1
|
Wang E, Sun S, Li H, Jia Y, Bai Z. HBx/WDR5 enhances IGF-1 transcription in hepatocellular carcinoma cells and promotes recruitment, infiltration, and activity of Treg cells. Immunol Res 2025; 73:69. [PMID: 40199768 PMCID: PMC11978548 DOI: 10.1007/s12026-025-09620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
HBV X protein (HBx), the smallest open reading frame in the hepatitis B virus (HBV) genome, can promote hepatocellular carcinoma (HCC) tumorigenesis by activating the expression of multiple oncogenes through inducing epigenetic alterations and interacting with the underlying transcriptional machinery. HBV non-infected HepG2 and Huh7 cells were transfected with HBx expression plasmids. The transcriptional, protein expression, and secretion levels of IGF-1 were detected by RT-qPCR, western blot, and ELISA, respectively. ChIP-qPCR was used to analyze the binding proteins on the IGF-1 gene. A co-culture system of HCC and Treg cells was designed using Transwell chambers. IGF-1 mRNA, protein, and secretion levels were increased in HepG2 and Huh7 cells exogenously expressing HBx. HBx was able to enter the nucleus and interact with the enhancer region of the IGF-1 gene. Levels of WDR5 and H3K4me1, which bind to the enhancer region of the IGF-1 gene, were also increased in HepG2 and Huh7 cells ectopically expressing HBx. Knockdown of WDR5 counteracted the upregulation of IGF-1 mRNA and protein levels by HBx. In the cell co-culture system, HBx/IGF-1 signaling in HCC cells promoted Treg cells expansion, IL-10 secretion, and infiltration, which was blocked by the IGF-1R inhibitor picropodophyllin. HBx/WDR5 promoted IGF-1 transcription in HCC cells through enhancers. HBx could promote Treg cell recruitment, infiltration, and activity by enhancing IGF-1 expression. IGF-1/IGF-1R signaling plays an important role in the communication between HCC cells and Treg cells. Targeting WDR or IGF-1/IGF-1R would be beneficial for the treatment of HCC.
Collapse
Affiliation(s)
- Erli Wang
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Shuhua Sun
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Hui Li
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yi Jia
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Zhe Bai
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China.
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China.
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
2
|
Abdelbary R, Ragheb M, El Sobky SA, El-Badri N, Aboud N, Tawheed A, Gomaa A, Zidan M, Aziz RK, Abouzid AE, Salah RA, El-Kassas M, Waked I, Moustafa A, Fawzy IO, El-Ekiaby N, Abdelaziz AI. MiR-216a-3p inhibits the cytotoxicity of primary natural killer cells. Front Oncol 2025; 14:1523068. [PMID: 39906666 PMCID: PMC11790671 DOI: 10.3389/fonc.2024.1523068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION The role of miRNAs in regulating variable molecular functions has been sought by scientists for its promising utility in regulating the immune response and, hence, in treating various diseases. In hepatocellular carcinoma (HCC) specifically, a reduction in the number and efficiency of circulating and intrahepatic natural killer (NK) cells has been reported. Our project aims to investigate the role of miR-216a-3p in the regulation of NK cell cytotoxicity, especially since it plays a tumor suppressor role in the context of HCC. METHODS To achieve our aim, we isolated NK cells from the whole blood of 86 patients with HCC and 23 healthy controls. We assessed the expression profile of miR-216a-3p in NK cells of patients and controls. Furthermore, we induced the expression of miR-216a-3p in NK cells isolated from healthy controls, followed by measuring the release of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), perforins (PRF) and granzyme B (GrB) using ELISA as well as NK cells cytolytic activity against Huh7 cells using lactate dehydrogenase (LDH) cytotoxicity assay. After that, we performed an in silico analysis to understand the mechanistic regulation imposed by miR-216a-3p on NK cells to study its impact on one of its potential downstream targets. RESULTS Our results have indicated that miR-216a-3p has higher expression in NK cells of patients with HCC, and simulating this elevated expression pattern via forcing miR-216a-3p expression in normal NK cells has negatively impacted the release of TNF- α, IFN- γ, GrB, and PRF. Consequently, a decrease in cell cytolysis was observed. Our in silico analysis revealed that the predicted downstream targets of miR-216a-3p are enriched in the FOXO-signaling pathway. Among those targets is FOXO-1, which has been reported to play a role in NK cell maturation. Thus, we evaluated FOXO-1 expression upon mimicking miR-216a-3p in control NK cells that showed significant downregulation of FOXO-1 on both RNA and protein levels. CONCLUSION In conclusion, we report miR-216-3p as a negative regulator of NK cell cytotoxicity.
Collapse
Affiliation(s)
- Rowan Abdelbary
- Biotechnology Graduate Program, American University in New Cairo, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, American University in New Cairo, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nourhan Aboud
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed Tawheed
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Asmaa Gomaa
- National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Mona Zidan
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Abd Elrahman Abouzid
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Imam Waked
- National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in New Cairo, Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | | | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | |
Collapse
|
3
|
Youness RA, Khater N, El-Khouly A, Nafea H, Manie T, Habashy D, Gad MZ. Direct and indirect modulation of STAT3/CSE/H 2S axis in triple negative breast cancer by non-coding RNAs: MALAT-1 lncRNA, miR-486-5p and miR-30a-5p. Pathol Res Pract 2025; 265:155729. [PMID: 39580879 DOI: 10.1016/j.prp.2024.155729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Recently, our research group reported an upregulated expression profile of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), key enzymes involved in hydrogen sulfide (H2S) production, in triple-negative breast cancer (TNBC) patients. However, the regulatory mechanisms underlying such altered expression patterns are not yet fully understood. In this study, we focused on the role of the STAT3/CSE/H2S axis and the potential involvement of non-coding RNAs (ncRNAs), including long and short ncRNAs, in modulating this pivotal pathway. The results revealed that STAT3 was upregulated and positively correlated with CSE expression in BC patients. Additionally, the lncRNA MALAT-1 was found to regulate STAT3 expression, indirectly influencing CSE levels. Furthermore, we explored the interplay between the IGF-1R as a gatekeeper for JAK/STAT pathway and accordingly its impact on the STAT3/CSE/H2S axis in TNBC cell lines. Our results demonstrated that miR-486-5p, a tumor suppressor miRNA, directly targets IGF-1R, leading to the downstream suppression of STAT3 and CSE in MDA-MB-231 cells. To identify a direct upstream repressor of CSE and CBS, we conducted an in silico analysis and identified miR-30a-5p as a promising candidate. When ectopically expressed, miR-30a-5p was downregulated in BC tissues and effectively suppressed CSE and CBS expression. In conclusion, this study revealed novel regulatory mechanisms involved in CSE and CBS expression in TNBC patients and cell lines. Abolishing H2S-synthesizing machinery, particularly via miR-30a-5p, may represent a promising therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Rana A Youness
- Molecular Genetics and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Aisha El-Khouly
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Danira Habashy
- Pharmacology and Toxicology and Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
4
|
Abdelhamid AM, Zeinelabdeen Y, Manie T, Khallaf E, Assal RA, Youness RA. miR-17-5p/STAT3/H19: A novel regulatory axis tuning ULBP2 expression in young breast cancer patients. Pathol Res Pract 2024; 263:155638. [PMID: 39388743 DOI: 10.1016/j.prp.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM UL-16 binding protein 2 (ULBP2) is a highly altered ligand for the activating receptor, NKG2D in breast cancer (BC). However, the mechanism behind its de-regulation in BC patients remains to be explored. The sophisticated crosstalk between miR-17-5p, the lncRNA H19, and STAT3 as a possible upstream regulatory loop for ULBP2 in young BC patients and cell lines remains as an unexplored area. Therefore, this study aimed at unravelling the ncRNA circuit regulating ULBP2 in young BC patients and cell lines. PATIENTS AND METHODS A total of 30 BC patients were recruited for this study. The expression levels of miR-17-5p, lncRNA H19, and STAT3 were examined in 30 BC tissues compared to their normal counterparts. In addition, the expression signatures of those transcripts were compared in young (<40 years) and old BC (≥40 years) patients. miR-17-5p oligonucleotides, STAT3 and H19 siRNAs were transfected in MDA-MB-231 cells using HiPerfect® Transfection Reagent. miR-17-5p and the transcripts of the target genes quantified using RT-qPCR. Their relative expression was calculated using the 2-ΔΔCT method. RESULTS Through acting as a ceRNA circuit that antagonizes the function of miR-17-5p, H19 prevented the miR-17-5p-induced downregulation of STAT3; this mechanism further contributes to the pathogenesis of BC. Ectopic expression of miR-17-5p in MDA-MB-231 cells displayed its prominent role as an indirect potential activator of NK cells by significantly repressing the expression levels of the oncogenic mediator STAT3 and the oncogenic lncRNA H19 and inducing ULBP2 expression level by 3 folds in TNBC cell lines compared to mock cells. Furthermore, knocking down of STAT3 repressed the lncRNA H19 and increased ULBP2 expression levels, whereas siRNAs against H19 increased the expression levels of ULBP2. CONCLUSION This study highlighted the crosstalk between the novel regulatory network composed of miR-17-5p, H19 and STAT3, and their impact on ULBP2 in BC. Moreover, this study underscored the potential role of miR-17-5p in counteracting the immune evasion tactics, particularly the shedding of ULBP2 in young BC patients, through the modulation of the STAT3/H19/ULBP2 regulatory axis. Thus, targeting this novel regulatory network could potentially enhance our understanding and advance the future application of the innate system-mediated immunotherapy in BC.
Collapse
Affiliation(s)
- A M Abdelhamid
- Biotechnology School, Nile University, Giza 12588, Egypt
| | - Y Zeinelabdeen
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - T Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - E Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University, New Administrative Capital 11835, Egypt.
| |
Collapse
|
5
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
6
|
Long BY, Wang Y, Hao SH, Shi G. Molecular significance of circRNAs in malignant lymphoproliferative disorders: pathogenesis and novel biomarkers or therapeutic targets. Am J Cancer Res 2024; 14:4633-4651. [PMID: 39417189 PMCID: PMC11477815 DOI: 10.62347/kmwb5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Recent studies have shown that circular RNAs (CircRNAs) have the novel functions and molecular mechanisms in the pathogenesis of malignant diseases. CircRNAs have been found to be associated with the occurrence and development of lymphoproliferative diseases, impacting on lymphocyte proliferation. This article provides a review of the pathogenesis of circRNAs in malignant lymphoproliferative disorders, focusing on conditions such as acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and lymphoma. Additionally, it discusses the potential value of circRNAs as novel biomarkers or therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Bo-Yang Long
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yan Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, Shandong, China
| | - Shu-Hong Hao
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Guang Shi
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
7
|
Youness RA, Hassan HA, Abaza T, Hady AA, El Magdoub HM, Ali M, Vogel J, Thiersch M, Gassmann M, Hamdy NM, Aboouf MA. A Comprehensive Insight and In Silico Analysis of CircRNAs in Hepatocellular Carcinoma: A Step toward ncRNA-Based Precision Medicine. Cells 2024; 13:1245. [PMID: 39120276 PMCID: PMC11312109 DOI: 10.3390/cells13151245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease at all stages, including initiation, development, progression, invasion, and metastasis, in addition to the response to treatment. In this review, we discuss the biogenesis and regulatory functional roles of circRNAs, as well as circRNA-protein-mRNA ternary complex formation, elucidating the intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm of HCC.
Collapse
Affiliation(s)
- Rana A. Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Hossam A. Hassan
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Tasneem Abaza
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
- Biotechnology Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt
| | - Ahmed A. Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Hekmat M. El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 19648, Egypt;
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Johannes Vogel
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Markus Thiersch
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mostafa A. Aboouf
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
8
|
Assal RA, Elemam NM, Mekky RY, Attia AA, Soliman AH, Gomaa AI, Efthimiadou EK, Braoudaki M, Fahmy SA, Youness RA. A Novel Epigenetic Strategy to Concurrently Block Immune Checkpoints PD-1/PD-L1 and CD155/TIGIT in Hepatocellular Carcinoma. Transl Oncol 2024; 45:101961. [PMID: 38631259 PMCID: PMC11040172 DOI: 10.1016/j.tranon.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944-5p, miR-105-5p, miR-486-5p, miR-506-5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs-CCAT-1, MALAT-1, or H19-markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486-5p, miR-506-5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944-5p and miR-105-5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105-5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105-5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.
Collapse
Affiliation(s)
- Reem A Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development, Cairo-Ismailia Desert Road, 11785, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Radwa Y Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Abdelrahman A Attia
- General Surgery Department, Ain Shams University, Demerdash Hospital, Cairo, Egypt
| | - Aya Hesham Soliman
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Asmaa Ibrahim Gomaa
- Department of Hepatology, National Liver Institute, Menoufiya University, Shebin El-Kom, Egypt
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11835, Cairo, Egypt
| | - Rana A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt; Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt.
| |
Collapse
|
9
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
10
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
11
|
Rashwan HH, Taher AM, Hassan HA, Awaji AA, Kiriacos CJ, Assal RA, Youness RA. Harnessing the supremacy of MEG3 LncRNA to defeat gastrointestinal malignancies. Pathol Res Pract 2024; 256:155223. [PMID: 38452587 DOI: 10.1016/j.prp.2024.155223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a pivotal role in the carcinogenesis and progression of various human malignancies including gastrointestinal malignancies. This comprehensive review reports the functions and mechanisms of the lncRNA maternally expressed gene 3 (MEG3) involved in gastrointestinal malignancies. It summarizes its roles in mediating the regulation of cellular proliferation, apoptosis, migration, invasiveness, epithelial-to-mesenchymal transition, and drug resistance in several gastrointestinal cancers such as colorectal cancer, gall bladder cancer, pancreatic cancer, gastric cancer, esophageal cancer, cholangiocarcinoma, gastrointestinal stromal tumors and most importantly, hepatocellular carcinoma. In addition, the authors briefly highlight its implicated mechanistic role and interactions with different non-coding RNAs and oncogenic signaling cascades. This review presents the rationale for developing non coding RNA-based anticancer therapy via harnessing the power of MEG3 in gastrointestinal malignancies.
Collapse
Affiliation(s)
- H H Rashwan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, 12677, Giza, Egypt
| | - A M Taher
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - H A Hassan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - A A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - C J Kiriacos
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt.
| |
Collapse
|
12
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
13
|
Pellegrino M, Secli V, D’Amico S, Petrilli LL, Caforio M, Folgiero V, Tumino N, Vacca P, Vinci M, Fruci D, de Billy E. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front Immunol 2024; 15:1356321. [PMID: 38420122 PMCID: PMC10899349 DOI: 10.3389/fimmu.2024.1356321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valerio Secli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Silvia D’Amico
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Matteo Caforio
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valentina Folgiero
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Doriana Fruci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
14
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
15
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
16
|
Youness RA, Mohamed AH, Efthimiadou EK, Mekky RY, Braoudaki M, Fahmy SA. A Snapshot of Photoresponsive Liposomes in Cancer Chemotherapy and Immunotherapy: Opportunities and Challenges. ACS OMEGA 2023; 8:44424-44436. [PMID: 38046305 PMCID: PMC10688172 DOI: 10.1021/acsomega.3c04134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 12/05/2023]
Abstract
To provide precise medical regimens, photonics technologies have been involved in the field of nanomedicine. Phototriggered liposomes have been cast as promising nanosystems that achieve controlled release of payloads in several pathological conditions such as cancer, autoimmune, and infectious diseases. In contrast to the conventional liposomes, this photoresponsive element greatly improves therapeutic efficacy and reduces the adverse effects of gene/drug therapy during treatment. Recently, cancer immunotherpay has been one of the hot topics in the field of oncology due to the great success and therapeutic benefits that were well-recognized by the patients. However, several side effects have been encountered due to the unmonitored augmentation of the immune system. This Review highlights the most recent advancements in the development of photoresponsive liposome nanosystems in the field of oncology, with a specific emphasis on challenges and opportunities in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Rana A. Youness
- Biology
and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 4824201, Egrypt
- Biology
and Biochemistry Department, Molecular Genetics Research Team (MGRT),
School of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Adham H. Mohamed
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Eleni K. Efthimiadou
- Inorganic
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Radwa Y. Mekky
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Maria Braoudaki
- Clinical,
Pharmaceutical, and Biological Science Department, School of Life
and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, U.K.
| | - Sherif Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
17
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|
18
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
19
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Youness RA, Gohar A, Kiriacos CJ, El-Shazly M. Heat Shock Proteins: Central Players in Oncological and Immuno-Oncological Tracks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:193-203. [PMID: 36038808 DOI: 10.1007/5584_2022_736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heat shock proteins (HSPs) are a group of proteins that promote protein folding, inhibit denaturation of cellular proteins, and maintain other proteins' functional activities when cells are subjected to stress and/or high temperature. HSP classification is generally based on their molecular weights into large and small HSP. The family of small HSPs includes HSPs 27, 40, 60, 70, and 90. The potential roles of HSP27 and HSP70 are quite evident in different solid malignancies, including breast, colorectal, pancreatic, and liver cancers. In this chapter, the authors focus on HSP27 and HSP70 signaling in oncology and their role in different solid malignancies as well as they shed light on the novel role of HSP70 and HSP90 in the immune-oncology field.
Collapse
Affiliation(s)
- Rana A Youness
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, Egypt.
| | - Asmaa Gohar
- Extract and Allergen Evaluation Lab, Central Adminstration of Biological, Innovation Products and Clinical Studies, Egypt Drug Authority, Cairo, Egypt
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, Egypt
| | - Mohamed El-Shazly
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.
| |
Collapse
|
21
|
El Sobky SA, Aboud NK, El Assaly NM, Fawzy IO, El-Ekiaby N, Abdelaziz AI. Regulation of lipid droplet (LD) formation in hepatocytes via regulation of SREBP1c by non-coding RNAs. Front Med (Lausanne) 2022; 9:903856. [PMID: 36203751 PMCID: PMC9530594 DOI: 10.3389/fmed.2022.903856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Increased de novo lipogenesis (DNL) is one of the key factors contributing to fat accumulation and non-alcoholic fatty liver disease (NAFLD). Among the critical transcription factors (TFs) regulating DNL is mTOR and its downstream lipogenic TF, SREBP1c. In recent years, it has been established that non-coding RNAs (ncRNAs) play role in both biological processes and disease pathogenesis. Our group has previously characterized microRNAs that can target and regulate the expression of both mTOR and SREBP1c. Accordingly, this study aimed to broaden our understanding of the role of ncRNAs in regulating the mTOR/SREBP1c axis to elucidate the role of the non-coding transcriptome in DNL and lipid droplet (LD) formation. Hence, short ncRNA, miR-615-5p, and long non-coding RNA (lncRNA), H19, were chosen as they were previously proven to target mTOR by our group and in the published literature, respectively. Methodology Huh-7 cells were treated with 800 μM oleic acid (OA) to promote LD formation. Transfection of miR-615-5p mimics or H19 over-expression vectors was performed, followed by the measurement of their downstream targets, mTOR and SREBP, on the mRNA level by quantitative real-time PCR (qRT-PCR), and on the protein level by Western blot. To determine the functional impact of miR-615-5p and H19 on LD formation and triglyceride (TG) accumulation, post-transfection LDs were stained, imaged, and characterized, and TGs were extracted and quantified. Results miR-615-5p was able to reduce mTOR and SREBP1c significantly on both the mRNA and protein levels compared to control cells, while H19 caused a reduction of both targets on the protein level only. Both miR-615-5p and H19 were able to significantly reduce the LD count and total area, as well as TG levels compared to control cells. Conclusion To conclude, this study shows, for the first time, the impact of miR-615-5p and H19 on the mTOR/SREBP1c axis, and thus, their functional impact on LDs and TG accumulation. These findings might pave the way for using ncRNAs as potential therapeutic targets in the management of fatty liver.
Collapse
Affiliation(s)
| | | | - Nihal M. El Assaly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Injie O. Fawzy
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed I. Abdelaziz
- School of Medicine, Newgiza University (NGU), Giza, Egypt
- *Correspondence: Ahmed I. Abdelaziz
| |
Collapse
|
22
|
Expression profiling of cancer-related long non-coding RNAs revealed upregulation and biomarker potential of HAR1B and JPX in colorectal cancer. Mol Biol Rep 2022; 49:6075-6084. [DOI: 10.1007/s11033-022-07396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
23
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Li D, Yan L, Zhang J, Gu F. Circular RNA hsa_circ_0004396 acts as a sponge of miR-615-5p to promote non-small cell lung cancer progression and radioresistance through the upregulation of P21-Activated Kinase 1. J Clin Lab Anal 2022; 36:e24463. [PMID: 35500159 PMCID: PMC9169218 DOI: 10.1002/jcla.24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUNDS CircRNA hsa_circ_0004396 has been confirmed to be upregulated in human non-small cell lung cancer (NSCLC). The aim of his study was to evaluate its mechanism in the radioresistance and progression of NSCLC. METHODS Hsa_circ_0004396, miR-615-5p, and P21-Activated Kinase 1 (PAK1) were measured by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The binding between miR-615-5p and hsa_circ_0004396 or PAK1 was predicted by circinteractome or Targetscan, as verified by dual-luciferase reporter assay and RIP assay. Proliferation, clonogenicity capacity, cell cycle progression, apoptosis, migration, and invasion were assessed by CCK-8, colony formation, flow cytometry, and Transwell assay. Bcl-2, Bcl-2 associated protein X (Bax), MMP-2, and PAK1 protein levels were detected using western blot assay. In addition, in vivo function of hsa_circ_0004396 was evaluated by tumor xenograft assay. RESULTS Hsa_circ_0004396 and PAK1 levels were upregulated, while miR-615-5p was declined in NSCLC. Hsa_circ_0004396 silencing inhibited NSCLC cell malignant behavior and induced radiosensitivity. Hsa_circ_0004396 functions as a molecular sponge of miR-615-5p to regulate PAK1 expression. Moreover, hsa_circ_0004396 knockdown inhibited NSCLC tumor growth in vivo. CONCLUSION Our findings demonstrated that hsa_circ_0004396 promoted NSCLC development and radioresistance through the miR-615-5p/PAK1 axis, which might provide a new therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Thoracic Surgery, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China
| | - Lin Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junhan Zhang
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Feng Gu
- Department of Aspiration Oncology, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Abdel-Latif M, Riad A, Soliman RA, Elkhouly AM, Nafae H, Gad MZ, Motaal AA, Youness RA. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol Cell Biochem 2022; 477:1281-1293. [PMID: 35129780 DOI: 10.1007/s11010-022-04378-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Triple-Negative Breast Cancer (TNBC) is one of the most aggressive and hot BC subtypes. Our research group has recently shed the light on the utility of natural compounds as effective immunotherapeutic agents. The aim of this study is to investigate the role of a methoxylated quercetin glycoside (MQG) isolated from Cleome droserifolia in harnessing TNBC progression and tuning the tumor microenvironment and natural killer cells cytotoxicity. Results showed that MQG showed the highest potency (IC50 = 12 µM) in repressing cellular proliferation, colony-forming ability, migration, and invasion capacities. Mechanistically, MQG was found to modulate a circuit of competing endogenous RNAs where it was found to reduce the oncogenic MALAT-1 lncRNA and induce TP53 and its downstream miRNAs; miR-155 and miR-146a. Accordingly, this leads to alteration in several downstream signaling pathways such as nitric oxide synthesizing machinery, natural killer cells' cytotoxicity through inducing the expression of its activating ligands such as MICA/B, ULBP2, CD155, and ICAM-1 and trimming of the immune-suppressive cytokines such as TNF-α and IL-10. In conclusion, this study shows that MQG act as a compelling anti-cancer agent repressing TNBC hallmarks, activating immune cell recognition, and alleviating the immune-suppressive tumor microenvironment experienced by TNBC patients.
Collapse
Affiliation(s)
- Mustafa Abdel-Latif
- Molecular Genetics Research Team (MGRT), Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed Riad
- Molecular Genetics Research Team (MGRT), Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Raghda A Soliman
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Aisha M Elkhouly
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Nafae
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt. .,Department of Biology and Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt.
| |
Collapse
|
26
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
27
|
Gupta M, Akhtar J, Sarwat M. MicroRNAs: Regulators of immunological reactions in hepatocellular carcinoma. Semin Cell Dev Biol 2021; 124:127-133. [PMID: 34049801 DOI: 10.1016/j.semcdb.2021.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third prominent cause of cancer mortality, with increasing prevalence and poor survival worldwide. Being diagnosed at an advanced stage, HCC frequently results in poor prognosis, treatment failure, and recurrence. Post-treatment reactivation and recurrence often amplify the immunosuppressed state induced by HCC pathogenesis. Therefore, stimulating the immune system may be a potential therapy measure for the treatment of HCC. Immune responses of the body may be potentiated by modulation of various effector cells such as B-cells, T-cells, Treg cells, natural killer cells, dendritic cells, cytotoxic T-lymphocytes, and other antigen-presenting cells. microRNAs (small non-coding RNAs) are the regulators of gene expression via translational inhibition or mRNA degradation. Various activities and developmental stages of the immune system are governed by miRNAs and they have a regulative impact on innate and adaptive immune cells in both, healthy and diseased conditions. Their misexpression has been associated with the initiation, development, and metastasis of various cancer types, including HCC. This review summarizes the functional impact of these immuno-miRNAs in the improvement of tumor conditions.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine (CCRUM), Janakpuri, New Delhi 110058, Delhi, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
28
|
Abdallah RM, Elkhouly AM, Soliman RA, El Meckawy N, El Sebaei A, Motaal AA, El-Askary H, Youness RA, Assal RA. Hindering The Synchronization Between Mir-486-5p And H19 Lncrna By Hesperetin Halts Breast Cancer Aggressiveness Through Tuning ICAM-1. Anticancer Agents Med Chem 2021; 22:586-595. [PMID: 33882812 DOI: 10.2174/1871520621666210419093652] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently, a novel crosstalk between non-coding RNAs (ncRNAs) has been casted. However, this has been seldomly investigated in metastatic BC (mBC). H19 and miR-486-5p role in mBC is controversial. ICAM-1 is a recently recognized metastatic engine in mBC. Natural compounds were recently found to alter ncRNAs/target circuits. Yet, Hesperitin modulatory role in altering such circuits has never been investigated in mBC. OBJECTIVE The aim of this study is to investigate the impact of hesperitin on miR-486-5p/H19/ICAM-1 axis Methodology: BC patients (n=20) were recruited in the study. Bioinformatic analysis was performed using different prediction softwares. MDA-MB-231 and MCF-7 cells were cultured and transfected using several oligonucleotides or treated with serial dilutions of hesperitin. RNA was extracted and gene expression analysis was performed using q-RT-PCR. ICAM-1 protein levels were assessed using human ICAM-1 Elisa Kit. Cytotoxic potential of hesperitin against normal cells was assessed by LDH assay. Several functional analysis experiments were performed such as MTT, colony forming and migration assays. RESULTS The study showed that miR-486-5p and H19 has a paradoxical expression profiles in mBC patients. miR-486-5p mimics and H19 siRNAs repressed ICAM-1 and halted mBC hallmarks. A novel crosstalk between miR-486-5p and H19 was observed highlighting a bi-directional relationship between them. Hesperetin restored the expression of miR-486-5p, inhibited H19 lncRNA and ICAM-1 expression and selectively regressed mBC cell aggressiveness. CONCLUSION miR-486-5p and H19 are inter-connected upstream regulators for ICAM-1 building up miR-486-5p/H19/ICAM-1 axis that has been successfully tuned in mBC cells by hesperitin.
Collapse
Affiliation(s)
- Ramah M Abdallah
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Aisha M Elkhouly
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Raghda A Soliman
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | | | - Ahmed El Sebaei
- Pathology Department International Medical center, Cairo, Egypt
| | - Amira A Motaal
- Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | | | - Rana A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Reem A Assal
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
29
|
El Kilany FH, Youness RA, Assal RA, Gad MZ. miR-744/eNOS/NO axis: A novel target to halt triple negative breast cancer progression. Breast Dis 2021; 40:161-169. [PMID: 33749631 DOI: 10.3233/bd-200454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nitric oxide (NO) may have a dual role in cancer. At low concentrations, endogenous NO promotes tumor growth and proliferation. However, at very high concentrations, it mediates cancer cell apoptosis and inhibits cancer growth. High levels of NO have been observed in blood of breast cancer (BC) patients, which increases tumor blood flow and promotes angiogenesis. To date, the regulation of NO-synthesizing enzyme, eNOS, by miRNAs has not been adequately investigated in BC. Therefore, the main aim of this study is to unravel the possible regulation of eNOS by miRNAs in BC and to examine their influence on NO production and BC progression. METHODS Expression profile of eNOS in Egyptian BC patients and MDA-MB-231 cell lines was investigated using qRT-PCR. In-silico analysis was performed to predict a putative upstream regulator of eNOS. miR-744-5p was selected and its expression was quantified in BC tissues using qRT-PCR. MDA-MB-231 cells were cultured and transfected with miR-744-5p using lipofection method. NO levels were determined using Griess Reagent. Cellular viability and colony-forming ability were assessed using MTT and colony-forming assays; respectively. RESULTS eNOS and miR-744-5p were significantly up-regulated in BC tissues compared to paired normal tissues. In-silico analysis revealed that miR-744-5p putatively binds to eNOS transcript with high binding scores. Transfection of MDA-MB-231 cells with miR-744-5p mimics resulted in a significant up-regulation of eNOS and consequently NO levels. In addition, miR-744-5p transfection led to an increase in cellular viability and colony-forming ability of the MDA-MB-231. CONCLUSION miR-744-5p acts as an upstream positive regulator of the NO synthesizing enzyme, eNOS which in turn elevates NO levels. Furthermore, miR-744-5p is a novel oncogenic miRNA in BC. Thus, targeting miR-744/eNOS/NO axis may act as a therapeutic tool in TNBC.
Collapse
Affiliation(s)
- Farah Hady El Kilany
- Department of Biochemistry, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Rana Ahmed Youness
- Pharmaceutical Biology Department, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Reem Amr Assal
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Mohamed Zakaria Gad
- Department of Biochemistry, German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
30
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Youness RA, Gad AZ, Sanber K, Ahn YJ, Lee GJ, Khallaf E, Hafez HM, Motaal AA, Ahmed N, Gad MZ. Targeting hydrogen sulphide signaling in breast cancer. J Adv Res 2021; 27:177-190. [PMID: 33318876 PMCID: PMC7728592 DOI: 10.1016/j.jare.2020.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Hydrogen sulphide (H2S) has been established as a key member of the gasotransmitters family that recently showed a pivotal role in various pathological conditions including cancer. OBJECTIVES This study investigated the role of H2S in breast cancer (BC) pathogenesis, on BC immune recognition capacity and the consequence of targeting H2S using non-coding RNAs. METHODS Eighty BC patients have been recruited for the study. BC cell lines were cultured and transfected using validated oligonucleotide delivery system. Gene and protein expression analysis was performed using qRT-PCR, western blot and flow-cytometry. In-vitro analysis for BC hallmarks was performed using MTT, BrdU, Modified Boyden chamber, migration and colony forming assays. H2S and nitric oxide (NO) levels were measured spectrophotometrically. Primary natural killer cells (NK cells) and T cell isolation and chimeric antigen receptor transduction (CAR T cells) were performed using appropriate kits. NK and T cells cytotoxicity was measured. Finally, computational target prediction analysis and binding confirmation analyses were performed using different software and dual luciferase assay kit, respectively. RESULTS The H2S synthesizing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), exhibited elevated levels in the clinical samples that correlated with tumor proliferation index. Knock-down of CBS and CSE in the HER2+ BC and triple negative BC (TNBC) cells resulted in significant attenuation of BC malignancy. In addition to increased susceptibility of HER2+ BC and TNBC to the cytotoxic activity of HER2 targeting CAR T cells and NK cells, respectively. Transcriptomic and phosphoprotein analysis revealed that H2S signaling is mediated through Akt in MCF7, STAT3 in MDA-MB-231 and miR-155/ NOS2/NO signaling in both cell lines. Lastly, miR-4317 was found to function as an upstream regulator of CBS and CSE synergistically abrogates the malignancy of BC cells. CONCLUSION These findings demonstrate the potential role of H2S signaling in BC pathogenesis and the potential of its targeting for disease mitigation.
Collapse
Key Words
- 41BBL, 41BB Ligand
- 51Cr-release, Chromium release assay
- BC, Breast Cancer
- Breast cancer
- CAR T cells
- CAR, Chimeric antigen receptor
- CBS, Cystathionine β-synthase
- CD80, Cluster of differentiation 80
- CD86, Cluster of differentiation 86
- CSE, Cystathionine γ-lyase
- CTL, Cytotoxic T lymphocyte
- H2S, Hydrogen sulphide
- HCC, Hepatocellular carcinoma
- HLA-DR, Human Leukocytic antigen DR
- Hydrogen sulphide
- IFN-γ, Interferon gamma
- KD, Knock down
- LDH, Lactate dehydrogenase Assay
- MICA/B, MHC class I polypeptide-related sequence A/B
- NK, Natural killer
- NKG2D, Natural Killer Group 2D
- NO, Nitric oxide
- NOS2, Inducible nitric oxide synthase-2
- NOS3, Endothelial nitric oxide synthase-3
- Natural killer cells
- Nitric oxide
- PD-L1, Programmed death-ligand 1
- PI3K/AKT signaling pathway
- Scr-miRNAs, Scrambled microRNAs
- Scr-siRNAs, Scrambled siRNAs
- TNBC, Triple negative breast cancer
- TNF-α, Tumor necrosis factor-α
- ULBP2/5/6, UL16 binding protein 2/5/6
- miR-155/NOS2/NO signaling pathway
- miR-4317
- miRNA, MicroRNA
- ncRNAs, Non-coding RNAs
- siRNAs, Small interfering RNAs
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Ahmed Zakaria Gad
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Khaled Sanber
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Jin Ahn
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gi-Ja Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Emad Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, 12613 Cairo, Egypt
| | - Hafez Mohamed Hafez
- Department of General Surgery, Faculty of Medicine, Cairo University, 12613 Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt
| | - Nabil Ahmed
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamed Zakaria Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
32
|
Nafea H, Youness RA, Abou-Aisha K, Gad MZ. LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J Cell Physiol 2020; 236:5362-5372. [PMID: 33368266 DOI: 10.1002/jcp.30234] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to unravel the regulatory role of noncoding RNAs (ncRNA) on the nitric oxide (NO) machinery system in triple-negative breast cancer (TNBC) patients and to further assess the influence of NO-modulating ncRNAs on TNBC progression, immunogenic profile, and the tumor microenvironment (TME). The results revealed miR-939-5p and lncRNA HEIH as novel ncRNAs modulating NO machinery in TNBC. MiR-939-5p, an underexpressed microRNA (miRNA) in BC patients, showed an inhibitory effect on NOS2 and NOS3 transcript levels on TNBC cells. In contrast, HEIH was found to be markedly upregulated in TNBC patients and showed a modulatory role on miR-939-5p/NOS2/NO axis. Functionally, miR-939-5p was characterized as a tumor suppressor miRNA while HEIH was categorized as a novel oncogenic lncRNA in TNBC. Finally, knocking down of HEIH resulted in improvement of immunogenic profile of TNBC cells through inducing MICA/B and suppressing the immune checkpoint inhibitor PDL1. In the same context, knockdown of HEIH resulted in the alleviation of the immune-suppressive TME by repressing interleukin-10 and tumor necrosis factor-α levels. In conclusion, this study identifies miR-939-5p as a tumor suppressor miRNA while HEIH as an oncogenic lncRNA exhibiting its effect through miR-939-5p/NOS2/NO axis. Therefore, repressing BC hallmarks, improving TNBC immunogenic profile, and trimming TME.
Collapse
Affiliation(s)
- Heba Nafea
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| |
Collapse
|
33
|
Jacobs SO, Sheller-Miller S, Richardson LS, Urrabaz-Garza R, Radnaa E, Menon R. Characterizing the immune cell population in the human fetal membrane. Am J Reprod Immunol 2020; 85:e13368. [PMID: 33145922 DOI: 10.1111/aji.13368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM This study localized CD45+ immune cells and compared changes in their numbers between term, not in labor (TNIL) and term, labor (TL) human fetal membranes. METHOD OF STUDY Fetal membranes (amniochorion) from normal TNIL and TL subjects were analyzed by immunohistochemistry (IHC), immunofluorescence (IF), and flow cytometry for evidence of total (CD45+ ) immune cells as well as innate immune cells (neutrophils, macrophages and NK cells) using specific markers. Fetal origin of immune cells was determined using polymerase chain reaction (PCR) for SRY gene in Y chromosome. RESULTS CD45+ cells were localized in human fetal membranes for both TNIL and TL. A threefold increase in CD45+ cells was seen in TL fetal membranes of (7.73% ± 2.35) compared to TNIL (2.36% ± 0.78). This increase is primarily contributed by neutrophils. Macrophages and NK cells did not change in the membranes between TNIL and TL. Leukocytes of fetal origin are present in the fetal membranes. CONCLUSION The fetal membranes without decidua contain a small proportion of immune cells. Some of these immune cells in the fetal membrane are fetal in origin. There is a moderate increase of immune cells in the fetal membranes at term labor; however, it is unclear whether this is a cause or consequence of labor. Further functional studies are needed to determine their contribution to membrane inflammation associated with parturition.
Collapse
Affiliation(s)
- Sara O Jacobs
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren S Richardson
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Enkhtuya Radnaa
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
34
|
miR-615 Fine-Tunes Growth and Development and Has a Role in Cancer and in Neural Repair. Cells 2020; 9:cells9071566. [PMID: 32605009 PMCID: PMC7408929 DOI: 10.3390/cells9071566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback loop, the deregulation of which affects physiological processes and contributes to a great diversity of diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves as a biomarker for several types of cancer, and recently has also been found to be involved in reparative processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is involved, as well as their multiple target genes and the multiple regulatory molecules involved in its own expression. We do this by introducing in a comprehensible way the reported knowledge of their actions and interactions and proposing an integral view of its regulatory mechanisms.
Collapse
|
35
|
ElKhouly AM, Youness R, Gad M. MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res 2020; 5:11-21. [PMID: 31993547 PMCID: PMC6971376 DOI: 10.1016/j.ncrna.2020.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Despite historically known as "junk" DNA, nowadays non-coding RNA transcripts (ncRNAs) are considered as fundamental players in various physiological and pathological conditions. Nonetheless, any alteration in their expression level has been reported to be directly associated with the incidence and aggressiveness of several diseases. MicroRNAs (miRNAs) are the well-studied members of the ncRNAs family. Several reports have highlighted their crucial roles in the post-transcriptional manipulation of several signaling pathways in different pathological conditions. In this review, our main focus is the multifaceted microRNA-486 (miR-486). miR-486-5p and miR-486-3p have been reported to have central roles in several types oncological and non-oncological conditions such as lung, liver, breast cancers and autism, intervertebral disc degeneration and metabolic syndrome, respectively. Moreover, we spotted the light onto the pleiotropic role of miR-486-5p in acting as competing endogenous RNA with other members of ncRNAs family such as long non-coding RNAs.
Collapse
Affiliation(s)
- Aisha M. ElKhouly
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - R.A. Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - M.Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
36
|
MicroRNA-130a enhances the killing ability of natural killer cells against non-small cell lung cancer cells by targeting signal transducers and activators of transcription 3. Biochem Biophys Res Commun 2019; 523:481-486. [PMID: 31883616 DOI: 10.1016/j.bbrc.2019.11.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a serious threat for human health and life. Natural killer (NK) cell-based immunotherapy is a promising anti-tumor strategy in various cancers including NSCLC. Emerging microRNA (miRNA) has been identified as vital regulators in NK cell-mediated immunosurveillance process. MicroRNA-130a (miR-130a) level and signal transducers and activators of transcription 3 (STAT3) mRNA level was measured by RT-qPCR assay. STAT3 protein level was determined by western blot assay. IFN-γ and TNF-α secretion was examined by corresponding ELISA kits. NK cell cytotoxicity was assessed by lactate dehydrogenase (LDH) assay. The interaction between miR-130a and STAT3 was explored by bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) assay. We found that MiR-130a level was notably reduced and STAT3 expression was dramatically increased in primary NK cells isolated from NSCLC patients. But, miR-130a was highly expressed and STAT3 was low expressed in IL-2-activated NK-92 cells. Functional analysis revealed that miR-130a overexpression potentiated killing ability of NK cells against A549 cells. Further investigations unveiled that STAT3 was a target of miR-130a and STAT3 overexpression abrogated miR-130a-induced improvement in killing activity of NK cells against NSCLC cells. In conclusion, MiR-130a improved the killing capacity of NK cells against NSCLC cells by targeting STAT3, laying a foundation for future studies on the roles and molecular basis of miR-130a in NK cell-based immunotherapy against various cancers.
Collapse
|
37
|
Hu Y, Yang Z, Bao D, Ni JS, Lou J. miR-455-5p suppresses hepatocellular carcinoma cell growth and invasion via IGF-1R/AKT/GLUT1 pathway by targeting IGF-1R. Pathol Res Pract 2019; 215:152674. [DOI: 10.1016/j.prp.2019.152674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
|
38
|
Liu Q, Shi H, Yang J, Jiang N. Long Non-Coding RNA NEAT1 Promoted Hepatocellular Carcinoma Cell Proliferation and Reduced Apoptosis Through the Regulation of Let-7b-IGF-1R Axis. Onco Targets Ther 2019; 12:10401-10413. [PMID: 31819522 PMCID: PMC6890520 DOI: 10.2147/ott.s217763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background and aim Long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) is abnormally expressed in various human malignancies, including hepatocellular carcinoma (HCC). Let-7b is a miRNA with the effect of a tumor suppressor gene, and its expression level in various tumor tissues is lower than that in normal tissues. Studies have found that IGF-1R can be abnormally activated in the process of hepatocyte deterioration, and the expression level of IGF-1R in HCC is significantly up-regulated. The aim of this study was to investigate the functional mechanism of NEAT1/let-7b-IGF-1R axis in HCC. Methods The expressions of NEAT1 and microRNA (miR)-let-7b in HCC tissues and cell lines were quantified by quantitative real-time PCR (qRT-PCR). The effect of NEAT1 on tumor growth was observed in a mice model of transplanted hepatoma. The effects of down-regulation or up-regulation of NEAT1 expression in HCC cell lines were analysed from the perspectives of cell viability and apoptosis. The binding sites of NEAT1 and miR-let-7b were predicted by biological software. The expression of the miR-let-7b target molecules IGF-1R was detected by Western blotting. Results The results showed that the expressions of NEAT1 were significantly increased, while the expressions of miR-let-7b were decreased in the HCC tissues and cell lines. Additionally, it was found that the expressions of NEAT1 and miR-let-7b showed a negative correlation in HCC tissues. The mouse model experiments confirmed that the interference with NEAT1 expression inhibited the tumor growth. Meanwhile, the cell viability of HepG2/Huh7 cell lines was significantly decreased via the downregulation of NEAT1, whereas the corresponding rates of apoptosis were significantly increased. It was further proven that there was a certain negative regulatory mechanism between NEAT1 and miR-1et-7b, which was related to the expression of IGF-1R. Conclusion The over-expression of NEAT1 could promote the proliferation of HCC cells by inhibiting the expression of the miR-let-7b regulated by IGF-1R.
Collapse
Affiliation(s)
- Qin Liu
- Department of Gastroenterology, Weihai Municipal Hospital, Weihai, People's Republic of China
| | - Hexian Shi
- Department of Hepatobiliary Surgery, Heze Municipal Hospital, Heze, People's Republic of China
| | - Jianbo Yang
- Department of Oral Medicine, Weihai Stomatological Hospital, Weihai, People's Republic of China
| | - Ning Jiang
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, People's Republic of China
| |
Collapse
|
39
|
Juengpanich S, Shi L, Iranmanesh Y, Chen J, Cheng Z, Khoo AKJ, Pan L, Wang Y, Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl Oncol 2019; 12:1092-1107. [PMID: 31176993 PMCID: PMC6558093 DOI: 10.1016/j.tranon.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
A major obstacle for treatment of HCC is the inadequate efficacy and limitation of the available therapeutic options. Despite the recent advances in developing novel treatment options, HCC still remains one of the major causes of cancer morbidity and mortality around the world. Achieving effective treatment and eradication of HCC is a challenging task, however recent studies have shown that targeting Natural Killer cells, as major regulators of immune system, can help with the complete treatment of HCC, restoration of normal liver function and subsequently higher survival rate of HCC patients. Studies have shown that decrease in the frequency of NK cells, their dysfunction due to several factors such as dysregulation of receptors and their ligands, and imbalance of different types of inhibitory and stimulating microRNA expression is associated with higher rate of HCC progression and development, and poor survival outcome. Here in our review, we mainly focused on the importance of NK cells in HCC development and treatment.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | | | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhenzhe Cheng
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Aaron Kah-Jin Khoo
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4027, Australia.
| | - Long Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| |
Collapse
|
40
|
Yang Q, Li J, Hu Y, Tang X, Yu L, Dong L, Chen D. MiR-218-5p Suppresses the Killing Effect of Natural Killer Cell to Lung Adenocarcinoma by Targeting SHMT1. Yonsei Med J 2019; 60:500-508. [PMID: 31124332 PMCID: PMC6536398 DOI: 10.3349/ymj.2019.60.6.500] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung adenocarcinoma (LA) is one of the major types of lung cancer. MicroRNAs (miRNAs) play an essential role in regulating responses of natural killer (NK) cells to cancer malignancy. However, the mechanism of miR-218-5p involved in the killing effect of NK cells to LA cells remains poorly understood. MATERIALS AND METHODS The expression of miR-218-5p was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Serine hydroxymethyl transferase 1 (SHMT1) level was detected by qRT-PCR or western blots. Cytokines production of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were detected by ELISA. The killing effect of NK cells to LA cells was investigated using lactate dehydrogenase cytotoxicity assay kit. The interaction of miR-218-5p and SHMT1 was probed by luciferase activity assay. Xenograft model was established to investigate the killing effect of NK cells in vivo. RESULTS miR-218-5p was enhanced and SHMT1 was inhibited in NK cells of LA patients, whereas stimulation of interleukin-2 (IL-2) reversed their abundances. Addition of miR-218-5p reduced IL-2-induced cytokines expression and cytotoxicity in NK-92 against LA cells. Moreover, SHMT1 was negatively regulated by miR-218-5p and attenuated miR-218-5p-mediated effect on cytotoxicity, IFN-γ and TNF-α secretion in IL-2-activated NK cells. In addition, miR-218-5p exhaustion inhibited tumor growth by promoting killing effect of NK cells. CONCLUSION miR-218-5p suppresses the killing effect of NK cells to LA cells by targeting SHMT1, providing a potential target for LA treatment by ameliorating NK cells function.
Collapse
Affiliation(s)
- Quanjun Yang
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Jingjing Li
- Department One of Medical Oncology, Jing Men No.2 People's Hospital, Jing Men, China.
| | - Yili Hu
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Xiaofei Tang
- Internal Medicine, Changyang Tujia Autonomous District People's Hospital, Yichang, China
| | - Lili Yu
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Lihua Dong
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Diandian Chen
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
41
|
Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L. Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
. Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E₂, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Bassani
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy.
| | - Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Matteo Gallazzi
- Vascular Biology and Angiogenesis Laboratory, Scientific and Technologic Park, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Scientific and Technologic Park, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy.
| |
Collapse
|
42
|
Youness RA, Gad MZ. Long non-coding RNAs: Functional regulatory players in breast cancer. Noncoding RNA Res 2019; 4:36-44. [PMID: 30891536 PMCID: PMC6404363 DOI: 10.1016/j.ncrna.2019.01.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Historically, the long-held protein-centered bias has denoted 98% of the human genome as 'Junk' DNA. However, the current work has shifted the perception of such 'junk' transcriptional products to functional regulatory molecules. The recent surveillance of the human transcriptome has highlighted the pivotal role of such non-coding RNA (ncRNA) molecules in diverse physiological and pathological conditions. Long non-coding RNA (lncRNA) is a recent class of ncRNA molecules that is still in its infancy stage. The main focus of this review is to unravel the importance of lncRNAs in the most prevalent malignancy among females which is Breast Cancer (BC). A specific focus on lncRNAs as prognostic markers among BC patients showing molecular subtype heterogeneity was also tackled in this review. Finally, the functional and the mechanistic roles of such booming ncRNA molecules in shaping the fate of the BC progression have been highlighted.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835, Cairo, Egypt
| | - Mohamed Zakaria Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835, Cairo, Egypt
| |
Collapse
|
43
|
Abstract
Hepatocellular carcinoma (HCC) is associated with chronic inflammation and fibrosis arising from different etiologies, including hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases. The inflammatory cytokines tumor necrosis factor-α and interleukin-6 and their downstream targets nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 drive inflammation-associated HCC. Further, while adaptive immunity promotes immune surveillance to eradicate early HCC, adaptive immune cells, such as CD8+ T cells, Th17 cells, and B cells, can also stimulate HCC development. Thus, the role of the hepatic immune system in HCC development is a highly complex topic. This review highlights the role of cytokine signals, NF-κB, JNK, innate and adaptive immunity, and hepatic stellate cells in HCC and discusses whether these pathways could be therapeutic targets. The authors will also discuss cholangiocarcinoma and liver metastasis because biliary inflammation and tumor-associated stroma are essential for cholangiocarcinoma development and because primary tumor-derived inflammatory mediators promote the formation of a "premetastasis niche" in the liver.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - So Yeon Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
44
|
Waly AA, El-Ekiaby N, Assal RA, Abdelrahman MM, Hosny KA, El Tayebi HM, Esmat G, Breuhahn K, Abdelaziz AI. Methylation in MIRLET7A3 Gene Induces the Expression of IGF-II and Its mRNA Binding Proteins IGF2BP-2 and 3 in Hepatocellular Carcinoma. Front Physiol 2019; 9:1918. [PMID: 30733684 PMCID: PMC6353855 DOI: 10.3389/fphys.2018.01918] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
miR-let-7a is a tumor suppressor miRNA with reduced expression in most cancers. Methylation of MIRLET7A3 gene was reported to be the cause of this suppression in several cancers; however, it was not explicitly investigated in hepatocellular carcinoma (HCC). We aimed at investigating miR-let-7a expression and molecular mode in HCC, identifying drug-targetable networks, which might be affected by its abundance. Our results illustrated a significant repression of miR-let-7a, which correlated with hypermethylation of its gene of origin MIRLRT7A3. This was further supported by the induction of miR-let-7a expression upon treatment of HCC cells with a DNA-methyltransferase inhibitor. Using a computational approach, insulin-like growth factor (IGF)-II and IGF-2 mRNA binding proteins (IGF2BP)-2/-3 were identified as potential targets for miR-let-7a that was further confirmed experimentally. Indeed, miR-let-7a mimics diminished IGF-II as well as IGF2BP-2/-3 expression. Direct binding of miR-let-7a to each respective transcript was confirmed using a luciferase reporter assay. In conclusion, this study suggests that DNA hypermethylation leads to epigenetic repression of miR-let-7a in HCC cells, which induces the oncogenic IGF-signaling pathway.
Collapse
Affiliation(s)
- Amr A. Waly
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | | | - Reem A. Assal
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | | | - Karim A. Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend M. El Tayebi
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Molecular Hepatopathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ahmed I. Abdelaziz
- The Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt
- School of Medicine, Newgiza University, Cairo, Egypt
| |
Collapse
|
45
|
Yang C, Shen C, Feng T, Li H. Noncoding RNA in NK cells. J Leukoc Biol 2018; 105:63-71. [PMID: 30265761 DOI: 10.1002/jlb.1ru0518-197rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Noncoding RNAs (ncRNA) are important regulators that modulate cell proliferation, apoptosis, the cell cycle, and DNA methylation. NK cells mediate the immune response via the secretion of various cytokines and are important innate immune cells in the human immune system. Recent studies have found that ncRNA plays an important role in NK cell development and function. With recent advances in bioinformatics and next-generation sequencing, novel ncRNAs have been identified, allowing us to more fully appreciate its functions in NK cell biology. In this review, we summarize and discuss the latest studies on the functions and regulatory mechanisms of long noncoding RNA (lncRNA) and microRNA in NK cells from the viewpoint of epigenetic mechanisms to help us clearly understand ncRNA in NK cells.
Collapse
Affiliation(s)
- Chuan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chongyang Shen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Liu J, Jia Y, Jia L, Li T, Yang L, Zhang G. MicroRNA 615-3p Inhibits the Tumor Growth and Metastasis of NSCLC via Inhibiting IGF2. Oncol Res 2018; 27:269-279. [PMID: 29562959 PMCID: PMC7848428 DOI: 10.3727/096504018x15215019227688] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are essential regulators of cancer-associated genes at the posttranscriptional level, and their expression is altered in cancer tissues. Herein we sought to identify the regulation of miR-615-3p in NSCLC progression and its mechanism. miR-615-3p expression was significantly downregulated in NSCLC tissue compared to control normal tissue. Exogenous overexpression of miR-615-3p inhibited the growth and metastasis of NSCLC cells. In addition, the in vivo mouse xenograft model showed that overexpression of miR-615-3p inhibited NSCLC growth and lung metastasis, whereas decreased expression of miR-615-3p caused an opposite outcome. Furthermore, we revealed that insulin-like growth factor 2 (IGF2) expression was negatively correlated with the miR-615-3p level in NSCLC specimens, and IGF2 knockdown mimicked the effect of miR-615-3p inhibition on NSCLC cell proliferation, migration, and invasion. In addition, overexpression of IGF2 rescued the inhibition of miR-615-3p in NSCLC cells. Together, our results indicated that miR-615-3p played important roles in the regulation of NSCLC growth and metastasis by targeting IGF2.
Collapse
Affiliation(s)
- Jiangtao Liu
- Medical Oncology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Yanli Jia
- Medical Oncology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Lijuan Jia
- Medical Oncology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Tingting Li
- Department of Anesthesiology, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Lei Yang
- Department of Cardiothoracic Surgery, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| | - Gongwen Zhang
- Department of Cardiothoracic Surgery, Binzhou Central Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|