1
|
Do G, Tsai PJ, Yoon C. Evaluation of particle and volatile organic compound emissions during the use of 3D pens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173003. [PMID: 38710394 DOI: 10.1016/j.scitotenv.2024.173003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
This study investigated particle and volatile organic compound (VOC) emission rates (ER) from 3D pens, which are increasingly popular in children's toys. Nine filaments and two 3D pens were evaluated using a flow tunnel, a scanning mobility particle sizer, a proton-transfer-reaction time-of-flight mass spectrometer for particles, and a thermal desorption-gas chromatography-mass spectrometer for VOCs. Results showed that the ERs varied with the pen type, filament, and brand. The particle ER was highest for acrylonitrile butadiene styrene (ABS), followed by polylactic acid (PLA) and polycaprolactone (PCL). Notably, ERs of 83 % and 33 % of ABS and PLA filaments exceeded the maximum allowable particle ER (MAER; 5 × 109 particles/min) for 3D printers but were lower than the VOC MAER (173 μg/min in the office). Different filaments emitted diverse VOCs; ABS emitted styrene and benzene, PLA emitted lactide, and PCL emitted phenol. While particle ERs from 3D pens were comparable to those from printers, the total VOC ERs from 3D pens were slightly lower. Caution is warranted when using 3D pens because of potential health risks, especially their prolonged use, proximity to the breathing zone, and usage by children. This study highlights the need for considering particles and VOCs when assessing the safety of 3D pens, emphasizing awareness of potential hazards, particularly in child-oriented settings.
Collapse
Affiliation(s)
- Geonho Do
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Perng-Jy Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, North District, Tainan City 704, Taiwan
| | - Chungsik Yoon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Gao D, Zhang C, Guo H, Xu H, Liu H, Wang Z, Xu B, Gang W. Low-dose polystyrene microplastics exposure impairs fertility in male mice with high-fat diet-induced obesity by affecting prostate function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123567. [PMID: 38367694 DOI: 10.1016/j.envpol.2024.123567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The harmful effects of microplastics (MPs) on male fertility are receiving more and more attention. However, the impact of low-dose MPs exposure on the reproductive function of male mice is still unclear. In this study, we exposed male mice to low-dose MPs (25-30 μg/kg body weight/day) or low-dose MPs combined with high-fat diet (HFD) feeding. Our results showed that low-dose MPs exposure or HFD feeding significantly reduced sperm quality and the number of offspring born, while low-dose MPs exposure combined with HFD feeding further enhanced the above effects. The combination of low-dose MPs exposure and HFD feeding resulted in a notable elevation of inflammatory level within the prostate of mice and induced apoptosis of prostate epithelium and a decrease in nutrients (zinc, citrate) in seminal plasma fluid. Our findings in this study could provide valuable clues for better understanding the influence of low-dose MPs exposure on the reproductive system under metabolic disorders and facilitate the development of the prevention of reproductive toxicity caused by MPs exposure.
Collapse
Affiliation(s)
- Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Caoxu Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Huaqi Guo
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Hui Liu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Wei Gang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China; Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Thapa B, Bell DS, Anderson JL. Extraction of volatile organic compounds liberated upon filament extrusion by 3D pen and its comparison with a desktop 3D printer using solid-phase microextraction fiber and Arrow. J Chromatogr A 2024; 1719:464740. [PMID: 38401373 DOI: 10.1016/j.chroma.2024.464740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Desktop 3D printers that operate by the fused deposition modeling (FDM) mechanism are known to release numerous hazardous volatile organic compounds (VOCs) during printing, including some with potential carcinogenic effects. Operating in a similar manner to FDM 3D printers, 3D pens have gained popularity recently from their ability to allow users to effortlessly draw in the air or create various 3D printed shapes while handling the device like a pen. In contrast to numerous modern 3D printers, 3D pens lack their own ventilation systems and are often used in settings with minimum airflow. Their operation makes users more vulnerable to VOC emissions, as the released VOCs are likely to be in the breathing zone. Consequently, monitoring VOCs released during the use of 3D pens is crucial. In this study, VOCs liberated while extruding acrylonitrile butadiene styrene (ABS) filaments from a 3D pen were measured by solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS). SPME was investigated using the traditional fiber and Arrow geometries with the DVB/Carbon WR/PDMS sorbent while four different brands of ABS filaments-Amazon Basics, Gizmodork, Mynt 3D, and Novamaker-were used with the 3D pen. Heatmap analysis showed differentiation among these brands based on the liberated VOCs. The nozzle temperature and printing speed were found to affect the number and amount of released VOCs. This study goes a step further and presents for the first time a comparison between 3D pen and a desktop 3D printer based on liberated VOCs. Interestingly, the findings reveal that the 3D pen releases a greater number and amount of VOCs compared to the printer. The amounts of liberated VOCs, as indicated by the corresponding chromatographic peak areas, were found to be 1.4 to 62.6 times higher for the 3D pen compared to the 3D printer when using SPME Arrow.
Collapse
Affiliation(s)
- Bhawana Thapa
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Zou ML, Huang HC, Chen YH, Jiang CB, Wu CD, Lung SCC, Chien LC, Lo YC, Chao HJ. Sex-differences in the effects of indoor air pollutants and household environment on preschool child cognitive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160365. [PMID: 36427743 DOI: 10.1016/j.scitotenv.2022.160365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Air pollution, outdoor residential environment, indoor household characteristics, and parental mental health are potential factors associated with child development. However, few studies have simultaneously analyzed the association between the aforementioned factors and preschool child (aged 2-5 years) development. This study investigated the effects of those factors on child development and their potential modifying effects. A total of 142 participants were recruited from a birth cohort study in the Greater Taipei Area, and the evaluation was conducted at each participant's home from 2017 to 2020. Child cognitive development was assessed by psychologists using the Bayley Scales of Infant and Toddler Development and the Wechsler Preschool & Primary Scale of Intelligence. Household air pollutants, outdoor residential environment, indoor household characteristics, parental mental health, and other covariates were evaluated. Multiple regressions were used to examine the relationships between child development and covariates. Stratified analysis by child sex and parental mental health was conducted. Average indoor air pollutant levels were below Taiwan's Indoor Air Quality Standards. After adjustment for covariates, the indoor total volatile organic compounds (TVOCs) level was significantly associated with poor child development (per interquartile range increase in the TVOC level was associated with a 5.1 percentile decrease in child cognitive development). Sex difference was observed for the association between TVOC exposure and child development. Living near schools, burning incense at home, purchasing new furniture, and parental anxiety were related to child development. Indoor TVOC level was associated with poor child cognitive development, specifically with the girls. Indoor and outdoor residential environment and parental anxiety interfered with child development. TVOCs should be used cautiously at home to minimize child exposure. A low-pollution living environment should be provided to ensure children's healthy development.
Collapse
Affiliation(s)
- Ming-Lun Zou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chun Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | | | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Zhang Q, Weber RJ, Luxton TP, Peloquin DM, Baumann EJ, Black MS. Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160512. [PMID: 36442638 PMCID: PMC10259682 DOI: 10.1016/j.scitotenv.2022.160512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 06/14/2023]
Abstract
Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA.
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Derek M Peloquin
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric J Baumann
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Marilyn S Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA
| |
Collapse
|
6
|
Variability in the inorganic composition of colored acrylonitrile–butadiene–styrene and polylactic acid filaments used in 3D printing. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-022-05221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractFused filament fabrication is a 3D printing technique that has gained widespread use from homes to schools to workplaces. Thermoplastic filaments, such as acrylonitrile–butadiene–styrene (ABS) and polylactic acid (PLA), are extruded at temperatures near their respective glass transition temperature or melting point, respectively. Little has been reported on the inorganic elemental composition and concentrations present in these materials or the methods available for extracting that information. Because inorganic constituents may be included in the aerosolized particulates emitted during the printing process, identifying elements that could be present and at what specific concentrations is critical. The objective of the current research is to determine the range of metals present in thermoplastic filaments along with their relative abundance and chemical speciation as a function of polymer type, manufacturer, and color. A variety of filaments from select manufacturers were digested using a range of techniques to determine the optimal conditions for metal extraction from ABS and PLA polymers. The extraction potential for each method was quantified using by ICP-MS analysis. When possible, further characterization of the chemical composition of the filaments was investigated using X-ray Absorption spectroscopy to determine chemical speciation of the metal. Optimal digestion conditions were established using a high temperature, high pressure microwave-assisted acid digestion method to produce the most complete and repeatable extraction results. The composition and abundance of metals in the filaments varied greatly as a function of polymer, manufacturer, and color. Potential elements of concern present in the filaments at elevated concentration included that could pose a respiratory risk included Si, Al, Ti, Cu, Zn, and Sn. XAS analysis revealed a mixture of metal oxides, mineral, and organometallic compounds were present in the filaments that were being used to increase opaqueness impart color (dyes), polymeric catalysts, and flame retardants. This work shows that a variety of metals are present in the starting materials used for 3D printing and depending on their partitioning into 3D printed products and byproducts as well as the exposure route, may pose a health risk which merits further investigation.
Collapse
|
7
|
Haug H, Klein L, Sauerwald T, Poelke B, Beauchamp J, Roloff A. Sampling Volatile Organic Compound Emissions from Consumer Products: A Review. Crit Rev Anal Chem 2022; 54:1895-1916. [PMID: 36306209 DOI: 10.1080/10408347.2022.2136484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Volatile organic compounds (VOCs) are common constituents of many consumer products. Although many VOCs are generally considered harmless at low concentrations, some compound classes represent substances of concern in relation to human (inhalation) exposure and can elicit adverse health effects, especially when concentrations build up, such as in indoor settings. Determining VOC emissions from consumer products, such as toys, utensils or decorative articles, is of utmost importance to enable the assessment of inhalation exposure under real-world scenarios with respect to consumer safety. Due to the diverse sizes and shapes of such products, as well as their differing uses, a one-size-fits-all approach for measuring VOC emissions is not possible, thus, sampling procedures must be chosen carefully to best suit the sample under investigation. This review outlines the different sampling approaches for characterizing VOC emissions from consumer products, including headspace and emission test chamber methods. The advantages and disadvantages of each sampling technique are discussed in relation to their time and cost efficiency, as well as their suitability to realistically assess VOC inhalation exposures.
Collapse
Affiliation(s)
- Helen Haug
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Erlangen, Germany
| | - Luise Klein
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tilman Sauerwald
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Birte Poelke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
8
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
9
|
Tedla G, Jarabek AM, Byrley P, Boyes W, Rogers K. Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152622. [PMID: 34963600 PMCID: PMC8961686 DOI: 10.1016/j.scitotenv.2021.152622] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 05/31/2023]
Abstract
Fused filament fabrication (FFF) or 3D printing is a growing technology used in industry, cottage industry and for consumer applications. Low-cost 3D printing devices have become increasingly popular among children and teens. Consequently, 3D printers are increasingly common in households, schools, and libraries. Because the operation of 3D printers is associated with the release of inhalable particles and volatile organic compounds (VOCs), there are concerns of possible health implications, particularly for use in schools and residential environments that may not have adequate ventilation such as classrooms bedrooms and garages, etc. Along with the growing consumer market for low-cost printers and printer pens, there is also an expanding market for a range of specialty filaments with additives such as inorganic colorants, metal particles and nanomaterials as well as metal-containing flame retardants, antioxidants, heat stabilizers and catalysts. Inhalation of particulate-associated metals may represent a health risk depending on both the metal and internal dose to the respiratory tract. Little has been reported, however, about the presence, speciation, and source of metals in the emissions; or likewise the effect of metals on emission processes and toxicological implications of these 3D printer generated emissions. This report evaluates various issues including the following: metals in feedstock with a focus on filament characteristics and function of metals; the effect of metals on the emissions and metals detected in emissions; printer emissions, particle formation, transport, and transformation; exposure and translation to internal dose; and potential toxicity on inhaled dose. Finally, data gaps and potential areas of future research are discussed within these contexts.
Collapse
Affiliation(s)
- Getachew Tedla
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America
| | - Annie M Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Peter Byrley
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - William Boyes
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America.
| |
Collapse
|
10
|
Kim D, Lee K. Characteristics of ultrafine particles emitted from 3D-pens and effect of partition on children's exposure during 3D-pen operation. INDOOR AIR 2022; 32:e12978. [PMID: 34939703 DOI: 10.1111/ina.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A three-dimensional (3D) printing pen is a popular writing instrument that uses a heated nozzle, and is similar to a 3D-printer. Processing thermoplastic filaments with a 3D-pen can emit ultrafine particles (UFPs). 3D-pen education sessions were held with "∏"-shaped partitions for the prevention of coronavirus disease (COVID-19). This study aimed to characterize UFP emissions from two types of 3D-pens and evaluate the influence of "∏"-shaped partitions on UFP exposure. Measurements of UFP emission rates and the size distribution of particles emitted from 3D-pens were conducted in a chamber (2.5 m3 ). The partition's influence on UFP exposure was evaluated with and without a "∏"-shaped partition on a desk. A scanning mobility particle sizer (SMPS) and an optical particle spectrometer (OPS) were used to measure the particle number concentration (PNC) and size distribution. For both 3D-pen A and B, the average emission rates were statistically significantly highest for acrylonitrile butadiene styrene (ABS) filament (8.4 × 106 [3.4] particles/min and 1.1 × 106 [1.8] particles/min), followed by polylactic acid (PLA) (2.8 × 105 [1.5] particles/min and 4.8 × 104 [1.8] particles/min) and polycaprolactone (PCL) filaments (1.4 × 104 [2.8] particles/min and 2.0 × 104 [2.8] particles/min). For all filaments, particles in the Aitken mode (30-100 nm) accounted for the highest proportion. In 3D-pen A, PNCs were higher with the partition than without it for ABS (1.2 × 106 [1.15] particles/cm3 vs. 1.4 × 105 [1.29] particles/cm3 ) and PLA (6.2 × 105 [1.38] particles/cm3 vs. 8.9 × 104 [1.12] particles/cm3 ), whereas for 3D-pen B, they were higher with the partition for ABS (9.6 × 105 [1.13] particles/cm3 vs. 4.9 × 105 [1.22] particles/cm3 ) only. With the partition installed, PNCs decreased to the background level after the operation ended, whereas it took 2-6 min without the partition. However, the mass concentrations of PLA and PCL with 3D-pen A were not statistically significantly different with respect to the partition status. The use of 3D-pens with a partition can lead to high UFP exposure. Therefore, guidelines are required for the safe use of 3D-pens and partitions.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
11
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. State of the art in additive manufacturing and its possible chemical and particle hazards-review. INDOOR AIR 2021; 31:1733-1758. [PMID: 34081372 PMCID: PMC8596642 DOI: 10.1111/ina.12853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Additive manufacturing, enabling rapid prototyping and so-called on-demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three-dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years' publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Dorota Kondej
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Joanna Kowalska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | | |
Collapse
|
12
|
Stefaniak AB, Bowers LN, Cottrell G, Erdem E, Knepp AK, Martin S, Pretty J, Duling MG, Arnold ED, Wilson Z, Krider B, LeBouf RF, Virji MA, Sirinterlikci A. Use of 3-Dimensional Printers in Educational Settings: The Need for Awareness of the Effects of Printer Temperature and Filament Type on Contaminant Releases. ACS CHEMICAL HEALTH & SAFETY 2021; 28:444-456. [PMID: 35979087 PMCID: PMC9377640 DOI: 10.1021/acs.chas.1c00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Material extrusion-type fused filament fabrication (FFF) 3-D printing is a valuable tool for education. During FFF 3-D printing, thermal degradation of the polymer releases small particles and chemicals, many of which are hazardous to human health. In this study, particle and chemical emissions from 10 different filaments made from virgin (never printed) and recycled polymers were used to print the same object at the polymer manufacturer's recommended nozzle temperature ("normal") and at a temperature higher than recommended ("hot") to simulate the real-world scenarios of a person intentionally or unknowingly printing on a machine with a changed setting. Emissions were evaluated in a college teaching laboratory using standard sampling and analytical methods. From mobility sizer measurements, particle number-based emission rates were 81 times higher; the proportion of ultrafine particles (diameter <100 nm) were 4% higher, and median particle sizes were a factor of 2 smaller for hot-temperature prints compared with normal-temperature prints (all p-values <0.05). There was no difference in emission characteristics between recycled and virgin acrylonitrile butadiene styrene and polylactic acid polymer filaments. Reducing contaminant release from FFF 3-D printers in educational settings can be achieved using the hierarchy of controls: (1) elimination/substitution (e.g., training students on principles of prevention-through-design, limiting the use of higher emitting polymer when possible); (2) engineering controls (e.g., using local exhaust ventilation to directly remove contaminants at the printer or isolating the printer from students); (3) administrative controls such as password protecting printer settings and establishing and enforcing adherence to a standard operating procedure based on a proper risk assessment for the setup and use (e.g., limiting the use of temperatures higher than those specified for the filaments used); and (4) maintenance of printers.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N Bowers
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Gabe Cottrell
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Ergin Erdem
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Alycia K Knepp
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jack Pretty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Matthew G Duling
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Elizabeth D Arnold
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Zachary Wilson
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Benjamin Krider
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Ryan F LeBouf
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - M Abbas Virji
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Arif Sirinterlikci
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| |
Collapse
|
13
|
Rojek I, Mikołajewski D, Macko M, Szczepański Z, Dostatni E. Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. MATERIALS 2021; 14:ma14112737. [PMID: 34067326 PMCID: PMC8196833 DOI: 10.3390/ma14112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
Technological and material issues in 3D printing technologies should take into account sustainable development, use of materials, energy, emitted particles, and waste. The aim of this paper is to investigate whether the sustainability of 3D printing processes can be supported by computational intelligence (CI) and artificial intelligence (AI) based solutions. We present a new AI-based software to evaluate the amount of pollution generated by 3D printing systems. We input the values: printing technology, material, print weight, etc., and the expected results (risk assessment) and determine if and what precautions should be taken. The study uses a self-learning program that will improve as more data are entered. This program does not replace but complements previously used 3D printing metrics and software.
Collapse
Affiliation(s)
- Izabela Rojek
- Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (I.R.); (D.M.)
| | - Dariusz Mikołajewski
- Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (I.R.); (D.M.)
| | - Marek Macko
- Department of Mechatronic Systems, Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.M.); (Z.S.)
| | - Zbigniew Szczepański
- Department of Mechatronic Systems, Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.M.); (Z.S.)
| | - Ewa Dostatni
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
- Correspondence:
| |
Collapse
|
14
|
Byrley P, Boyes WK, Rogers K, Jarabek AM. 3D Printer Particle Emissions: Translation to Internal Dose in Adults and Children. JOURNAL OF AEROSOL SCIENCE 2021; 154:1-12. [PMID: 35999899 PMCID: PMC9393897 DOI: 10.1016/j.jaerosci.2021.105765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Desktop fused deposition modeling (FDM®) three-dimensional (3D) printers are becoming increasingly popular in schools, libraries, and among home hobbyists. FDM® 3D printers have been shown to release ultrafine airborne particles in large amounts, indicating the potential for inhalation exposure and consequent health risks among FDM® 3D printer users and other room occupants including children. These particles are generated from the heating of thermoplastic polymer feedstocks during the FDM® 3D printing process, with the most commonly used polymers being acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA). Risk assessment of these exposures demands estimation of internal dose, especially to address intra-human variability across life stages. Dosimetry models have proven to effectively translate particle exposures to internal dose metrics relevant to evaluation of their effects in the respiratory tract. We used the open-access multiple path particle dosimetry (MPPD v3.04) model to estimate inhaled particle deposition in different regions of the respiratory tract for children of various age groups from three months to eighteen years old adults. Mass concentration data for input into the MPPD model were calculated using particle size distribution and density data from experimental FDM® 3D printer emissions tests using both ABS and PLA. The impact of changes in critical parameters that are principal determinants of inhaled dose, including: sex, age, and exposure duration, was examined using input parameter values available from the International Commission on Radiological Protection. Internal dose metrics used included regional mass deposition, mass deposition normalized by pulmonary surface area, surface area of deposited particles by pulmonary surface area, and retained regional mass. Total mass deposition was found to be highest in the 9-year-old to 18-year-old age groups with mass deposition by pulmonary surface area highest in 3-month-olds to 9-year-olds and surface area of deposited particles by pulmonary surface area to be highest in 9-year-olds. Clearance modeling revealed that frequent 3D printer users are at risk for an increased cumulative retained dose.
Collapse
Affiliation(s)
- Peter Byrley
- Health and Environmental Effects Assessment Division (HEEAD), Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), USEPA, RTP, NC 27711
- Corresponding author: 109 T.W. Alexander Drive, MD B243, CPHEA/HEEAD/IHAB, U.S. EPA, Research Triangle Park, NC 27711, United States, Telephone: +1-919-541-9457;
| | - William K. Boyes
- Public Health and Integrated Toxicology Division (PHID), Center for Public Health and Environmental Assessment (CPHEA), Office of Research and Development (ORD), USEPA, RTP, NC 27711
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division (WECD), Center for Environmental Measurement and Modeling (CEMM), Office of Research and Development (ORD), USEPA, RTP, NC 27711
| | - Annie M. Jarabek
- Health and Environmental Effects Assessment Division (HEEAD), Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), USEPA, RTP, NC 27711
| |
Collapse
|
15
|
Stefaniak AB, Bowers LN, Martin SB, Hammond DR, Ham JE, Wells JR, Fortner AR, Knepp AK, du Preez S, Pretty JR, Roberts JL, du Plessis JL, Schmidt A, Duling MG, Bader A, Virji MA. Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases. ACS CHEMICAL HEALTH & SAFETY 2021; 28:268-278. [DOI: 10.1021/acs.chas.0c00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleksandr B. Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N. Bowers
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Duane R. Hammond
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jason E. Ham
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - J. R. Wells
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alyson R. Fortner
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Sonette du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jack R. Pretty
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jennifer L. Roberts
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Johan L. du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Austin Schmidt
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - Matthew G. Duling
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Andrew Bader
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
16
|
Park J, Kwon OH, Yoon C, Park M. Estimates of particulate matter inhalation doses during three-dimensional printing: How many particles can penetrate into our body? INDOOR AIR 2021; 31:392-404. [PMID: 32875646 DOI: 10.1111/ina.12736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Harmful emissions including particulates, volatile organic compounds, and aldehydes are generated during three-dimensional (3D) printing. Ultrafine particles are particularly important due to their ability to penetrate deep into the lung. We modeled inhalation exposure by particle size during 3D printing. A total of six thermoplastic filaments were used for printing under manufacturer's recommended conditions, and particle emissions in the size range between 10 nm and 10 μm were measured. The inhalation exposure dose including inhaled and deposited doses was estimated using a mathematical model. For all materials, the number of particles between 10 nm and 1 μm accounted for a large proportion among the released particles, with nano-sized particles being the dominant size. More than 1.3 × 109 nano-sized particles/kgbw/g (95.3 ± 104.0 ng/kgbw/g) could be inhaled, and a considerable amount was deposited in respiratory regions. The total deposited dose in terms of particle number was 3.1 × 108 particles/kgbw/g (63.6% of the total inhaled dose), and most (41.3%) were deposited in the alveolar region. The total mass of particles deposited was 19.8 ± 16.6 ng/kgbw/g, with 10.1% of the total mass deposited in the alveolar region. Given our findings, the inhalation exposure level is mainly determined by printing conditions, particularly the filament type and manufacturer-recommended extruder temperature.
Collapse
Affiliation(s)
- Jihoon Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
- Accident Response Division, National Institute of Chemical Safety, The Ministry of Environment, Daejeon, Republic of Korea
| | - Oh-Hun Kwon
- Samsung Electronics Vietnam Co., Ltd., BắcNinh, Socialist Republic of Vietnam
| | - Chungsik Yoon
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Mijin Park
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Farcas MT, McKinney W, Qi C, Mandler KW, Battelli L, Friend SA, Stefaniak AB, Jackson M, Orandle M, Winn A, Kashon M, LeBouf RF, Russ KA, Hammond DR, Burns D, Ranpara A, Thomas TA, Matheson J, Qian Y. Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament. Inhal Toxicol 2020; 32:403-418. [PMID: 33076715 DOI: 10.1080/08958378.2020.1834034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Kyle W Mandler
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lori Battelli
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Mark Jackson
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ava Winn
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ryan F LeBouf
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kristen A Russ
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Dru Burns
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Anand Ranpara
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|