1
|
Zhang JZ, Li YZ, Xi ZN, Gao HP, Zhang Q, Liu LC, Li FL, Ma XQ. Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals. Front Bioeng Biotechnol 2024; 12:1395540. [PMID: 39055341 PMCID: PMC11269201 DOI: 10.3389/fbioe.2024.1395540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Acetogenic bacteria (acetogens) are a class of microorganisms with conserved Wood-Ljungdahl pathway that can utilize CO and CO2/H2 as carbon source for autotrophic growth and convert these substrates to acetate and ethanol. Acetogens have great potential for the sustainable production of biofuels and bulk biochemicals using C1 gases (CO and CO2) from industrial syngas and waste gases, which play an important role in achieving carbon neutrality. In recent years, with the development and improvement of gene editing methods, the metabolic engineering of acetogens is making rapid progress. With introduction of heterogeneous metabolic pathways, acetogens can improve the production capacity of native products or obtain the ability to synthesize non-native products. This paper reviews the recent application of metabolic engineering in acetogens. In addition, the challenges of metabolic engineering in acetogens are indicated, and strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Zhen Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ning Xi
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hui-Peng Gao
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Quan Zhang
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Li-Cheng Liu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
2
|
Baltacı NG, Baltacı MÖ, Görmez A, Örtücü S. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31149-31158. [PMID: 38625463 PMCID: PMC11096215 DOI: 10.1007/s11356-024-33309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polyhydroxyalkanoates have attracted great interest as a suitable alternative to petrochemical based plastics due to their outstanding properties such as biodegradability and biocompatibility. However, the biggest problem in the production of microbial polyhydroxyalkanoates is low cost-effectiveness. In this study, polyhydroxyalkanoate production was carried out using waste substrates with local isolates. Culture conditions were optimized to increase the polyhydroxyalkanoate production potential. The produced polyhydroxyalkanoate was characterized by FTIR analyses, and its metabolic pathway was determined by real-time PCR. According to the results, the best polyhydroxyalkanoate producer bacteria was characterized as Pseudomonas neustonica NGB15. The optimal culture conditions were detected as 30 g/L banana peel powder, 25 °C temperature, pH 8, and 4-day incubation time. Under the optimized conditions, 3.34 g/L PHA production was achieved. As a result of FTIR analyses, major peaks were obtained at 1723, 1277, 1261, 1097, 1054, and 993 cm-1. These peaks represent that the type of produced polyhydroxyalkanoate was poly-β-hydroxybutyrate. According to gene expression profile of NGB15, it was determined that Pseudomonas neustonica NGB15 produces PHA using the de novo fatty acid synthesis metabolic pathway. In conclusion, poly-β-hydroxybutyrate production by Pseudomonas neustonica NGB15 using a low-cost fermentation medium has been shown to be biotechnologically promising.
Collapse
Affiliation(s)
- Nurdan Gönül Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mustafa Özkan Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
3
|
San Miguel-González GDJ, Alemán-Huerta ME, Martínez-Herrera RE, Quintero-Zapata I, de la Torre-Zavala S, Avilés-Arnaut H, Gandarilla-Pacheco FL, de Luna-Santillana EDJ. Alkaline-Tolerant Bacillus cereus 12GS: A Promising Polyhydroxybutyrate (PHB) Producer Isolated from the North of Mexico. Microorganisms 2024; 12:863. [PMID: 38792693 PMCID: PMC11124092 DOI: 10.3390/microorganisms12050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Environmental pollution caused by petroleum-derived plastics continues to increase annually. Consequently, current research is interested in the search for eco-friendly bacterial polymers. The importance of Bacillus bacteria as producers of polyhydroxyalkanoates (PHAs) has been recognized because of their physiological and genetic qualities. In this study, twenty strains of Bacillus genus PHA producers were isolated. Production was initially evaluated qualitatively to screen the strains, and subsequently, the strain B12 or Bacillus sp. 12GS, with the highest production, was selected through liquid fermentation. Biochemical and molecular identification revealed it as a novel isolate of Bacillus cereus. Production optimization was carried out using the Taguchi methodology, determining the optimal parameters as 30 °C, pH 8, 150 rpm, and 4% inoculum, resulting in 87% and 1.91 g/L of polyhydroxybutyrate (PHB). Kinetic studies demonstrated a higher production within 48 h. The produced biopolymer was analyzed using Fourier-transform infrared spectroscopy (FTIR), confirming the production of short-chain-length (scl) polyhydroxyalkanoate, named PHB, and differential scanning calorimetry (DSC) analysis revealed thermal properties, making it a promising material for various applications. The novel B. cereus isolate exhibited a high %PHB, emphasizing the importance of bioprospecting, study, and characterization for strains with biotechnological potential.
Collapse
Affiliation(s)
- Gustavo de J. San Miguel-González
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - María E. Alemán-Huerta
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Raul E. Martínez-Herrera
- Escuela de Ingenería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey C.P. 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey C.P. 64849, Nuevo León, Mexico
| | - Isela Quintero-Zapata
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Susana de la Torre-Zavala
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Fátima L. Gandarilla-Pacheco
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Erick de J. de Luna-Santillana
- Laboratorio Medicina de Conservación, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro esq, Elías Piña, Colonia Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico;
| |
Collapse
|
4
|
Tyubaeva PM, Varyan IA, Gasparyan KG, Romanov RR, Yurina LV, Vasilyeva AD, Popov AA, Arzhakova OV. Life Cycle of Functional All-Green Biocompatible Fibrous Materials Based on Biodegradable Polyhydroxybutyrate and Hemin: Synthesis, Service Life, and the End-of-Life via Biodegradation. ACS APPLIED BIO MATERIALS 2024; 7:2325-2337. [PMID: 38483087 DOI: 10.1021/acsabm.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.) is shown to be governed by the ES conditions: the presence of even minor amounts of Hmi in the PHB/Hmi (below 5 wt %) serves as a powerful tool for the control over their structure, performance, and biodegradation. Service characteristics of the PHB/Hmi materials (wettability, prolonged release of Hmi, antibacterial activity, breathability, and mechanical properties) were studied by different physicochemical methods (scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, contact angle measurements, antibacterial tests, etc.). The effect of the structural organization of the PHB/Hmi materials on their in-soil biodegradation at the end of life was analyzed, and key factors providing efficient biodegradation of the PHB/Hmi materials at all stages (from adaptation to mineralization) are highlighted (high surface area and porosity, thin fibers, release of Hmi, etc.). The proposed approach allows for target-oriented preparation and structural design of the functional PHB/Hmi nonwovens when their structural supramolecular organization with a highly developed surface area controls both their service properties as efficient antibacterial materials and in-soil biodegradation upon the end of life.
Collapse
Affiliation(s)
- Polina M Tyubaeva
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Ivetta A Varyan
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Kristina G Gasparyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Roman R Romanov
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
| | - Lyubov V Yurina
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Alexandra D Vasilyeva
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Anatoly A Popov
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Olga V Arzhakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
5
|
Kumar R, Lalnundiki V, Shelare SD, Abhishek GJ, Sharma S, Sharma D, Kumar A, Abbas M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. ENVIRONMENTAL RESEARCH 2024; 244:117707. [PMID: 38008206 DOI: 10.1016/j.envres.2023.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.
Collapse
Affiliation(s)
- Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - V Lalnundiki
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sagar D Shelare
- Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, M.S, 440019, India.
| | - Galla John Abhishek
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; School of Mechanical and Automotive Engineering, Qingdao University of Technology, 266520, Qingdao, China; Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801, Beirut, Lebanon; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Deepti Sharma
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, 248007, India.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia.
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
| |
Collapse
|
6
|
Mandragutti T, Jarso TS, Godi S, Begum SS, K B. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074. Microb Cell Fact 2024; 23:59. [PMID: 38388436 PMCID: PMC10882773 DOI: 10.1186/s12934-024-02324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate is a biopolymer produced by bacteria and archaea under nitrogen-limiting conditions. PHB is an essential polymer in the bioplastic sector because of its biodegradability, eco-friendliness, and adaptability. The characterization of PHB is a multifaceted process for studying the structure and its properties. This entire aspect can assure the long-term viability and performance attributes of the PHB. The characteristics of PHB extracted from the halophile Brachybacterium paraconglomeratum were investigated with the objective of making films for application in healthcare. RESULTS This was the first characterization study on PHB produced by a rare halophile, Brachybacterium paraconglomeratum (MTCC 13074). In this study, the strain produced 2.72 g/l of PHB for.5.1 g/l of biomass under optimal conditions. Methods are described for the determination of the physicochemical properties of PHB. The prominent functional groups CH3 and C = O were observed by FT-IR and the actual chemical structure of the PHB was deduced by NMR. GCMS detects the confirmation of four methyl ester derivatives of the extracted PHB in the sample. Mass spectrometry revealed the molecular weight of methyl 3-hydroxybutyric acid (3HB) present in the extract. The air-dried PHB films were exposed to TGA, DSC and a universal testing machine to determine the thermal profile and mechanical stability. Additionally, the essential property of biopolymers like viscosity was also assessed for the extracted PHB. CONCLUSIONS The current study demonstrated the consistency and quality of B. paraconglomeratum PHB. Therefore, Brachybacterium sps are also a considerable source of PHB with desired characteristics for industrial production.
Collapse
Affiliation(s)
- Teja Mandragutti
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India.
| | - Tura Safawo Jarso
- Department of Biology (Applied Genetics and Biotechnology Stream), College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Sudhakar Godi
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India
| | - S Sharmila Begum
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| | - Beulah K
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| |
Collapse
|
7
|
Abdelrahman SA, Barakat OS, Ahmed MN. Genetic characterization of a novel Salinicola salarius isolate applied for the bioconversion of agro-industrial wastes into polyhydroxybutyrate. Microb Cell Fact 2024; 23:56. [PMID: 38368375 PMCID: PMC10874550 DOI: 10.1186/s12934-024-02326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate (PHB) has emerged as a promising eco-friendly alternative to traditional petrochemical-based plastics. In the present study, we isolated and characterized a new strain of Salinicola salarius, a halophilic bacterium, from the New Suez Canal in Egypt and characterized exclusively as a potential PHB producer. Further genome analysis of the isolated strain, ES021, was conducted to identify and elucidate the genes involved in PHB production. RESULTS Different PHB-producing marine bacteria were isolated from the New Suez Canal and characterized as PHB producers. Among the 17 bacterial isolates, Salinicola salarius ES021 strain showed the capability to accumulate the highest amount of PHB. Whole genome analysis was implemented to identify the PHB-related genes in Salinicola salarius ES021 strain. Putative genes were identified that can function as phaCAB genes to produce PHB in this strain. These genes include fadA, fabG, and P3W43_16340 (encoding acyl-CoA thioesterase II) for PHB production from glucose. Additionally, phaJ and fadB were identified as key genes involved in PHB production from fatty acids. Optimization of environmental factors such as shaking rate and incubation temperature, resulted in the highest PHB productivity when growing Salinicola salarius ES021 strain at 30°C on a shaker incubator (110 rpm) for 48 h. To maximize PHB production economically, different raw materials i.e., salted whey and sugarcane molasses were examined as cost-effective carbon sources. The PHB productivity increased two-fold (13.34 g/L) when using molasses (5% sucrose) as a fermentation media. This molasses medium was used to upscale PHB production in a 20 L stirred-tank bioreactor yielding a biomass of 25.12 g/L, and PHB of 12.88 g/L. Furthermore, the produced polymer was confirmed as PHB using Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. CONCLUSIONS Herein, Salinicola salarius ES021 strain was demonstrated as a robust natural producer of PHB from agro-industrial wastes. The detailed genome characterization of the ES021 strain presented in this study identifies potential PHB-related genes. However, further metabolic engineering is warranted to confirm the gene networks required for PHB production in this strain. Overall, this study contributes to the development of sustainable and cost-effective PHB production strategies.
Collapse
Affiliation(s)
- Shymaa A Abdelrahman
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt.
| | - Olfat S Barakat
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| | - Marwa N Ahmed
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| |
Collapse
|
8
|
Ebu SM, Ray L, Panda AN, Gouda SK. De novo assembly and comparative genome analysis for polyhydroxyalkanoates-producing Bacillus sp. BNPI-92 strain. J Genet Eng Biotechnol 2023; 21:132. [PMID: 37991636 PMCID: PMC10665291 DOI: 10.1186/s43141-023-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Certain Bacillus species play a vital role in polyhydroxyalkanoate (PHA) production. However, most of these isolates did not properly identify to species level when scientifically had been reported. RESULTS From NGS analysis, 5719 genes were predicted in the de novo genome assembly. Based on genome annotation using RAST server, 5,527,513 bp sequences were predicted with 5679 bp number of protein-coding sequence. Its genome sequence contains 35.1% and 156 GC content and contigs, respectively. In RAST server analysis, subsystem (43%) and non-subsystem coverage (57%) were generated. Ortho Venn comparative genome analysis indicated that Bacillus sp. BNPI-92 shared 2930 gene cluster (core gene) with B. cereus ATCC 14579 T (AE016877), B. paranthracis Mn5T (MACE01000012), B. thuringiensis ATCC 10792 T (ACNF01000156), and B. antrics Amen T (AE016879) strains. For our strain, the maximum gene cluster (190) was shared with B. cereus ATCC 14579 T (AE016877). For Ortho Venn pair wise analysis, the maximum overlapping gene clusters thresholds have been detected between Bacillus s p.BNPI-92 and Ba. cereus ATCC 14579 T (5414). Average nucleotide identity (ANI) such as OriginalANI and OrthoANI, in silicon digital DND-DNA hybridization (isDDH), Type (Strain) Genome Server (TYGS), and Genome-Genome Distance Calculator (GGDC) were more essentially related Bacillus sp. BNPI-92 with B. cereus ATCC 14579 T strain. Therefore, based on the combination of RAST annotation, OrthoVenn server, ANI and isDDH result Bacillus sp.BNPI-92 strain was strongly confirmed to be a B. cereus type strain. It was designated as B. cereus BNPI-92 strain. In B. cereus BNPI-92 strain whole genome sequence, PHA biosynthesis encoding genes such as phaP, phaQ, phaR (PHA synthesis repressor phaR gene sequence), phaB/phbB, and phaC were predicted on the same operon. These gene clusters were designated as phaPQRBC. However, phaA was located on other operons. CONCLUSIONS This newly obtained isolate was found to be new a strain based on comparative genomic analysis and it was also observed as a potential candidate for PHA biosynthesis.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia.
| | - Lopamudra Ray
- School of Law, Campus -16 Adjunct Faculty, School of Biotech, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Ananta N Panda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sudhansu K Gouda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
9
|
Soni S, Chhokar V, Beniwal V, Kumar R, Badgujjar H, Chauhan R, Dudeja S, Kumar A. Cost effective media optimization for PHB production by Bacillus badius MTCC 13004 using the statistical approach. Int J Biol Macromol 2023; 233:123575. [PMID: 36764347 DOI: 10.1016/j.ijbiomac.2023.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Polyhydroxybutyrate (PHB) has significant potential for replacing non-biodegradable traditional plastic, which is responsible for several global environmental issues. The main problem with switching to bio-based alternatives for petrochemical plastics is the large price gap on the market. To overcome this problem, the present research was focused on the utilization of inexpensive substrates i.e. agricultural residues for cost-effective PHB production by endospore-forming bacteria Bacillus badius MTCC 13004. For efficient PHB production, Box-Behnken Design (BBD) was selected for media optimization and to observe the interactive effects of four variables i.e. pH, Na acetate, Banana peel, and mustard cake. PHB yield of 2.11 g/L was attained under optimized conditions compared to non-optimized conditions (0.72 g/L). FTIR spectra analysis of PHB extracted from Bacillus badius was found to be similar to commercial PHB. NMR data was also matched with the chemical shift signals CH, CH2, and CH3 of PHB. The melting temperature (Tm) and glass transition temperature (Tg) of PHB from Bacillus badius was found to be 165.14 and 2.68 °C, respectively. Further, PCR protocol was also designed to amplify key enzymes of the PHB synthesis pathway i.e. PHB synthase (phb C gene).
Collapse
Affiliation(s)
- Sweeta Soni
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Vinod Chhokar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Vikas Beniwal
- Dept. of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Ravinder Kumar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Hemlata Badgujjar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rohit Chauhan
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Shruti Dudeja
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Anil Kumar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India.
| |
Collapse
|
10
|
Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Bacillus flexus Isolated from Municipal Solid Waste Landfill Site. Polymers (Basel) 2023; 15:polym15061407. [PMID: 36987188 PMCID: PMC10057257 DOI: 10.3390/polym15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, there has been a growing interest in bio-based degradable plastics as an alternative to synthetic plastic. Polyhyroxybutyrate (PHB) is a macromolecule produced by bacteria as a part of their metabolism. Bacteria accumulate them as reserve materials when growing under different stress conditions. PHBs can be selected as alternatives for the production of biodegradable plastics because of their fast degradation properties when exposed to natural environmental conditions. Hence, the present study was undertaken in order to isolate the potential PHB-producing bacteria isolated from the municipal solid waste landfill site soil samples collected from the Ha’il region of Saudi Arabia to assess the production of PHB using agro-residues as a carbon source and to evaluate the growth of PHB production. In order to screen the isolates for producing PHB, a dye-based procedure was initially employed. Based on the 16S rRNA analysis of the isolates, Bacillus flexus (B. flexus) accumulated the highest amount of PHB of all the isolates. By using a UV–Vis spectrophotometer and Fourier-transform infrared spectrophotometer (FT-IR), in which a sharp absorption band at 1721.93 cm−1 (C=O stretching of ester), 1273.23 cm−1 (–CH group), multiple bands between 1000 and 1300 cm−1 (stretching of the C–O bond), 2939.53 cm−1 (–CH3 stretching), 2880.39 cm−1 (–CH2 stretching) and 3510.02 cm−1 (terminal –OH group), the extracted polymer was characterized and confirmed its structure as PHB. The highest PHB production by B. flexus was obtained after 48 h of incubation (3.9 g/L) at pH 7.0 (3.7 g/L), 35 °C (3.5 g/L) with glucose (4.1 g/L) and peptone (3.4 g/L) as carbon and nitrogen sources, respectively. As a result of the use of various cheap agricultural wastes, such as rice bran, barley bran, wheat bran, orange peel and banana peel as carbon sources, the strain was found to be capable of accumulating PHB. Using response surface methodology (RSM) for optimization of PHB synthesis using a Box–Behnken design (BBD) proved to be highly effective in increasing the polymer yield of the synthesis. With the optimum conditions obtained from RSM, PHB content can be increased by approximately 1.3-fold when compared to an unoptimized medium, resulting in a significant reduction in production costs. Thus, isolate B. flexus is a highly promising candidate for the production of industrial-size quantities of PHB from agricultural wastes and is capable of removing the environmental concerns associated with synthetic plastics from the industrial production process. Moreover, the successful production of bioplastics using a microbial culture provides a promising avenue for the large-scale production of biodegradable and renewable plastics with potential applications in various industries, including packaging, agriculture and medicine.
Collapse
|
11
|
Aytar Celik P, Barut D, Enuh BM, Erdogan Gover K, Nural Yaman B, Burcin Mutlu M, Cabuk A. A novel higher polyhydroxybutyrate producer Halomonas halmophila 18H with unique cell factory attributes. BIORESOURCE TECHNOLOGY 2023; 372:128669. [PMID: 36702321 DOI: 10.1016/j.biortech.2023.128669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
For cost-competitive biosynthesis of polyhydroxybutyrate (PHB), the screening of efficient producers and characterization of their genomic potential is fundamental. In this study, 94 newly isolated halophilic strains from Turkish salterns were screened for their polyhydroxyalkanoates (PHAs) biosynthesis capabilities through fermentation. Halomonas halmophila 18H was found to be the highest PHB producer, yielding 63.72 % of its biomass as PHB. The PHB produced by this strain was physically and chemically characterized using various techniques. Its genome was also sequenced and found to be large (6,713,657 bp) and have a GC content of 59.9 %. Halomonas halmophila 18H was also found to have several copies of PHB biosynthesis genes, as well as 20 % more protein-coding genes and 1075 singletons compared to other high PHB producers. These unique genomic features make it a promising cell factory for the simultaneous production of PHAs and other biotechnologically important secondary metabolites.
Collapse
Affiliation(s)
- Pinar Aytar Celik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, 26110 Eskisehir, Turkey; Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Kubra Erdogan Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Belma Nural Yaman
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Mehmet Burcin Mutlu
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Ahmet Cabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
12
|
Deghiedy NM, El-Bastawisy HS, Gomaa OM. Spatiotemporal based response for methylene blue removal using surface modified calcium carbonate microspheres coated with Bacillus sp. RSC Adv 2023; 13:1842-1852. [PMID: 36712634 PMCID: PMC9830531 DOI: 10.1039/d2ra05466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Calcium carbonate microspheres are attractive for their biocompatibility, high loading capacity and easy preparation. They can be used in biomedicine and catalytic applications. In the present work, calcium carbonate microspheres were surface modified with polyvinylpyrrolidone (PVP) followed by irradiation at 5 kGy prior to coating with Bacillus sp. cells. To provide cell protection and internal energy storage, polyhydroxybutyrate (PHB) was induced using 3 factors 2 levels factorial design where the order of effect on PHB% was pH > incubation time > glucose concentration. The highest production was 81.68 PHB% at pH 9, 20 g L-1 glucose and 4 days incubation time. Bacillus sp. cells grown under PHB optimal conditions were used to coat the surface modified calcium carbonate microspheres. Characterization was performed using X-ray diffraction, Fourier Transform Infrared Spectroscopy, Dynamic light Scattering, Zeta potential and Scanning Electron Microscopy. The results obtained confirm the formation and coating of microspheres of 2.34 μm and -16 mV. The prepared microspheres were used in bioremoval of methylene blue dye, the results showed spatiotemporal response for MB-microsphere interaction, where PHB induced Bacillus sp. coated microspheres initially adsorb MB to its outer surface within 1 h but decolorization takes place when the incubation time extends to 18 h. The microspheres can be reused up to 3 times with the same efficiency and with no desorption. These results suggest that the surface modified calcium carbonate can be tailored according to the requirement which can be delivery of biomaterial, bioadsorption or bioremediation.
Collapse
Affiliation(s)
- Noha M. Deghiedy
- Radiation Polymer Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)CairoEgypt
| | - Hanan S. El-Bastawisy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)CairoEgypt
| | - Ola M. Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)CairoEgypt
| |
Collapse
|
13
|
Adnan M, Siddiqui AJ, Ashraf SA, Snoussi M, Badraoui R, Alreshidi M, Elasbali AM, Al-Soud WA, Alharethi SH, Sachidanandan M, Patel M. Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization. Polymers (Basel) 2022; 14:polym14193982. [PMID: 36235929 PMCID: PMC9571180 DOI: 10.3390/polym14193982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon and energy reserves. Due to its rapid degradation in natural environments, it can be considered a biodegradable plastic alternative. In the present study, a dye-based procedure was used to screen PHB-producing bacteria isolated from mangrove soil samples. Among the seven isolates, Agromyces indicus (A. indicus), identified by means of 16S rRNA analysis, accumulated the highest amount of PHB. The extracted polymer was characterized by a UV–Vis spectrophotometer, Fourier-transform infrared (FTIR) spectroscopy, and for the presence of the phbB gene, which confirmed the structure of the polymer as PHB. The maximum PHB production by A. indicus was achieved after 96 h of incubation at a pH of 8.0 and 35 °C in the presence of 2% NaCl, with glucose and peptone as the carbon and nitrogen sources, respectively. The strain was found to be capable of accumulating PHB when various cheap agricultural wastes, such as rice, barley, corn, and wheat bran, were used as the carbon sources. The response surface methodology (RSM) through the central composite design (CCD) for optimizing the PHB synthesis was found to be highly efficient at augmenting the polymer yields. As a result of the optimum conditions obtained from the RSM, this strain can increase the PHB content by approximately 1.4-fold when compared with an unoptimized medium, which would substantially lower the production cost. Therefore, the isolate A. indicus strain B2 may be regarded as one of the best candidates for the industrial production of PHB from agricultural wastes, and it can remove the environmental concerns associated with synthetic plastic.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran P.O. Box 1998, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
- Correspondence:
| |
Collapse
|
14
|
Mohammed S, Ray L. Polyhydroxyalkanoate recovery from newly screened Bacillus sp. LPPI-18 using various methods of extraction from Loktak Lake sediment sample. J Genet Eng Biotechnol 2022; 20:115. [PMID: 35932435 PMCID: PMC9357249 DOI: 10.1186/s43141-022-00392-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nowadays, the conventional plastic wastes are very challenging to environments and its production cost also creates an economic crisis due to petrochemical-based plastic. In order to solve this problem, the current studies were aimed at screening and characterizing these polyhydroxyalkanoate (PHA)-producing isolates and evaluating the suitability of some carbon source for newly screened PHA-producing isolates. MATERIAL AND METHODS Some carbon sources such as D-fructose, glucose, molasses, D-ribose and sucrose were evaluated for PHA production. Data were analyzed using SPSS version 20. The 16SrRNA gene sequence of these isolates was performed. These newly isolated taxa were related to Bacillus species. It was designated as Bacillus sp. LPPI-18 and affiliated Bacillus cereus ATCC 14577T (AE01687) (99.10%). Paenibacillus sp. 172 (AF273740.1) was used as an outgroup. RESULTS Bacillus sp. LPPI-18 is a gram-positive, rod-shaped, endospore former, and citrate test positive. This isolate showed positive for amylase, catalase, pectinase, and protease test. They produced intracellular PHA granules when this isolate was stained with Sudan Black B (SBB) and Nile blue A (NBA) preliminary and specific staining dyes, respectively. Both temperature and pH used to affect polyhydroxyalkanoates (PHA) productivity. Bacteria are able to reserve PHA in the form of granules during stress conditions. This isolate produces only when supplied with carbon sources. More PHA contents (PCs) were obtained from glucose, molasses, and D-fructose. In this regard, the maximum mean value of PC was obtained from glucose (40.55±0.7%) and the minimum was obtained from D-ribose (12.4±1.4%). Great variations (P≤0.05) of PCs were observed among glucose and sucrose, molasses and sucrose, and D-fructose and sucrose carbon sources for PHA productivity (PP) of cell dry weight (CDW) g/L. After extraction, PHA film was produced for this typical isolate using glucose as a sole carbon source. Fourier transform infrared spectrum was performed for this isolate and showed the feature of polyester at 1719.64 to 1721.16 wavelengths for these extracted samples. The peak of fingerprinting (band of carboxylic acid group) at this wavelength is a characteristic feature of polyhydroxybutyrate (PHB) and corresponds to the ester functional group (C=O). CONCLUSION In this study, newly identified Bacillus sp. LPPI-18 is found to be producing biodegradable polymers that are used to replace highly pollutant conventional plastic polymers. This isolate is also used to employ certain cost-effective carbon sources for the production of PHA polymers.
Collapse
Affiliation(s)
- Seid Mohammed
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia. .,School of Law, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Lopamudra Ray
- School of Law, KIIT University, Bhubaneswar, Odisha, 751024, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
15
|
Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Müllerová L, Marková K, Obruča S, Mravec F. Use of Flavin-Related Cellular Autofluorescence to Monitor Processes in Microbial Biotechnology. Microorganisms 2022; 10:microorganisms10061179. [PMID: 35744697 PMCID: PMC9231254 DOI: 10.3390/microorganisms10061179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular autofluorescence is usually considered to be a negative phenomenon because it can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with the signal of various fluorescent probes. Nevertheless, in our work, we adopted a different approach, and green autofluorescence induced by flavins was used as a tool to monitor fermentation employing the bacterium Cupriavidus necator. The autofluorescence was used to distinguish microbial cells from abiotic particles in flow cytometry assays, and it was also used for the determination of viability or metabolic characteristics of the microbial cells. The analyses using two complementary techniques, namely fluorescence microscopy and flow cytometry, are simple and do not require labor sample preparation. Flavins and their autofluorescence can also be used in a combination with other fluorophores when the need for multi-parametrical analyses arises, but it is wise to use dyes that do not emit a green light in order to not interfere with flavins' emission band (500-550 nm).
Collapse
|
17
|
Zhou W, Colpa DI, Geurkink B, Euverink GJW, Krooneman J. The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152341. [PMID: 34921889 DOI: 10.1016/j.scitotenv.2021.152341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Growth conditions have been frequently studied in optimizing polyhydroxybutyrate (PHB) production, while few studies were performed to unravel the dynamic mixed microbial consortia (MMCs) in the process. In this study, the relationship between growth conditions (C/N ratios and pH) and the corresponding key-microbes were identified and monitored during PHB accumulation. The highest PHB level (70 wt% of dry cell mass) was obtained at pH 9, C/N 40, and acetic acid 10 g/L. Linking the dominant genera with the highest point of PHB accumulation, Thauera was the most prevalent species in all MMCs of pH 9, except when a C/N ratio of 1 was applied. Notably, dominant bacteria shifted at pH 7 (C/N 10) from Thauera (0 h) to Paracoccus, and subsequently to Alcaligenes following the process of PHB accumulation and consumption. Further understanding of the relationship between the structure of the microbial community and the performance will be beneficial for regulating and obtaining high PHB accumulation within an MMC. Our study illustrates the impact of C/N ratios and pH on microbial prevalence and PHB production levels using a mixed microbial starter culture. This knowledge will broaden industrial perspectives for regulating high PHB production and timely harvesting.
Collapse
Affiliation(s)
- Wen Zhou
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Dana Irene Colpa
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Bert Geurkink
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gert-Jan Willem Euverink
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Janneke Krooneman
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
18
|
Mahato RP, Kumar S, Singh P. Optimization of Growth Conditions to Produce Sustainable Polyhydroxyalkanoate Bioplastic by Pseudomonas aeruginosa EO1. Front Microbiol 2021; 12:711588. [PMID: 34721317 PMCID: PMC8555948 DOI: 10.3389/fmicb.2021.711588] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are intracellularly synthesized by bacteria as carbonosomes that exhibit biodegradable thermoplastics and elastomeric properties. The use of cheaper edible oils as a source of carbon assists in the reduction of the production cost of such biopolyesters. In this work, different edible oils, such as groundnut oil (GNO), mustard oil, sesame oil, and soybean oil (SBO) were used to check their effect on PHA production from Pseudomonas aeruginosa EO1 (MK049902). Pseudomonas aeruginosa EO1 was used in a two-stage production system. In the first stage, bacterial growth was favored and, in the second, PHA was synthesized. GNO was found as the best carbon source for PHA production. The use of 2% (v/v) GNO, rich in saturated fatty acids, allowed PHA content of 58.41% and dry cell weight (DCW) of 10.5g/L at pH7 and temperature 35°C for 72h. Groundnut has a high potential for oil production and for the diversification of co-products with some potential of value aggregation. Such a perennial and sustainable species will almost certainly meet the criteria for becoming a significant commercial oilseed crop. Fourier transform infrared spectroscopy (FTIR) spectra showed strong characteristic bands at 1,282, 1,725, 2,935, 2,999, and 3,137cm−1 for the PHA polymer. Gas chromatography-mass spectrometry (GC-MS) detects the presence of PHA copolymers.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, India
| | - Saurabh Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, India
| |
Collapse
|
19
|
Mohanrasu K, Guru Raj Rao R, Dinesh GH, Zhang K, Sudhakar M, Pugazhendhi A, Jeyakanthan J, Ponnuchamy K, Govarthanan M, Arun A. Production and characterization of biodegradable polyhydroxybutyrate by Micrococcus luteus isolated from marine environment. Int J Biol Macromol 2021; 186:125-134. [PMID: 34246666 DOI: 10.1016/j.ijbiomac.2021.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/26/2022]
Abstract
Marine microorganisms are reported to produce polyhydroxybutyrate (PHB) that has wide range of medical and industrial applications with the advantage of biodegradability. PHBs are synthesized as an energy and carbon storage element under metabolic pressure. The scope of this work is enhancing PHB production using marine microbial isolate, Micrococcus luteus by selectively optimizing various growth conditions such as different media components and growth parameters that influence the cell growth and PHB production were sampled. Micrococcus luteus produced 7.54 g/L of PHB utilizing glucose as a carbon source and ammonium sulphate as a nitrogen source with maximum efficiency. The same optimized operational conditions were further employed in batch fermentation over a time span of 72 h. Interestingly higher cell dry weight of 21.52 g/L with PHB yield of 12.18 g/L and 56.59% polymer content was observed in batch fermentation studies at 64 h. The chemical nature of the extracted polymer was validated with physio-chemical experiments and was at par with the commercially available PHB. This study will spotlight M. luteus as a potential source for large-scale industrial production of PHB with reducing environmental pollutions.
Collapse
Affiliation(s)
- K Mohanrasu
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - R Guru Raj Rao
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - G H Dinesh
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kunyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, China
| | - Muniyasamy Sudhakar
- CSIR Chemical Cluster, Advanced Polymers and Composites Research, Pretoria, South Africa; Dept of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - A Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - J Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
20
|
Vu DH, Wainaina S, Taherzadeh MJ, Åkesson D, Ferreira JA. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered 2021; 12:2480-2498. [PMID: 34115556 PMCID: PMC8806590 DOI: 10.1080/21655979.2021.1935524] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High production costs still hamper fast expansion of commercial production of polyhydroxyalkanoates (PHAs). This problem is greatly related to the cultivation medium which accounts for up to 50% of the whole process costs. The aim of this research work was to evaluate the potential of using volatile fatty acids (VFAs), derived from acidogenic fermentation of food waste, as inexpensive carbon sources for the production of PHAs through bacterial cultivation. Bacillus megaterium could assimilate glucose, acetic acid, butyric acid, and caproic acid as single carbon sources in synthetic medium with maximum PHAs production yields of 9-11%, on a cell dry weight basis. Single carbon sources were then replaced by a mixture of synthetic VFAs and by a VFAs-rich stream from the acidogenic fermentation of food waste. After 72 h of cultivation, the VFAs were almost fully consumed by the bacterium in both media and PHAs production yields of 9-10%, on cell dry weight basis, were obtained. The usage of VFAs mixture was found to be beneficial for the bacterial growth that tackled the inhibition of propionic acid, iso-butyric acid, and valeric acid when these volatile fatty acids were used as single carbon sources. The extracted PHAs were revealed to be polyhydroxybutyrate (PHB) by characterization methods of Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The obtained results proved the possibility of using VFAs from acidogenic fermentation of food waste as a cheap substrate to reduce the cost of PHAs production.
Collapse
Affiliation(s)
- Danh H Vu
- Swedish Centre for Resource Recovery, University of Borås, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Sweden
| | | | - Dan Åkesson
- Swedish Centre for Resource Recovery, University of Borås, Sweden
| | - Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, Sweden
| |
Collapse
|
21
|
Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers (Basel) 2021; 13:1544. [PMID: 34065779 PMCID: PMC8150976 DOI: 10.3390/polym13101544] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
Collapse
Affiliation(s)
| | | | | | | | - Siti Baidurah
- School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Malaysia; (J.Y.B.); (L.M.); (Y.S.K.); (G.S.T.)
| |
Collapse
|
22
|
Silambarasan S, Logeswari P, Sivaramakrishnan R, Pugazhendhi A, Kamaraj B, Ruiz A, Ramadoss G, Cornejo P. Polyhydroxybutyrate production from ultrasound-aided alkaline pretreated finger millet straw using Bacillus megaterium strain CAM12. BIORESOURCE TECHNOLOGY 2021; 325:124632. [PMID: 33485084 DOI: 10.1016/j.biortech.2020.124632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this study, finger millet straw (FMS) was utilized for the production of Polyhydroxybutyrate (PHB) by Bacillus megaterium strain CAM12. Ultrasound-assisted alkaline (NaOH) pretreatment of FMS under optimized conditions followed by enzymatic saccharification resulted in the maximum delignification (72%), hydrolysis yield (84%), glucose yield (86%) and xylose yield (61%). The effects of different pH, temperature, incubation period, inoculum concentration, agitation speed and FMS enzymatic hydrolysates concentration were investigated to improve the PHB production. Under optimized conditions, strain CAM12 used the FMS hydrolysates as the sole carbon source for their growth and produced 8.31 g L-1 of PHB. The extracted polymer on Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Nuclear magnetic resonance (NMR) analyses were confirmed to be PHB. These results suggest the potential of combined ultrasound and alkaline pretreated FMS hydrolysates as a promising feedstock for PHB production.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Govindarajan Ramadoss
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
23
|
Andler R, Pino V, Moya F, Soto E, Valdés C, Andreeßen C. Synthesis of poly-3-hydroxybutyrate (PHB) by Bacillus cereus using grape residues as sole carbon source. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2021.1882049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R. Andler
- Escuela De Ingeniería En Biotecnología, Universidad Católica Del Maule, Talca, Chile
| | - V. Pino
- Escuela De Ingeniería En Biotecnología, Universidad Católica Del Maule, Talca, Chile
| | - F. Moya
- Escuela De Ingeniería En Biotecnología, Universidad Católica Del Maule, Talca, Chile
| | - E. Soto
- Escuela De Ingeniería En Biotecnología, Universidad Católica Del Maule, Talca, Chile
| | - C. Valdés
- Centro De Investigación De Estudios Avanzados Del Maule (CIEAM), Vicerrectoría De Investigación Y Postgrado, Universidad Católica Del Maule, Talca, Chile
| | - C. Andreeßen
- Independent Researcher, Monheim Am Rhein, Germany
| |
Collapse
|
24
|
Martínez-Herrera RE, Alemán-Huerta ME, Almaguer-Cantú V, Rosas-Flores W, Martínez-Gómez VJ, Quintero-Zapata I, Rivera G, Rutiaga-Quiñones OM. Efficient recovery of thermostable polyhydroxybutyrate (PHB) by a rapid and solvent-free extraction protocol assisted by ultrasound. Int J Biol Macromol 2020; 164:771-782. [DOI: 10.1016/j.ijbiomac.2020.07.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023]
|
25
|
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. Int J Mol Sci 2020; 21:ijms21207639. [PMID: 33076477 PMCID: PMC7589590 DOI: 10.3390/ijms21207639] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
Collapse
|
26
|
El-malek FA, Farag A, Omar S, Khairy H. Polyhydroxyalkanoates (PHA) from Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 isolated from Mariout salt lakes. Int J Biol Macromol 2020; 161:1318-1328. [DOI: 10.1016/j.ijbiomac.2020.07.258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022]
|
27
|
Narayanan M, Kandasamy S, Kumarasamy S, Gnanavel K, Ranganathan M, Kandasamy G. Screening of polyhydroxybutyrate producing indigenous bacteria from polluted lake soil. Heliyon 2020; 6:e05381. [PMID: 33163664 PMCID: PMC7610324 DOI: 10.1016/j.heliyon.2020.e05381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
The prime aim of this study was to enumerate predominant bacteria from polluted lake soil samples, which possess polyhydroxybutyrate (PHB) fabricating potential and identify the suitable growth conditions and nutritional factors for PHB fabrication. From several numbers of bacterial cultures, one culture has the competence to yield PHB, and it was endorsed through Sudan Black B stain, Nile red staining, SEM analysis, and growth in PHB selective media. Under the microscopic observation, the fluorescent cells and polymeric granules were observed in the fluorescent microscope and SEM, respectively. This PHB fabricating isolate was recognized as Bacillus cereus NDRMN001 through 16S rRNA partial sequence analysis. The structural characteristics of PHB produced by B. cereus NDRMN001 were studied through FT-IR, 1H NMR, and 13C NMR analysis. The peak observed at 1759.27 cm-1 on FT-IR analysis is corresponding to the signal band of PHB. In 1H NMR peaks were noticed at 1.67, 2.37 to 2.71, and 3.38 to 7.68 which corresponding to -CH3, -CH2, and -CH protons of PHB. About 4 notable peaks were noticed in 13C NMR analysis at 19.62, 68.27, 40.68, and 169.11 ppm which appeared close to the carboxyl group of PHB. About 10% of inoculum, pH 7.5, 2 g L of yeast extract, 20 g L of rice bran, 35 °C, and 2 days of incubation were recognized as optimal growth conditions for B. cereus NDRMN001 to produce PHB. The identified B. cereus NDRMN001 has the potential to yield 91.48% of PHB as 33.19 g L of PHB from 36.26 g L of culture biomass. The complete results conclude that the B. cereus NDRMN001 screened from polluted lake soil has the competence to produce fine quality and quantity of PHB in a short duration of fabrication process under favorable conditions with the utilization of cheap nutritional factors.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | | | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Keerthana Gnanavel
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Muthusamy Ranganathan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| |
Collapse
|
28
|
Mostafa YS, Alrumman SA, Alamri SA, Otaif KA, Mostafa MS, Alfaify AM. Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Sci Rep 2020; 10:8815. [PMID: 32483188 PMCID: PMC7264318 DOI: 10.1038/s41598-020-65858-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/11/2020] [Indexed: 01/02/2023] Open
Abstract
Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates, Pseudodonghicola xiamenensis, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by P. xiamenensis was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by P. xiamenensis, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.
Collapse
Affiliation(s)
- Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Kholod A Otaif
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohamed S Mostafa
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan, 45142, Saudi Arabia
| | - Abdulkhaleg M Alfaify
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
29
|
Mohapatra S, Pattnaik S, Maity S, Mohapatra S, Sharma S, Akhtar J, Pati S, Samantaray DP, Varma A. Comparative analysis of PHAs production by Bacillus megaterium OUAT 016 under submerged and solid-state fermentation. Saudi J Biol Sci 2020; 27:1242-1250. [PMID: 32346331 PMCID: PMC7182993 DOI: 10.1016/j.sjbs.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 11/19/2022] Open
Abstract
In view of risk coupled with synthetic polymer waste, there is an imperative need to explore biodegradable polymer. On account of that, six PHAs producing bacteria were isolated from mangrove forest and affilated to the genera Bacillus & Pseudomonas from morpho-physiological characterizations. Among which the potent PHAs producer was identified as Bacillus megaterium OUAT 016 by 16S rDNA sequencing and in-silico analysis. This research addressed a comparative account on PHAs production by submerged and solid-state fermentation pertaining to different downstream processing. Here, we established higher PHAs production by solid-state fermentation through sonication and mono-solvent extraction. Using modified MSM media under optimized conditions, 49.5% & 57.7% of PHAs were produced in submerged and 34.1% & 62.0% in solid-state fermentation process. Extracted PHAs was identified as a valuable polymer PHB-co-PHV and its crystallinity & thermostability nature was validated by FTIR, 1H NMR and XRD. The melting (Tm) and thermal degradation temperature (Td) of PHB-co-PHV was 166 °C and 273 °C as depicted from DTA. Moreover, FE-SEM and SPM surface imaging indicated biodegradable nature, while FACS assay confirmed cytocompatibility of PHB-co-PHV.
Collapse
Affiliation(s)
- S Mohapatra
- Department of Microbial Technology, Amity University Utter Pradesh, Noida, India
| | - S Pattnaik
- Department of Microbiology, OUAT, Bhubaneswar, Odisha, India
| | - S Maity
- University Innovation Cluster Biotechnology, University of Rajasthan, Rajasthan, India
| | - S Mohapatra
- Department of Economics, OUAT, Bhubaneswar, Odisha, India
| | - S Sharma
- Department of Mechanical Engineering, Amity University, Noida, India
| | - J Akhtar
- IMGENEX India Private Limited, Bhubaneswar, Odisha, India
| | - S Pati
- Department of Microbiology, OUAT, Bhubaneswar, Odisha, India
| | - D P Samantaray
- Department of Microbiology, OUAT, Bhubaneswar, Odisha, India
| | - Ajit Varma
- Department of Microbial Technology, Amity University Utter Pradesh, Noida, India
| |
Collapse
|
30
|
Mostafa YS, Alrumman SA, Otaif KA, Alamri SA, Mostafa MS, Sahlabji T. Production and Characterization of Bioplastic by Polyhydroxybutyrate Accumulating Erythrobacter aquimaris Isolated from Mangrove Rhizosphere. Molecules 2020; 25:E179. [PMID: 31906348 PMCID: PMC6983239 DOI: 10.3390/molecules25010179] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 01/12/2023] Open
Abstract
The synthesis of bioplastic from marine microbes has a great attendance in the realm of biotechnological applications for sustainable eco-management. This study aims to isolate novel strains of poly-β-hydroxybutyrate (PHB)-producing bacteria from the mangrove rhizosphere, Red Sea, Saudi Arabia, and to characterize the extracted polymer. The efficient marine bacterial isolates were identified by the phylogenetic analysis of the 16S rRNA genes as Tamlana crocina, Bacillus aquimaris, Erythrobacter aquimaris, and Halomonas halophila. The optimization of PHB accumulation by E. aquimaris was achieved at 120 h, pH 8.0, 35 °C, and 2% NaCl, using glucose and peptone as the best carbon and nitrogen sources at a C:N ratio of 9.2:1. The characterization of the extracted biopolymer by Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Gas chromatography-mass spectrometry (GC-MS) proves the presence of hydroxyl, methyl, methylene, methine, and ester carbonyl groups, as well as derivative products of butanoic acid, that confirmed the structure of the polymer as PHB. This is the first report on E. aquimaris as a PHB producer, which promoted the hypothesis that marine rhizospheric bacteria were a new area of research for the production of biopolymers of commercial value.
Collapse
Affiliation(s)
- Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Sulaiman A. Alrumman
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Kholod A. Otaif
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed S. Mostafa
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Taher Sahlabji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| |
Collapse
|
31
|
Priyadarshini S, Pradhan SK, Ray P. Production, characterization and application of thermostable, alkaline α-amylase (AA11) from Bacillus cereus strain SP-CH11 isolated from Chilika Lake. Int J Biol Macromol 2019; 145:804-812. [PMID: 31758985 DOI: 10.1016/j.ijbiomac.2019.11.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
An alkaliphile bacterial strain designated as CH11 was isolated from the sediments of Chilika Lake, Odisha. The isolate showed stupendous growth and production of α-amylase at pH 10.0. Through 16S rRNA gene based molecular technique this isolate was identified as Bacillus cereus strain SP-CH11 having GenBank Accession No. KT992791. Homogenous ~55 kDa extracellular α-amylase was extracted with 241.304, 26.26 and 3.2-fold acceleration in specific activity, purification fold and yield respectively. The alkaline α-amylase AA11 was further characterized. At pH 9.0 the purified enzyme AA11 was highly stable while retaining 88-100% functional viability at temperature range from 35 to 65 °C, confirming its thermostability nature. It showed stability with powdered and liquid detergents at 7 mg/mL and 100-fold dilutions respectively. AA11 efficiently removed the starch stain from cotton fabrics. The findings of this study indicate that the isolate CH11 is a source of novel alkaline α-amylase that has promising application in food and detergent industries.
Collapse
Affiliation(s)
- Sonali Priyadarshini
- Department of Microbiology, C.B.S.H, Orissa University of Agriculture and Technology, Unit 7, Surya Nagar, Bhubaneshwar, Odisha 751003, India.
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Centre for Post Graduate Studies, Orissa University of Agriculture and Technology, Surya Nagar, Bhubaneswar, 751 003, Odisha, India
| | - Pratima Ray
- Department of Microbiology, C.B.S.H, Orissa University of Agriculture and Technology, Unit 7, Surya Nagar, Bhubaneshwar, Odisha 751003, India
| |
Collapse
|
32
|
Priyadarshini S, Ray P. Exploration of detergent-stable alkaline α-amylase AA7 from Bacillus sp strain SP-CH7 isolated from Chilika Lake. Int J Biol Macromol 2019; 140:825-832. [DOI: 10.1016/j.ijbiomac.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/25/2022]
|
33
|
Özgören T, Pinar O, Bozdağ G, Denizci AA, Gündüz O, Çakır Hatır P, Kazan D. Assessment of poly(3-hydroxybutyrate) synthesis from a novel obligate alkaliphilic Bacillus marmarensis and generation of its composite scaffold via electrospinning. Int J Biol Macromol 2018; 119:982-991. [DOI: 10.1016/j.ijbiomac.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/04/2023]
|
34
|
Song X, Wang C, Shen Y, Liu F, Yu S, Ge X. Methanolysis of poly(3-hydroxybutyrate) catalyzed by ferric chloride. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiuyan Song
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao China
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao China
| | - Chan Wang
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao China
| | - Yong Shen
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao China
| | - Fusheng Liu
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao China
| | - Shitao Yu
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao China
| | - Xiaoping Ge
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao China
| |
Collapse
|
35
|
Mohapatra S, Sarkar B, Samantaray DP, Daware A, Maity S, Pattnaik S, Bhattacharjee S. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. ENVIRONMENTAL TECHNOLOGY 2017; 38:3201-3208. [PMID: 28162048 DOI: 10.1080/09593330.2017.1291759] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.
Collapse
Affiliation(s)
- S Mohapatra
- a Department of Biotechnology , Indian Institute of Technology , Roorke , India
| | - B Sarkar
- b ICAR-Indian Institute of Agricultural Biotechnology, IINRG Campus , Ranchi , Jharkhand , India
| | - D P Samantaray
- c Department of Microbiology , Orissa University of Agriculture and Technology , Bhubaneswar , Odisha, India
| | - A Daware
- d Department of Molecular Biology and Bioinformatics , Tripura University , Agartala , Tripura , India
| | - S Maity
- c Department of Microbiology , Orissa University of Agriculture and Technology , Bhubaneswar , Odisha, India
| | - S Pattnaik
- c Department of Microbiology , Orissa University of Agriculture and Technology , Bhubaneswar , Odisha, India
| | - S Bhattacharjee
- d Department of Molecular Biology and Bioinformatics , Tripura University , Agartala , Tripura , India
| |
Collapse
|
36
|
Mohapatra S, Samantaray D, Samantaray S, Mishra B, Das S, Majumdar S, Pradhan S, Rath S, Rath C, Akthar J, Achary K. Structural and thermal characterization of PHAs produced by Lysinibacillus sp. through submerged fermentation process. Int J Biol Macromol 2016; 93:1161-1167. [DOI: 10.1016/j.ijbiomac.2016.09.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/28/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
37
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|
38
|
El-Sayed N, Galal S, El-Gowelli H, El-Khordagui L. Inhibition of postsurgical adhesions by methylene blue-loaded nanofibers versus cast film matrices. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1029-44. [DOI: 10.1080/09205063.2016.1177984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|