1
|
Koeder C, Keller M. Radium levels in Brazil nuts: A review of the literature. NUTR BULL 2024. [PMID: 39489716 DOI: 10.1111/nbu.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Brazil nuts are well known for their extraordinarily high selenium content. For this reason, they are frequently recommended as a kind of natural selenium 'supplement', particularly for certain population groups such as vegetarians and vegans in regions with low soil selenium levels. Typically, an intake of one or two Brazil nuts per day is recommended. Brazil nuts, however, also stand out from other nuts in terms of their high (albeit highly variable) radium content. The radium isotopes Ra-226 and Ra-228 emit alpha- and beta-radiation, with this type of radiation being particularly harmful when ingested. Consequently, it is important to consider radium levels in Brazil nuts before formulating recommendations for a long-term, daily intake of these nuts. To date, however, no comprehensive overview of radium levels in Brazil nuts has been published. Therefore, a literature review without time or language restrictions was conducted, including unpublished original data from Germany. The literature review (including the German data) indicated mean Ra-226 and Ra-228 levels of 49 (range: 17-205) mBq/g and 67 (range: 12-235) mBq/g, respectively. Assuming a consistent daily intake of one or two Brazil nuts, this would result in an effective dose of ~88-220 μSv/year. This level of exposure appears to be neither clearly harmful nor clearly harmless. As increased radioactivity exposure (at least at higher doses) is associated with increased cancer risk, randomised controlled trials assessing the effect of Brazil nuts on cancer risk biomarkers are needed.
Collapse
Affiliation(s)
- Christian Koeder
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Research Institute for Plant-Based Nutrition (IFPE), Biebertal, Germany
| | - Markus Keller
- Research Institute for Plant-Based Nutrition (IFPE), Biebertal, Germany
| |
Collapse
|
2
|
Farrell R, Pascuzzi N, Chen YL, Kim M, Torres M, Gollahon L, Chen KHE. Prolactin Drives Iron Release from Macrophages and Uptake in Mammary Cancer Cells through CD44. Int J Mol Sci 2024; 25:8941. [PMID: 39201626 PMCID: PMC11354873 DOI: 10.3390/ijms25168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Iron is an essential element for human health. In humans, dysregulated iron homeostasis can result in a variety of disorders and the development of cancers. Enhanced uptake, redistribution, and retention of iron in cancer cells have been suggested as an "iron addiction" pattern in cancer cells. This increased iron in cancer cells positively correlates with rapid tumor growth and the epithelial-to-mesenchymal transition, which forms the basis for tumor metastasis. However, the source of iron and the mechanisms cancer cells adopt to actively acquire iron is not well understood. In the present study, we report, for the first time, that the peptide hormone, prolactin, exhibits a novel function in regulating iron distribution, on top of its well-known pro-lactating role. When stimulated by prolactin, breast cancer cells increase CD44, a surface receptor mediating the endocytosis of hyaluronate-bound iron, resulting in the accumulation of iron in cancer cells. In contrast, macrophages, when treated by prolactin, express more ferroportin, the only iron exporter in cells, giving rise to net iron output. Interestingly, when co-culturing macrophages with pre-stained labile iron pools and cancer cells without any iron staining, in an iron free condition, we demonstrate direct iron flow from macrophages to cancer cells. As macrophages are one of the major iron-storage cells and it is known that macrophages infiltrate tumors and facilitate their progression, our work therefore presents a novel regulatory role of prolactin to drive iron flow, which provides new information on fine-tuning immune responses in tumor microenvironment and could potentially benefit the development of novel therapeutics.
Collapse
Affiliation(s)
- Reagan Farrell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Nicholas Pascuzzi
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Mary Kim
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Miguel Torres
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Kuan-Hui Ethan Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| |
Collapse
|
3
|
Solmi M, Lähteenvuo M, Tanskanen A, Corbeil O, Mittendorfer-Rutz E, Correll CU, Tiihonen J, Taipale H. Antipsychotic Use and Risk of Breast Cancer in Women With Severe Mental Illness: Replication of a Nationwide Nested Case-Control Database Study. Schizophr Bull 2024:sbae058. [PMID: 38687213 DOI: 10.1093/schbul/sbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND HYPOTHESIS Breast cancer is more prevalent in women with severe mental illness than in the general population, and use of prolactin-increasing antipsychotics may be a contributing factor. STUDY DESIGN A nested case-control study was conducted using the Swedish nationwide registers (inpatient/outpatient care, sickness absence, disability pension, prescribed drugs, cancers). All women aged 18-85 years with schizophrenia/schizoaffective/other nonaffective psychotic disorder/bipolar disorder and breast cancer (cases) were matched for age, primary psychiatric diagnosis, and disease duration with five women without cancer (controls). The association between cumulative exposure to prolactin-increasing/prolactin-sparing antipsychotics and breast cancer was analyzed using conditional logistic regression, adjusted for comorbidities and co-medications. STUDY RESULTS Among 132 061 women, 1642 (1.24%) developed breast cancer between 2010 and 2021, at a mean age of 63.3 ± 11.8 years. Compared with 8173 matched controls, the odds of breast cancer increased in women with prior exposure to prolactin-increasing antipsychotics for 1-4 years (adjusted odds ratio [aOR] = 1.20, 95% confidence interval [CI] = 1.03-1.41), and for ≥ 5 years (aOR = 1.47, 95%CI = 1.26-1.71). There were no increased or decreased odds of breast cancer with exposure to prolactin-sparing antipsychotics of either 1-4 years (aOR = 1.17, 95%CI = 0.98-1.40) or ≥5 years (aOR = 0.99, 95%CI = 0.78-1.26). The results were consistent across all sensitivity analyses (ie, according to different age groups, cancer types, and primary psychiatric diagnosis). CONCLUSIONS Although causality remains uncertain, exposure to prolactin-elevating antipsychotics for ≥ 1 year was associated with increased odds of breast cancer in women with severe mental illness. When prescribing antipsychotics, a shared decision-making process should consider individual risk factors for breast cancer.
Collapse
Affiliation(s)
- Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada
- SCIENCES LAB, Department of Mental Health, The Ottawa Hospital, Ontario, Canada
- Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Antti Tanskanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| | - Olivier Corbeil
- Faculty of Pharmacy, Université Laval, Quebec, Canada
- Department of Pharmacy, Quebec Mental Health University Institute, Quebec, Canada
| | | | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY
- Department of Psychiatry and Molecular Medicine, Donald and Barbara School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| | - Heidi Taipale
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| |
Collapse
|
4
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
5
|
Li R, Yang Y, Lan H, Wang Y, Ge Z, Liu X, Zhou Y, Zhang W, Xian L, Yuan H. A Novel Mechanism of hPRL-G129R, a Prolactin Antagonist, Inhibits Human Breast Cancer Cell Proliferation and Migration. Endocrinology 2023; 164:bqad158. [PMID: 37934803 DOI: 10.1210/endocr/bqad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Prolactin (PRL) and its receptor, PRLR, are closely related to the occurrence and development of breast cancer. hPRL-G129R, an hPRLR antagonist, has been found to induce apoptosis in breast cancer cells via mechanisms currently unknown. Recent studies have indicated that PRLR exhibits dual functions based on its membrane/nucleus localization. In that context, we speculated whether hPRL-G129R is a dual-function antagonist. We studied the internalization of the hPRLR-G129R/PRLR complex using indirect immunofluorescence and Western blot assays. We found that hPRL-G129R not only inhibited PRLR-mediated intracellular signaling at the plasma membrane, but also blocked nuclear localization of the receptor in T-47D and MCF-7 cells in a time-dependent manner. Clone formation and transwell migration assays showed that hPRL-G129R inhibited PRL-driven proliferation and migration of tumor cells in vitro. Further, we found that increasing concentrations of hPRL-G129R inhibited the nuclear localization of PRLR and the levels of signal transducer and activator of transcription (STAT) 5 in tumor-bearing mice and hPRL-G129R also exerted an antiproliferative effect in vivo. These results indicate that hPRL-G129R is indeed a dual-function antagonist. This study lays a foundation for exploring and developing highly effective agents against the proliferation and progression of breast malignancies.
Collapse
Affiliation(s)
- Ruonan Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Yu Yang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuesi Wang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Zihan Ge
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Xingjie Liu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Yixuan Zhou
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Wei Zhang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Li Xian
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Hongxuan Yuan
- College of Medicine, Yanbian University, Yanji 133002, China
| |
Collapse
|
6
|
Sarda AK, Jogdand SD. Predisposing and Overall Effects of Reproductive Hormones on Breast Cancer: A Review. Cureus 2023; 15:e45956. [PMID: 37900385 PMCID: PMC10600026 DOI: 10.7759/cureus.45956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Cancer, the second leading cause of mortality worldwide, has been the subject of extensive and quickly changing scientific study and practice. Cancer remains a mystery despite the enormous effort put into understanding the genesis of cancerous cells, the development of malignant tissues, and the process by which they propagate and recur. Cells from humans that have been recruited by cancer and, to some extent, changed into pathogenic organisms or the foundation of tumors serve as agents of destruction. Understanding cancers leads to challenging philosophical issues since they undermine and use multicellular organization processes. Cancer metastasizing cells adopt new phenotypes while discarding previous behaviors. The absence of comprehensive knowledge of this has hampered the development of therapeutics for metastatic illness. For systems-level experimental and computational metastasis modeling, integrating these complex and interconnected features continues to be a problem because metastasis has typically been studied in separate physiological compartments. Lung, breast, and prostate cancers accounted for the bulk of the 18 million new cases of cancer that were diagnosed in 2018. The most frequent cancer in women is breast cancer. Animal experimentation plays a significant role in primary and translational breast cancer research. In theory, such breast cancer models should be comparable to breast cancer in humans in terms of tumor etiology, biological behavior, pathology, and treatment response.
Collapse
Affiliation(s)
- Aditya K Sarda
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sangita D Jogdand
- Pharmacology and Therapeutics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Hope JD, Keks NA, Copolov DL. Association between long-term use of prolactin-elevating antipsychotics in women and the risk of breast cancer: What are the clinical implications? Australas Psychiatry 2023; 31:205-208. [PMID: 36927059 PMCID: PMC10088343 DOI: 10.1177/10398562231158925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Some antipsychotic drugs elevate prolactin, and hyperprolactinaemia is associated with an increased risk of breast cancer. Women with schizophrenia have an increased incidence of breast cancer, but also multiple risk factors for the condition. METHOD This paper will critically review recent epidemiological studies concerning antipsychotics and breast cancer from a psychiatric perspective. RESULTS Two recent epidemiological studies have found an association between use of prolactin-elevating antipsychotics and breast cancer in women with schizophrenia and other psychotic disorders. Prolactin-elevating drugs include paliperidone, risperidone, amisulpride and haloperidol, whilst prolactin-sparing antipsychotics included aripiprazole, brexpiprazole, cariprazine and quetiapine. In the two studies, estimated increased risks of breast cancer were disconcertingly high (up to 62%), but a third recent study found only a weak dose-response association. There are extensive methodological complications in this research, including the extent to which studies measure other risk factors for breast cancer and disagreement about the extent of prolactin elevation by some antipsychotics. CONCLUSION Although causation between prolactin elevating antipsychotics and breast cancer in women has not been demonstrated, recent epidemiological reports are worrying. For women on antipsychotics, informed consent should ideally include discussion of breast cancer concerns within the wider context of treatment benefits and risks.
Collapse
Affiliation(s)
- Judith D Hope
- Eastern Health and Centre of Mental Health Education and Research at Delmont Private Hospital and 2541Monash University, Melbourne, VIC, Australia
| | - Nicholas A Keks
- Monash Health and Centre of Mental Health Education and Research at Delmont Private Hospital and 2541Monash University, Melbourne, VIC, Australia
| | - David L Copolov
- Monash University 2541and the University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, Lo JH, Yang Y, Millstein J, Zhang W, Shih JC, Lu J, Mumenthaler SM, Spicer D, Neman J, Roussos Torres ET, Lenz HJ. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. Oncogene 2023; 42:627-637. [PMID: 36650218 PMCID: PMC9957733 DOI: 10.1038/s41388-022-02584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Exploring the relationship between various neurotransmitters and breast cancer cell growth has revealed their likely centrality to improving breast cancer treatment. Neurotransmitters play a key role in breast cancer biology through their effects on the cell cycle, epithelial mesenchymal transition, angiogenesis, inflammation, the tumor microenvironment and other pathways. Neurotransmitters and their receptors are vital to the initiation, progression and drug resistance of cancer and progress in our biological understanding may point the way to lower-cost and lower-risk antitumor therapeutic strategies. This review discusses multiple neurotransmitters in the context of breast cancer. It also discusses risk factors, repurposing of pharmaceuticals impacting neurotransmitter pathways, and the opportunity for better integrated models that encompass exercise, the intestinal microbiome, and other non-pharmacologic considerations. Neurotransmitters' role in breast cancer should no longer be ignored; it may appear to complicate the molecular picture but the ubiquity of neurotransmitters and their wide-ranging impacts provide an organizing framework upon which further understanding and progress against breast cancer can be based.
Collapse
Affiliation(s)
- Priya Jayachandran
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Francesca Battaglin
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
| | - Annika Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sandra Algaze
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shivani Soni
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jae Ho Lo
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Wu Zhang
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Jean C Shih
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, US
| | - Janice Lu
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Shannon M Mumenthaler
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, US
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, US
| | - Darcy Spicer
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Josh Neman
- Department of Neurosurgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Evanthia T Roussos Torres
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, US.
| |
Collapse
|
9
|
Waguespack SG. Beyond the "3 Ps": A critical appraisal of the non-endocrine manifestations of multiple endocrine neoplasia type 1. Front Endocrinol (Lausanne) 2022; 13:1029041. [PMID: 36325452 PMCID: PMC9618614 DOI: 10.3389/fendo.2022.1029041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1), an autosomal-dominantly inherited tumor syndrome, is classically defined by tumors arising from the "3 Ps": Parathyroids, Pituitary, and the endocrine Pancreas. From its earliest descriptions, MEN1 has been associated with other endocrine and non-endocrine neoplastic manifestations. High quality evidence supports a direct association between pathogenic MEN1 variants and neoplasms of the skin (angiofibromas and collagenomas), adipose tissue (lipomas and hibernomas), and smooth muscle (leiomyomas). Although CNS tumors, melanoma, and, most recently, breast cancer have been reported as MEN1 clinical manifestations, the published evidence to date is not yet sufficient to establish causality. Well-designed, multicenter prospective studies will help us to understand better the relationship of these tumors to MEN1, in addition to verifying the true prevalence and penetrance of the well-documented neoplastic associations. Nevertheless, patients affected by MEN1 should be aware of these non-endocrine manifestations, and providers should be encouraged always to think beyond the "3 Ps" when treating an MEN1 patient.
Collapse
|
10
|
Sadighara P, Abedini A, Zirak MR, Salehi A, Darbandi Azar S, Mirzaei G, Vakili Saatloo N. Relationship between styrene exposure and prolactin secretion in human and animal studies: A systematic review. Hum Exp Toxicol 2022; 41:9603271221133538. [PMID: 36321261 DOI: 10.1177/09603271221133538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Styrene is widely used in industrial applications. Inhalation exposure occurs in the industry. Some studies indicated that serum prolactin concentrations increased after exposure to styrene, while other studies found no change. In this systematic review, the search was done with the keywords styrene and prolactin in the PubMed, Science Direct, Web of Science and Scopus databases, regardless of the publication period. 118 studies were obtained and only seven articles were finally selected according to exclusion and inclusion criteria. The effect of styrene on prolactin secretion was selected in both human and animal studies. The increased response was seen in inhalation exposures. Subcutaneous exposure has no significant effect on prolactin levels. The observed responses were both dose-dependent and gender-dependent. Changes in serum prolactin were more frequent in women compared to exposed men. Dopamine depletion was not observed in all studies, so more tests on laboratory animals are necessary to clarify the possible mechanism.
Collapse
Affiliation(s)
- P Sadighara
- Faculty of Public Health, Department of Environmental Health, Food Safety Division, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - A Abedini
- Faculty of Public Health, Department of Environmental Health, Food Safety Division, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - M-R Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Salehi
- Faculty of Public Health, Department of Environmental Health, Food Safety Division, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - S Darbandi Azar
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, 556492Shaheed Beheshti University, Tehran, Iran
| | - G Mirzaei
- Faculty of Public Health, Department of Environmental Health, Food Safety Division, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - N Vakili Saatloo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, 117045Urmia University, Urmia, Iran
| |
Collapse
|