells and inversely related to RTLF vitamin C concentrations. CONCLUSIONS This experimental study is the first to demonstrate protein expression of GLUT2 and SVCT2 in the human bronchial epithelium. A negative correlation between SVCT2-positive goblet cells and bronchial RTLF vitamin C concentrations suggests a possible role for goblet cells in regulating the extracellular vitamin C pool.
Collapse
Affiliation(s)
- Nirina Larsson
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Gregory D Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Elif M Bicer
- MRC-PHE Centre for Environment & Health, Faculty of Life Sciences & Medicine, Kings College London, London, UK
| | - Ester Roos-Engstrand
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Ian S Mudway
- MRC-PHE Centre for Environment & Health, Faculty of Life Sciences & Medicine, Kings College London, London, UK
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Almstrand AC, Voelker D, Murphy RC. Identification of oxidized phospholipids in bronchoalveolar lavage exposed to low ozone levels using multivariate analysis. Anal Biochem 2015; 474:50-8. [PMID: 25575758 DOI: 10.1016/j.ab.2014.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 11/17/2022]
Abstract
Chemical reactions with unsaturated phospholipids in the respiratory tract lining fluid have been identified as one of the first important steps in the mechanisms mediating environmental ozone toxicity. As a consequence of these reactions, complex mixtures of oxidized lipids are generated in the presence of mixtures of non-oxidized naturally occurring phospholipid molecular species, which challenge methods of analysis. Untargeted mass spectrometry and statistical methods were employed to approach these complex spectra. Human bronchoalveolar lavage (BAL) was exposed to low levels of ozone, and samples with and without derivatization of aldehydes were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry. Data processing was carried out using principal component analysis (PCA). Resulting PCA scores plots indicated an ozone dose-dependent increase, with apparent separation between BAL samples exposed to 60 ppb ozone and non-exposed BAL samples as well as a clear separation between ozonized samples before and after derivatization. Corresponding loadings plots revealed that more than 30 phosphatidylcholine (PC) species decreased due to ozonation. A total of 13 PC and 6 phosphatidylglycerol oxidation products were identified, with the majority being structurally characterized as chain-shortened aldehyde products. This method exemplifies an approach for comprehensive detection of low-abundance, yet important, components in complex lipid samples.
Collapse
Affiliation(s)
- Ann-Charlotte Almstrand
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA; Department of Public Health and Community Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Dennis Voelker
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Barath S, Langrish JP, Lundbäck M, Bosson JA, Goudie C, Newby DE, Sandström T, Mills NL, Blomberg A. Short-term exposure to ozone does not impair vascular function or affect heart rate variability in healthy young men. Toxicol Sci 2013; 135:292-9. [PMID: 23872581 PMCID: PMC3807622 DOI: 10.1093/toxsci/kft157] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Air pollution exposure is associated with cardiovascular morbidity and mortality, yet the role of individual pollutants remains unclear. In particular, there is uncertainty regarding the acute effect of ozone exposure on cardiovascular disease. In these studies, we aimed to determine the effect of ozone exposure on vascular function, fibrinolysis, and the autonomic regulation of the heart. Thirty-six healthy men were exposed to ozone (300 ppb) and filtered air for 75min on two occasions in randomized double-blind crossover studies. Bilateral forearm blood flow (FBF) was measured using forearm venous occlusion plethysmography before and during intra-arterial infusions of vasodilators 2–4 and 6–8h after each exposure. Heart rhythm and heart rate variability (HRV) were monitored during and 24h after exposure. Compared with filtered air, ozone exposure did not alter heart rate, blood pressure, or resting FBF at either 2 or 6h. There was a dose-dependent increase in FBF with all vasodilators that was similar after both exposures at 2–4h. Ozone exposure did not impair vasomotor or fibrinolytic function at 6–8h but rather increased vasodilatation to acetylcholine (p = .015) and sodium nitroprusside (p = .005). Ozone did not affect measures of HRV during or after the exposure. Our findings do not support a direct rapid effect of ozone on vascular function or cardiac autonomic control although we cannot exclude an effect of chronic exposure or an interaction between ozone and alternative air pollutants that may be responsible for the adverse cardiovascular health effects attributed to ozone.
Collapse
Affiliation(s)
- Stefan Barath
- * Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hatch GE, McKee J, Brown J, McDonnell W, Seal E, Soukup J, Slade R, Crissman K, Devlin R. Biomarkers of Dose and Effect of Inhaled Ozone in Resting versus Exercising Human Subjects: Comparison with Resting Rats. Biomark Insights 2013; 8:53-67. [PMID: 23761957 PMCID: PMC3663491 DOI: 10.4137/bmi.s11102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To determine the influence of exercise on pulmonary dose of inhaled pollutants, we compared biomarkers of inhaled ozone (O3) dose and toxic effect between exercise levels in humans, and between humans and rats. Resting human subjects were exposed to labeled O3 (18O3, 0.4 ppm, for 2 hours) and alveolar O3 dose measured as the concentration of excess 18O in cells and extracellular material of nasal, bronchial, and bronchoalveolar lavage fluid (BALF). We related O3 dose to effects (changes in BALF protein, LDH, IL-6, and antioxidant substances) measurable in the BALF. A parallel study of resting subjects examined lung function (FEV1) changes following O3. Subjects exposed while resting had 18O concentrations in BALF cells that were 1/5th of those of exercising subjects and directly proportional to the amount of O3 breathed during exposure. Quantitative measures of alveolar O3 dose and toxicity that were observed previously in exercising subjects were greatly reduced or non-observable in O3 exposed resting subjects. Resting rats and resting humans were found to have a similar alveolar O3 dose.
Collapse
Affiliation(s)
- Gary E Hatch
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Padilla-Carlin DJ, Schladweiler MCJ, Shannahan JH, Kodavanti UP, Nyska A, Burgoon LD, Gavett SH. Pulmonary inflammatory and fibrotic responses in Fischer 344 rats after intratracheal instillation exposure to Libby amphibole. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1111-1132. [PMID: 21797767 DOI: 10.1080/15287394.2011.586940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Increased incidences of asbestosis have been reported in workers from Libby, MT, associated with exposures to amphibole-contaminated vermiculite. In this study pulmonary and histopathological changes were investigated following Libby amphibole (LA) exposure in a rat model. Rat respirable fractions of LA and amosite (aerodynamic diameter <2.5 μm) were prepared by water elutriation. Male F344 rats were exposed to single doses of either saline (SAL), amosite (0.65 mg/rat), or LA (0.65 or 6.5 mg/rat) by intratracheal instillation. At times from 1 d to 3 mo after exposure, bronchoalveolar lavage (BAL) was performed and right and left lungs were removed for reverse-transcription polymerase chain reaction (RT-PCR) and histopathological analysis, respectively. Data indicated that 0.65 mg amosite resulted in a higher degree of pulmonary injury, inflammation, and fibrotic events than LA at the same mass dose. Exposure to either amosite or high dose LA resulted in higher levels of cellular permeability and injury, inflammatory enzymes, and iron binding proteins in both BAL fluid and lung tissue at most time points when compared to SAL controls. However, mRNA expression for some growth factors (e.g., platelet-derived growth factor [PDGF]-A and transforming growth factor [TGF]-1β), which contribute to fibrosis, were downregulated at several time points. Furthermore, histopathological examination showed notable thickening of interstitial areas surrounding the alveolar ducts and terminal bronchioles. On a mass dose basis, amosite produced a greater acute and persistent lung injury for at least 3 mo after exposure. However, further testing and analysis of LA are needed with regard to the dose metric to fully evaluate its potential fibrogenicity and carcinogenicity.
Collapse
|
20
|
Mechanisms and modification of chlorine-induced lung injury in animals. Ann Am Thorac Soc 2010; 7:278-83. [PMID: 20601632 DOI: 10.1513/pats.201001-009sm] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chlorine (Cl(2)) is a reactive oxidant gas used extensively in industrial processes. Exposure of both humans and animals to high concentrations of Cl(2) results in acute lung injury, which may resolve spontaneously or progress to acute respiratory failure. Injury to airway and alveolar epithelium may result from chemical reactions of Cl(2), from HOCl (the hydrolysis product of Cl(2)), and/or from the various reaction products, such as chloramines, that are formed from the reactions of these chlorinating species with biological molecules. Subsequent reactions may initiate self-propagating reactions and induce the production of inflammatory mediators compounding injury to pulmonary surfactant, ion channels, and components of lung epithelial and airway cells. Low-molecular-weight antioxidants, such as ascorbate, glutathione, and urate, present in the lung epithelial lining fluid and tissue, remove Cl(2) and HOCl and thus decrease injury to critical target biological targets. However, levels of lung antioxidants of animals exposed to Cl(2) in concentrations likely to be encountered in the vicinity of industrial accidents decrease rapidly and irreversibly. Our measurements show that prophylactic administration of a mixture containing ascorbate and desferal N-acetyl-cysteine, a precursor of reduced glutathione, prevents Cl(2)-induced injury to the alveolar epithelium of rats exposed to Cl(2). The clinical challenge is to deliver sufficient quantities of antioxidants noninvasively, after Cl(2) exposure, to decrease morbidity and mortality.
Collapse
|
21
|
Targeting maladaptive glutathione responses in lung disease. Biochem Pharmacol 2010; 81:187-93. [PMID: 20951119 DOI: 10.1016/j.bcp.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 11/20/2022]
Abstract
The lung is unique being exposed directly to the atmospheric environment containing xenobiotics, pathogens, and other agents which are continuously inhaled on a daily basis. Additionally, the lung is exposed to higher ambient oxygen levels which can promote the formation of a complex number of reactive oxygen and nitrogen species. Due to this constant barrage of potential damaging agents, the lung has developed a high degree of plasticity in dealing with ever changing conditions. In the present commentary, we will focus on glutathione (GSH) as a key antioxidant in the lung airways and discuss mechanisms by which the lung uses GSH to adapt to its rapidly changing environment. We will then examine the evidence on how defective and inadequate adaptive responses can lead to lung injury, inflammation and disease. Lastly, we will examine some of the recent attempts to alter lung GSH levels with therapies in a number of human lung diseases and discuss some of the limitations of such approaches.
Collapse
|
22
|
|
23
|
Allan K, Kelly FJ, Devereux G. Antioxidants and allergic disease: a case of too little or too much? Clin Exp Allergy 2009; 40:370-80. [PMID: 19968654 DOI: 10.1111/j.1365-2222.2009.03413.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Speculation persists as to the possible role, if any, of dietary antioxidants in allergic disease. While it has been hypothesized that the recent increase in allergic disease is a consequence of declining dietary antioxidant intake, an alternative hypothesis proposes that the increase in allergic disease is due to increasing antioxidant intake. Dietary trends are conflicting; the intake of some antioxidants has declined, for others intakes are likely to have increased. Animal model studies demonstrate that antioxidant supplementation at the time of primary and subsequent allergen exposure attenuates allergic inflammatory responses. The data from human studies are less clear. Observational epidemiological studies of humans are beset by several methodological limitations associated with the assessment of diet and predominantly focus on asthma. Most observational studies report potentially beneficial associations between dietary antioxidants and allergic outcomes, but a small minority report potentially adverse associations. Human intervention studies suggest that single antioxidant supplements confer minimal, if any clinical benefit in adults with asthma, however, there is still scope for studies in children, atopic dermatitis, allergic rhinitis (AR) and of antioxidant combinations. More recently, it has been suggested that dietary antioxidants in the developmental context of fetal and infant development influence the development childhood asthma and atopic sensitization possibly by affecting the first interactions between the neonatal immune system and allergens. While a small number of birth cohort studies have reported potentially beneficial associations between maternal intake of some antioxidants during pregnancy and childhood asthma, there is very limited data suggesting associations between maternal antioxidant intake and childhood atopic dermatitis and AR. The available epidemiological, animal, molecular and immunological data suggest that there are associations between antioxidants and asthma and to a much lesser extent, atopic dermatitis and AR. However, the exact nature of the relationships and the potential for therapeutic intervention remain unclear.
Collapse
Affiliation(s)
- K Allan
- Department of Environmental and Occupational Medicine, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|