1
|
Băetu AE, Mirea LE, Cobilinschi C, Grințescu IC, Grințescu IM. Hemogram-Based Phenotypes of the Immune Response and Coagulopathy in Blunt Thoracic Trauma. J Pers Med 2024; 14:1168. [PMID: 39728080 DOI: 10.3390/jpm14121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Blunt thoracic trauma possesses unique physiopathological traits due to the complex interaction of immune and coagulation systems in the lung tissue. Hemogram-based ratios such as neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), neutrophil-to-lymphocyte × platelet (NLPR) ratios have been studied as proxies for immune dysregulation and survival in trauma. We hypothesized that blunt thoracic trauma patients exhibit distinct patterns of coagulation and inflammation abnormalities identifiable by the use of readily available hemogram-derived markers. Methods: The present study represents a retrospective observational analysis that included 86 patients with blunt thoracic trauma from a single high-volume level one trauma center. The primary outcome was mortality prediction in blunt thoracic trauma patients using these derived biomarkers. Secondary outcomes included phenotypes of the immune response and coagulopathy and the prediction of non-fatal adverse events. Results: A U-shaped distribution of mortality was found, with high rates of early deaths in patients with an NLPR value of <3.1 and high rates of late deaths in patients with NLPR > 9.5. A subgroup of blunt thoracic trauma patients expressing moderate inflammation and inflammation-induced hypercoagulation objectified as NLPR between 3.1 and 9.5 may have a survival benefit (p < 0.0001). The NLPR cut-off for predicting early deaths and the need for massive transfusion was 3.1 (sensitivity = 80.00% and specificity = 71.05%). Conclusions: These findings suggest that blunt thoracic trauma patients exhibit distinct phenotypes of the immune response and coagulopathy from the early stages. A controlled, balanced interaction of immune, coagulation, and fibrinolytic systems might effectively achieve tissue repair and increase survival in thoracic trauma patients and should be subject to further research.
Collapse
Affiliation(s)
- Alexandru Emil Băetu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Grigore Alexandrescu Clinical Emergency Hospital for Children, 011743 Bucharest, Romania
| | - Liliana Elena Mirea
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | | | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Gu SX, Marcus BS, Gu VW, Varghese AP, Hwa J, Faustino EVS. High-Dimensional Single-Cell Mass Cytometry Demonstrates Differential Platelet Functional Phenotypes in Infants With Congenital Heart Disease. Arterioscler Thromb Vasc Biol 2024; 44:2530-2539. [PMID: 39171400 PMCID: PMC11602369 DOI: 10.1161/atvbaha.124.321131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Congenital heart disease (CHD) is a group of complex heart defects associated with hematologic abnormalities, including increased risk of thrombotic and bleeding events. Past studies have observed evidence of platelet hyperreactivity, while other studies showed decreased platelet activation in patients with CHD. The goal of this study was to develop a mass spectrometry approach to characterize single platelets in infants with CHD and identify potential etiology for such discrepant results. METHODS We enrolled 19 infants with CHD along with 21 non-CHD controls at Yale New Haven Children's Heart Center. A single-cell high-dimensional mass cytometry method was developed to quantitatively interrogate platelet surface markers in whole blood. Additionally, plasma cytokine analysis was performed through a multiplexed panel of 52 vascular and inflammatory markers to assess for platelet releasates. RESULTS We found that infants with CHD had significant differences in platelet activation and functional markers by mass cytometry compared with non-CHD controls. Based on cell surface markers, we classified the platelets into 8 subpopulations (P0 to P7). Distinct subpopulations of platelets (P1, P4, and P5) exhibiting decreased aggregatory phenotype but altered secretory phenotypes were also identified and found to be more abundant in the blood of infants with CHD. Electron microscopy identified increased proportion of hypogranular platelets in CHD. Moreover, cytokine analysis demonstrated an overall increase in plasma cytokines and biomarkers in CHD, including IL (interleukin)-6, IL-8, IL-27, RANTES (regulated upon activation, normal T cell expressed and secreted), and VWF (von Willebrand factor), which are expressed in platelet granules and can be released upon activation. CONCLUSIONS We developed a robust mass cytometry approach to identify platelet phenotypic heterogeneity. Infants with CHD had alterations in distinct subpopulations of platelets with overall reduced aggregatory phenotype and secretory dysfunction. These findings suggest that platelets in infants with CHD may be exhausted due to persistent stimulation and may explain both bleeding and thrombotic vascular complications associated with CHD.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Brian S. Marcus
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Vivian W. Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Adarsh P. Varghese
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
3
|
Piñeiro P, Calvo A, Pérez-Díaz MD, Ramos S, García-Ramos S, Power M, Solchaga I, Rey C, Hortal J, Turégano F, Garutti I. Early Thrombocytopenia at Hospital Admission Predicts Mortality in Patients with Non-Isolated Severe Traumatic Brain Injury. Biomedicines 2024; 12:2702. [PMID: 39767609 PMCID: PMC11673905 DOI: 10.3390/biomedicines12122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Patients with severe traumatic brain injury (STBI) often experience an abnormal hemostasis that contributes to mortality and unfavorable neurological outcomes. OBJECTIVES We aimed to analyze epidemiologic, clinical, and laboratory factors associated with mortality in patients with STBI during the first 48 h after in-hospital admission. METHODS We performed an observational retrospective study of STBI patients with associated extracranial trauma [defined as Injury Severity Score (ISS) ≥ 16 with an Abbreviated Injury Scale (AIS) head and neck ≥ 3 and Glasgow Coma Scale (GCS) ≤ 8] admitted to a Level II trauma center over seven years (2015-2021). Patients were divided into two groups: survivors and dead. We assessed differences regarding demographics, trauma severity, hemodynamics, disability, need for surgery, length of stay, transfusions, need for massive transfusion protocol, and hemostatic laboratory parameters at different time points. RESULTS A total of 134 STBI patients were included. Patients who died were older, mostly men, and showed higher trauma severity and disability. Hemoglobin, platelets, and clotting parameters deteriorated after admission to the emergency department (ED) with significant differences between groups within the first 24 h after admission. Platelet count < 150 × 103/μL at ED arrival, GCS, and age were independent risk factors for mortality. CONCLUSIONS Older age, GCS, and platelet count at ED arrival were independent risk factors for mortality in STBI patients with associated extracranial trauma. Early thrombocytopenia < 150 × 103/μL at ED arrival may be used as a simple prognostic tool to early predict mortality between non-isolated STBI.
Collapse
Affiliation(s)
- Patricia Piñeiro
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
| | - Alberto Calvo
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
| | - María Dolores Pérez-Díaz
- Department of General and Digestive Surgery, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (M.D.P.-D.); (C.R.); (F.T.)
| | - Silvia Ramos
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
| | - Sergio García-Ramos
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
| | - Mercedes Power
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
| | - Isabel Solchaga
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
| | - Cristina Rey
- Department of General and Digestive Surgery, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (M.D.P.-D.); (C.R.); (F.T.)
| | - Javier Hortal
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
- Department of Pharmacology, Medical School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Turégano
- Department of General and Digestive Surgery, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (M.D.P.-D.); (C.R.); (F.T.)
| | - Ignacio Garutti
- Department of Anesthesiology and Critical Care, Gregorio Marañón Universitary General Hospital, 28007 Madrid, Spain; (P.P.); (S.R.); (S.G.-R.); (M.P.); (I.S.); (J.H.); (I.G.)
- Biomedical Research Foundation, Gregorio Maralón Universitary General Hospital, 28007 Madrid, Spain
- Department of Pharmacology, Medical School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Fujiwara G, Okada Y, Ishii W, Echigo T, Shiomi N, Ohtsuru S. High Fresh Frozen Plasma to Red Blood Cell Ratio and Survival Outcomes in Blunt Trauma. JAMA Surg 2024; 159:1272-1280. [PMID: 39167374 PMCID: PMC11339704 DOI: 10.1001/jamasurg.2024.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/11/2024] [Indexed: 08/23/2024]
Abstract
Importance Current trauma-care protocols advocate early administration of fresh frozen plasma (FFP) in a ratio close to 1:1 with red blood cells (RBCs) to manage trauma-induced coagulopathy in patients with severe blunt trauma. However, the benefits of a higher FFP to RBC ratio have not yet been established. Objective To investigate the effectiveness of a high FFP to RBC transfusion ratio in the treatment of severe blunt trauma and explore the nonlinear relationship between the ratio of blood products used and patient outcomes. Design, Setting, and Participants This was a multicenter cohort study retrospectively analyzing data from the Japan Trauma Data Bank, including adult patients with severe blunt trauma without severe head injury (Injury Severity Score ≥16 and head Abbreviated Injury Scale <3) between 2019 and 2022. Exposures Patients were categorized into 2 groups based on the ratio of FFP to RBC: the high-FFP group (ratio >1) and the low-FFP group (ratio ≤1). Main Outcomes and Measures All-cause in-hospital mortality was the primary outcome. Additionally, the occurrence of transfusion-related adverse events was evaluated. Results Among the 1954 patients (median [IQR] age, 61 [41-77] years; 1243 male [63.6%]) analyzed, 976 (49.9%) had a high FFP to RBC ratio. Results from logistic regression, weighted by inverse probability treatment weighting, demonstrated an association between the group with a high-FFP ratio and lower in-hospital mortality (odds ratio, 0.73; 95% CI, 0.56-0.93) compared with a low-FFP ratio. Nonlinear trends were noted, suggesting a potential ceiling effect on transfusion benefits. Conclusions and Relevance In this cohort study, a high FFP to RBC ratio was associated with favorable survival in patients with severe blunt trauma. These outcomes highlight the importance of revising the current transfusion protocols to incorporate a high FFP to RBC ratio, warranting further research on optimal patient treatment.
Collapse
Affiliation(s)
- Gaku Fujiwara
- Department of Management of Technology and Intellectual Property, School of Public Health, Kyoto University, Kyoto, Japan
- Department of Pharmacoepidemiology, School of Public Health, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Japanese Red Cross Society Kyoto Daini Hospital, Kyoto, Japan
- Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Preventive Services, School of Public Health, Kyoto University. Yoshidahonmachi, Sakyo-ku, Kyoto, Japan
- Health Services and Systems Research, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wataru Ishii
- Department of Emergency Medicine and Critical Care, Japanese Red Cross Society Kyoto Daini Hospital, Kyoto, Japan
| | - Tadashi Echigo
- Department of Emergency and Critical Care Medicine, Saiseikai Shiga Hospital, Shiga, Japan
| | - Naoto Shiomi
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Shigeru Ohtsuru
- Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Gallagher LT, LaCroix I, Fields AT, Mitra S, Argabright A, D'Alessandro A, Erickson C, Nunez-Garcia B, Herrera-Rodriguez K, Chou YC, Stocker BW, Ramser BJ, Thielen O, Hallas W, Silliman CC, Kornblith LZ, Cohen MJ. Platelet releasates mitigate the endotheliopathy of trauma. J Trauma Acute Care Surg 2024; 97:738-746. [PMID: 38764145 PMCID: PMC11502277 DOI: 10.1097/ta.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates (TPR) attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to TPR and plasma (TP) was assessed via resistance measurement by electric cell-substrate impedance sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared with untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared with TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION Trauma platelet releasates provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma.
Collapse
Affiliation(s)
- Lauren T Gallagher
- From the Department of Surgery (L.T.G., S.M., B.W.S., B.J.R., O.T., W.H., M.J.C.), Department of Biochemistry and Molecular Genetics (I.L.C., C.E.), University of Colorado, School of Medicine, Aurora, Colorado; Department of Surgery (A.T.F., B.N.-G., K.H.-R., Y.C.C., L.Z.K.), University of California, San Francisco, San Francisco, California; Mass Spectrometry Core Facility (A.A.), University of Colorado, School of Medicine; Department of Biochemistry and Molecular Genetics (A.D'A.), University of Colorado Anschutz Medical Campus, School of Medicine; Vitalant Research Institute, Department of Surgery (C.C.S.), Department of Pediatrics (C.C.S.), University of Colorado, School of Medicine, Aurora, Colorado; and Department of Laboratory Medicine (L.Z.K.), University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zheng Y, Wang P, Cong L, Shi Q, Zhao Y, Wang Y. Integrated proteomic and metabolomic profiling of lymph after trauma-induced hypercoagulopathy and antithrombotic therapy. Thromb J 2024; 22:59. [PMID: 38987792 PMCID: PMC11234664 DOI: 10.1186/s12959-024-00634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Routine coagulation tests are not widely accepted diagnostic criteria of trauma-induced hypercoagulopathy (TIH) due to insensitivity. Lymphatic vessels drain approximately 10% of the interstitial fluid into the lymphatic system and form lymph. SUBJECTIVE The purpose of this study was to identify the potential lymph biomarkers for TIH. METHODS Eighteen male Sprague-Dawley rats were randomly assigned to the sham (non-fractured rats with sham surgery and vehicle treatment), the VEH (fractured rats with vehicle treatment) and the CLO (fractured rats with clopidogrel treatment) group. Thoracic duct lymph was obtained to perform proteomics and untargeted metabolomics. RESULTS A total of 1207 proteins and 16,695 metabolites were identified. The top 5 GO terms of lymph proteomics indicated that oxidative stress and innate immunity were closely associated with TIH and antithrombotic therapy. The top 5 GO terms of lymph metabolomics showed that homocystine and lysophosphatidylcholine were the differential expressed metabolites (DEMs) between the sham and VEH groups, while cholic acid, docosahexaenoic acid, N1-Methyl-2-pyridone-5-carboxamide, isoleucine and testosterone are the DEMs between the VEH and CLO group. CONCLUSIONS This study presents the first proteomic and metabolomic profiling of lymph after TIH and antithrombotic therapy, and predicts the possible lymph biomarkers for TIH.
Collapse
Affiliation(s)
- Yangkang Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Lin Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| | - YongJun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Zarisfi M, Younes R, Alsaadi N, Liu Z, Loughran P, Williamson K, Spinella PC, Shea S, Rosengart MR, Andraska EA, Neal MD. Long wavelength light exposure reduces systemic inflammation coagulopathy and acute organ injury following multiple injuries in mice. J Trauma Acute Care Surg 2024; 96:901-908. [PMID: 38079258 PMCID: PMC11111353 DOI: 10.1097/ta.0000000000004234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
BACKGROUND Evidence suggests that variation in light exposure strongly influences the dynamic of inflammation, coagulation, and the immune system. Multiple injuries induce systemic inflammation that can lead to end-organ injury. Here, we hypothesize that alterations in light exposure influence posttrauma inflammation, coagulopathy, and end-organ injury. METHODS C57BL/6 mice underwent a validated multiple-injury and hemorrhage model performed following 72 hours of exposure to red (617 nm, 1,700 lux), blue (321 nm, 1,700 lux), and fluorescent white light (300 lux) (n = 6-8/group). The animals were sacrificed at 6 hours posttrauma. Plasma samples were evaluated and compared for proinflammatory cytokine expression levels, coagulation parameters, markers of liver and renal injury, and histological changes (Carstairs staining). One-way analysis of variance statistical tests were applied to compare study groups. RESULTS Preexposure to long-wavelength red light significantly reduced the inflammatory response at 6 hours after multiple injuries compared with blue and ambient light, as evidenced by decreased levels of interleukin 6, monocyte chemoattractant protein-1 (both p < 0.001), liver injury markers (alanine transaminase, p < 0.05), and kidney injury markers (cystatin C, p < 0.01). In addition, Carstairs staining of organ tissues revealed milder histological changes in the red light-exposed group, indicating reduced end-organ damage. Furthermore, prothrombin time was significantly lower ( p < 0.001), and fibrinogen levels were better maintained ( p < 0.01) in the red light-exposed mice compared with those exposed to blue and ambient light. CONCLUSION Prophylactic light exposure can be optimized to reduce systemic inflammation and coagulopathy and minimize acute organ injury following multiple injuries. Understanding the mechanisms by which light exposure attenuates inflammation may provide a novel strategy to reducing trauma-related morbidity.
Collapse
Affiliation(s)
- Mohammadreza Zarisfi
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Reem Younes
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Nijmeh Alsaadi
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Patricia Loughran
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Kelly Williamson
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Philip C. Spinella
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Susan Shea
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Matthew R. Rosengart
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Elizabeth A. Andraska
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh PA 15213
| |
Collapse
|
8
|
Schofield H, Rossetto A, Armstrong PC, Allan HE, Warner TD, Brohi K, Vulliamy P. Immature platelet dynamics are associated with clinical outcomes after major trauma. J Thromb Haemost 2024; 22:926-935. [PMID: 38101576 DOI: 10.1016/j.jtha.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Major trauma results in dramatic changes in platelet behavior. Newly formed platelets are more reactive than older platelets, but their contributions to hemostasis and thrombosis after severe injury have not been previously evaluated. OBJECTIVES To determine how immature platelet metrics and plasma thrombopoietin relate to clinical outcomes after major injury. METHODS A prospective observational cohort study was performed in adult trauma patients. Platelet counts and the immature platelet fraction (IPF) were measured at admission and 24 hours, 72 hours, and 7 days after injury. Thromboelastometry was performed at admission. Plasma thrombopoietin, c-Mpl, and GPIbα were quantified in a separate cohort. The primary outcome was in-hospital mortality; secondary outcomes were venous thromboembolic events and multiple organ dysfunction syndrome (MODS). RESULTS On admission, immature platelet counts (IPCs) were significantly lower in nonsurvivors (n = 40) than in survivors (n = 236; 7.3 × 109/L vs 10.6 × 109/L; P = .009), but IPF did not differ. Similarly, impaired platelet function on thromboelastometry was associated with lower admission IPC (9.1 × 109/L vs 11.9 × 109/L; P < .001). However, at later time points, we observed significantly higher IPF and IPC in patients who developed venous thromboembolism (21.0 × 109/L vs 11.1 × 109/L; P = .02) and prolonged MODS (20.9 × 109/L vs 11 × 109/L; P = .003) than in those who did not develop complications. Plasma thrombopoietin levels at admission were significantly lower in nonsurvivors (P < .001), in patients with MODS (P < .001), and in those who developed venous thromboembolism (P = .04). CONCLUSION Lower levels of immature platelets in the acute phase after major injury are associated with increased mortality, whereas higher immature platelet levels at later time points may predispose to thrombosis and MODS.
Collapse
Affiliation(s)
- Henry Schofield
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Andrea Rossetto
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Harriet E Allan
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Coleman JR, Gumina R, Hund T, Cohen M, Neal MD, Townsend K, Kerlin BA. Sex dimorphisms in coagulation: Implications in trauma-induced coagulopathy and trauma resuscitation. Am J Hematol 2024; 99 Suppl 1:S28-S35. [PMID: 38567625 PMCID: PMC11380117 DOI: 10.1002/ajh.27296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Trauma-induced coagulopathy (TIC) is one of the leading causes of preventable death in injured patients. Consequently, it is imperative to understand the mechanisms underlying TIC and how to mitigate this mortality. An opportunity for advancement stems from the awareness that coagulation demonstrates a strong sex-dependent effect. Females exhibit a relative hypercoagulability compared to males, which persists after injury and confers improved outcomes. The mechanisms underlying sex dimorphisms in coagulation and its protective effect after injury have yet to be elucidated. This review explores sex dimorphisms in enzymatic hemostasis, fibrinogen, platelets, and fibrinolysis, with implications for resuscitation of patients with TIC.
Collapse
Affiliation(s)
- Julia R Coleman
- Division of Trauma, Critical Care, and Burn, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Division of Interventional Cardiology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Richard Gumina
- Division of Interventional Cardiology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mitchell Cohen
- Department of Surgery, University of Colorado Medical Center, Aurora, Colorado, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kristy Townsend
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Bryce A Kerlin
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Division of Pediatric Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
10
|
Zipperle J, Schmitt FCF, Schöchl H. Point-of-care, goal-directed management of bleeding in trauma patients. Curr Opin Crit Care 2023; 29:702-712. [PMID: 37861185 DOI: 10.1097/mcc.0000000000001107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to consider the clinical value of point-of-care (POC) testing in coagulopathic trauma patients with traumatic brain injury (TBI) and trauma-induced coagulopathy (TIC). RECENT FINDINGS Patients suffering from severe TBI or TIC are at risk of developing pronounced haemostatic disorders. Standard coagulation tests (SCTs) are insufficient to reflect the complexity of these coagulopathies. Recent evidence has shown that viscoelastic tests (VETs) identify haemostatic disorders more rapidly and in more detail than SCTs. Moreover, VET results can guide coagulation therapy, allowing individualised treatment, which decreases transfusion requirements. However, the impact of VET on mortality remains uncertain. In contrast to VETs, the clinical impact of POC platelet function testing is still unproven. SUMMARY POC SCTs are not able to characterise the complexity of trauma-associated coagulopathy. VETs provide a rapid estimation of underlying haemostatic disorders, thereby providing guidance for haemostatic therapy, which impacts allogenic blood transfusion requirements. The value of POC platelet function testing to identify platelet dysfunction and guide platelet transfusion is still uncertain.
Collapse
Affiliation(s)
- Johannes Zipperle
- Ludwig Boltzmann Institute for Traumatology, the Research Centre in Cooperation with AUVA, Vienna
| | - Felix C F Schmitt
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Herbert Schöchl
- Ludwig Boltzmann Institute for Traumatology, the Research Centre in Cooperation with AUVA, Vienna
- Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Kunapaisal T, Phuong J, Liu Z, Stansbury LG, Vavilala MS, Lele AV, Tsang HC, Hess JR. Age, admission platelet count, and mortality in severe isolated traumatic brain injury: A retrospective cohort study. Transfusion 2023; 63:1472-1480. [PMID: 37515367 DOI: 10.1111/trf.17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND We asked whether patients >50 years of age with acute traumatic brain injury (TBI) present with lower platelet counts and whether lower platelet counts are independently associated with mortality. METHODS We combined trauma registry and laboratory data on a retrospective cohort of all patients ≥18 years of age admitted to our Level 1 US regional trauma center 2015-2021 with severe (Head Abbreviated Injury Score [AIS] ≥3), isolated (all other AIS <3) TBI who had a first platelet count within 1 h of arrival. Age and platelet count were assessed continuously and as groups (age 18-50 vs. >50, platelet normals, and at conventional transfusion thresholds). Outcomes such as mean admission platelet counts and in-hospital mortality were assessed categorically and with logistic regression. RESULTS Of 44,056 patients, 1298 (3%, median age: 52 [IQR 33,68], 76.1% male) met all inclusion criteria with no differences between younger and older age groups for (ISS; 18 [14,26] vs. 17 [14,26], p = .22), New ISS (NISS; 29 [19,50] vs. 28 [17,50], p = .36), or AIS-Head (4 [3,5] vs. 4 [3,5]; p = .87). Patients aged >50 had lower admission platelet counts (219,000 ± 93,000 vs. 242,000 ± 76,000/μL; p < .001) and greater in-hospital mortality (24.5% vs. 15.6%, p < .001) than those 18-50. In multivariable regression, firearms injuries (OR9.08), increasing age (OR1.004), NISS (OR1.007), and AIS-Head (OR1.05), and decreasing admission platelet counts (OR0.998) were independently associated with mortality (p < .001-.041). Platelet transfusion in the first 4 h of care was more frequent among older patients (p < .001). CONCLUSIONS Older patients with TBI had lower admission platelet counts, which were independently associated with greater mortality.
Collapse
Affiliation(s)
- Thitikan Kunapaisal
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Department of Anesthesiology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Jim Phuong
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Zhinan Liu
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Transfusion Service, Harborview Medical Center, Seattle, Washington, USA
| | - Lynn G Stansbury
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Department of Pediatrics, UW SOM, Seattle, Washington, USA
| | - Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Hamilton C Tsang
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Transfusion Service, Harborview Medical Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW SOM, Seattle, Washington, USA
| | - John R Hess
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Transfusion Service, Harborview Medical Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW SOM, Seattle, Washington, USA
| |
Collapse
|
12
|
Nieman MT, Neeves KB. Flipping the script: defining the reversibility of platelet activation. J Thromb Haemost 2023; 21:1102-1103. [PMID: 37121617 DOI: 10.1016/j.jtha.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA. https://twitter.com/marvnieman
| | - Keith B Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
13
|
Barquero M, Yanes GJ, Blasi A, Colomina MJ. Use of viscoelastic tests in the principle bleeding scenarios in Spanish hospitals. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2023; 70:284-296. [PMID: 36934845 DOI: 10.1016/j.redare.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/17/2022] [Indexed: 03/19/2023]
Abstract
Viscoelastic tests are designed to study the dynamics of clot formation, identify coagulopathies in real time, arrive at a diagnosis, and guide patient-specific administration of haemostatics. They are mainly used to treat clinically significant bleeding in any setting, and are also used in other situations involving clinically relevant alterations in haemostasis, such as coagulopathy in critically ill patients. These tests are administered following evidence-based algorithms that vary depending on the clinical context. This review summarises the results of a survey conducted in several hospitals to determine the prevalence and standardisation of viscoelastic tests in cardiac surgery, liver transplantation, and multiple trauma patients in Spain. The results reveal divergent opinions on key aspects, ranging from the diagnostic capacity of these tests to the interpretation of the basic parameters. On the basis of these findings, we propose a number of potential areas in which further research will improve the performance of these tests.
Collapse
Affiliation(s)
- M Barquero
- Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.
| | - G J Yanes
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - A Blasi
- Hospital Clínic, Barcelona, Spain; Institut d'Investigacio Biomèdica Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M J Colomina
- Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; Departamento de Ciencias Clínicas, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Leung CH, Rizoli SB, Trypcic S, Rhind SG, Battista AP, Ailenberg M, Rotstein OD. Effect of remote ischemic conditioning on the immune-inflammatory profile in patients with traumatic hemorrhagic shock in a randomized controlled trial. Sci Rep 2023; 13:7025. [PMID: 37120600 PMCID: PMC10148877 DOI: 10.1038/s41598-023-33681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
Resuscitation induced ischemia/reperfusion predisposes trauma patients to systemic inflammation and organ dysfunction. We investigated the effect of remote ischemic conditioning (RIC), a treatment shown to prevent ischemia/reperfusion injury in experimental models of hemorrhagic shock/resuscitation, on the systemic immune-inflammatory profile in trauma patients in a randomized trial. We conducted a prospective, single-centre, double-blind, randomized, controlled trial involving trauma patients sustaining blunt or penetrating trauma in hemorrhagic shock admitted to a Level 1 trauma centre. Patients were randomized to receive RIC (four cycles of 5-min pressure cuff inflation at 250 mmHg and deflation on the thigh) or a Sham intervention. The primary outcomes were neutrophil oxidative burst activity, cellular adhesion molecule expression, and plasma levels of myeloperoxidase, cytokines and chemokines in peripheral blood samples, drawn at admission (pre-intervention), 1 h, 3 h, and 24 h post-admission. Secondary outcomes included ventilator, ICU and hospital free days, incidence of nosocomial infections, 24 h and 28 day mortality. 50 eligible patients were randomized; of which 21 in the Sham group and 18 in the RIC group were included in the full analysis. No treatment effect was observed between Sham and RIC groups for neutrophil oxidative burst activity, adhesion molecule expression, and plasma levels of myeloperoxidase and cytokines. RIC prevented significant increases in Th2 chemokines TARC/CCL17 (P < 0.01) and MDC/CCL22 (P < 0.05) at 24 h post-intervention in comparison to the Sham group. Secondary clinical outcomes were not different between groups. No adverse events in relation to the RIC intervention were observed. Administration of RIC was safe and did not adversely affect clinical outcomes. While trauma itself modified several immunoregulatory markers, RIC failed to alter expression of the majority of markers. However, RIC may influence Th2 chemokine expression in the post resuscitation period. Further investigation into the immunomodulatory effects of RIC in traumatic injuries and their impact on clinical outcomes is warranted.ClinicalTrials.gov number: NCT02071290.
Collapse
Affiliation(s)
- C H Leung
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada
| | - S B Rizoli
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - S Trypcic
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada
| | - S G Rhind
- The Defence Research and Development Canada, Toronto Research Centre, Toronto, Canada
| | - A P Battista
- The Defence Research and Development Canada, Toronto Research Centre, Toronto, Canada
| | - M Ailenberg
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada.
| | - O D Rotstein
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
How to manage coagulopathies in critically ill patients. Intensive Care Med 2023; 49:273-290. [PMID: 36808215 DOI: 10.1007/s00134-023-06980-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 02/19/2023]
Abstract
Coagulopathy is a severe and frequent complication in critically ill patients, for which the pathogenesis and presentation may be variable depending on the underlying disease. Based on the dominant clinical phenotype, the current review differentiates between hemorrhagic coagulopathies, characterized by a hypocoagulable and hyperfibrinolysis state, and thrombotic coagulopathies with a systemic prothrombotic and antifibrinolytic phenotype. We discuss the differences in pathogenesis and treatment of the common coagulopathies.
Collapse
|
16
|
Use of whole blood deployment programs for mass casualty incidents: South Texas experience in regional response and preparedness. J Trauma Acute Care Surg 2022; 93:e182-e184. [PMID: 36044513 DOI: 10.1097/ta.0000000000003762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Firearm-related deaths have become the leading cause of death in adolescents and children. Since the Sutherland Springs, TX mass casualty incident (MCI), the Southwest Texas Regional Advisory Council for trauma instituted a prehospital whole blood (WB) program and blood deployment program for MCIs. METHODS The program was adopted statewide by the Texas Emergency Medical Task Force, of which Southwest Texas Regional Advisory Council is the lead for Emergency Medical Task Force 8. The recent active shooter MCI in Uvalde, TX was the first time the MCI blood deployment program had been used. To our knowledge, no other similar programs exist in this or any other country. RESULTS On May 24, 2022, 19 children and 2 adults were killed at an MCI in Uvalde, TX. The MCI WB deployment protocol was initiated, and South Texas Blood and Tissue Center prepared 15 U of low-titer O-positive whole blood and 10 U of leukoreduced O packed cells. The deployed blood arrived at Uvalde Memorial Hospital within 67 minutes. One of the pediatric patients sustained multiple gunshots to the chest and extremities. The child was hypotensive and received 2 U of leukoreduced O packed cells, one at the initial hospital and another during transport. On arrival, the patient required 2 U of low-titer O-positive whole blood and underwent a successful hemorrhage control operation. The remaining blood was returned to South Texas Blood and Tissue Center for distribution. CONCLUSION Multiple studies have shown the association of early blood product resuscitation and improved mortality, with WB being the ideal resuscitative product for many. The ongoing efforts in South Texas serve as a model for development of similar programs throughout the country to reduce preventable deaths. This event represents the first ever successful deployment of WB to the site of an MCI related to a school shooting in the modern era. LEVEL OF EVIDENCE Therapeutic/Care Management; Level V.
Collapse
|
17
|
Kleinveld DJB, Hamada SR, Sandroni C. Trauma-induced coagulopathy. Intensive Care Med 2022; 48:1642-1645. [PMID: 35925321 DOI: 10.1007/s00134-022-06834-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Derek J B Kleinveld
- Department of Intensive Care Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie R Hamada
- Department of Anaesthesia and Critical Care, AP-HP, Hôpital Européen Georges Pompidou, Paris Cité University, Paris, France.,Centre d'Etude de la Santé des Populations, CESP INSERM Unité 10-18, Paris Saclay University, Paris, France
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy. .,Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
18
|
Morris SM, Chauhan A. The role of platelet mediated thromboinflammation in acute liver injury. Front Immunol 2022; 13:1037645. [PMID: 36389830 PMCID: PMC9647048 DOI: 10.3389/fimmu.2022.1037645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Acute liver injuries have wide and varied etiologies and they occur both in patients with and without pre-existent chronic liver disease. Whilst the pathophysiological mechanisms remain distinct, both acute and acute-on-chronic liver injury is typified by deranged serum transaminase levels and if severe or persistent can result in liver failure manifest by a combination of jaundice, coagulopathy and encephalopathy. It is well established that platelets exhibit diverse functions as immune cells and are active participants in inflammation through processes including immunothrombosis or thromboinflammation. Growing evidence suggests platelets play a dualistic role in liver inflammation, shaping the immune response through direct interactions and release of soluble mediators modulating function of liver sinusoidal endothelial cells, stromal cells as well as migrating and tissue-resident leucocytes. Elucidating the pathways involved in initiation, propagation and resolution of the immune response are of interest to identify therapeutic targets. In this review the provocative role of platelets is outlined, highlighting beneficial and detrimental effects in a spatial, temporal and disease-specific manner.
Collapse
Affiliation(s)
- Sean M. Morris
- The Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Abhishek Chauhan
- The Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Abhishek Chauhan,
| |
Collapse
|
19
|
Meizoso JP, Barrett CD, Moore EE, Moore HB. Advances in the Management of Coagulopathy in Trauma: The Role of Viscoelastic Hemostatic Assays across All Phases of Trauma Care. Semin Thromb Hemost 2022; 48:796-807. [DOI: 10.1055/s-0042-1756305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractUncontrolled bleeding is the leading cause of preventable death following injury. Trauma-induced coagulopathy can manifest as diverse phenotypes ranging from hypocoagulability to hypercoagulability, which can change quickly during the acute phase of trauma care. The major advances in understanding coagulation over the past 25 years have resulted from the cell-based concept, emphasizing the key role of platelets and their interaction with the damaged endothelium. Consequently, conventional plasma-based coagulation testing is not accurate in predicting bleeding and does not provide an assessment of which blood products are indicated. Viscoelastic hemostatic assays (VHA), conducted in whole blood, have emerged as a superior method to guide goal-directed transfusion. The major change in resuscitation has been the shift from unbridled crystalloid loading to judicious balanced blood product administration. Furthermore, the recognition of the rapid changes from hypocoagulability to hypercoagulability has underscored the importance of ongoing surveillance beyond emergent surgery. While the benefits of VHA testing are maximized when used as early as possible, current technology limits use in the pre-hospital setting and the time to results compromises its utility in the emergency department. Thus, most of the reported experience with VHA in trauma is in the operating room and intensive care unit, where there is compelling data to support its value. This overview will address the current and potential role of VHA in the seriously injured patient, throughout the continuum of trauma management.
Collapse
Affiliation(s)
- Jonathan P. Meizoso
- DeWitt Daughtry Family Department of Surgery, Ryder Trauma Center, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, Florida
| | - Christopher D. Barrett
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Surgery, Boston University Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ernest E. Moore
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, Denver, Colorado
| | - Hunter B. Moore
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
20
|
Sloos PH, Vulliamy P, van 't Veer C, Gupta AS, Neal MD, Brohi K, Juffermans NP, Kleinveld DJB. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion 2022; 62 Suppl 1:S281-S300. [PMID: 35748694 PMCID: PMC9546174 DOI: 10.1111/trf.16971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Pieter H. Sloos
- Department of Intensive Care Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineOLVG HospitalAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
21
|
Platelet Transfusion for Trauma Resuscitation. CURRENT TRAUMA REPORTS 2022. [DOI: 10.1007/s40719-022-00236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
To review the role of platelet transfusion in resuscitation for trauma, including normal platelet function and alterations in behavior following trauma, blood product transfusion ratios and the impact of platelet transfusion on platelet function, platelet function assays, risks of platelet transfusion and considerations for platelet storage, and potential adjunct therapies and synthetic platelets.
Recent Findings
Platelets are a critical component of clot formation and breakdown following injury, and in addition to these hemostatic properties, have a complex role in vascular homeostasis, inflammation, and immune function. Evidence supports that platelets are activated following trauma with several upregulated functions, but under conditions of severe injury and shock are found to be impaired in their hemostatic behaviors. Platelets should be transfused in balanced ratios with red blood cells and plasma during initial trauma resuscitation as this portends improved outcomes including survival. Multiple coagulation assays can be used for goal-directed resuscitation for traumatic hemorrhage; however, these assays each have drawbacks in terms of their ability to measure platelet function. While resuscitation with balanced transfusion ratios is supported by the literature, platelet transfusion carries its own risks such as bacterial infection and lung injury. Platelet supply is also limited, with resource-intensive storage requirements, making exploration of longer-term storage options and novel platelet-based therapeutics attractive. Future focus on a deeper understanding of the biology of platelets following trauma, and on optimization of novel platelet-based therapeutics to maintain hemostatic effects while improving availability should be pursued.
Summary
While platelet function is altered following trauma, platelets should be transfused in balanced ratios during initial resuscitation. Severe injury and shock can impair platelet function, which can persist for several days following the initial trauma. Assays to guide resuscitation following the initial period as well as storage techniques to extend platelet shelf life are important areas of investigation.
Collapse
|
22
|
Ariëns RA, Hunt BJ, Agbani EO, Ahnström J, Ahrends R, Alikhan R, Assinger A, Bagoly Z, Balduini A, Barbon E, Barrett CD, Batty P, Carneiro JDA, Chan W, de Maat M, de Wit K, Denis C, Ellis MH, Eslick R, Fu H, Hayward CPM, Ho‐Tin‐Noé B, Klok F, Kumar R, Leiderman K, Litvinov RI, Mackman N, McQuilten Z, Neal MD, Parker WAE, Preston RJS, Rayes J, Rezaie AR, Roberts LN, Rocca B, Shapiro S, Siegal DM, Sousa LP, Suzuki‐Inoue K, Zafar T, Zhou J. Illustrated State-of-the-Art Capsules of the ISTH 2022 Congress. Res Pract Thromb Haemost 2022; 6:e12747. [PMID: 35814801 PMCID: PMC9257378 DOI: 10.1002/rth2.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The ISTH London 2022 Congress is the first held (mostly) face-to-face again since the COVID-19 pandemic took the world by surprise in 2020. For 2 years we met virtually, but this year's in-person format will allow the ever-so-important and quintessential creativity and networking to flow again. What a pleasure and joy to be able to see everyone! Importantly, all conference proceedings are also streamed (and available recorded) online for those unable to travel on this occasion. This ensures no one misses out. The 2022 scientific program highlights new developments in hemophilia and its treatment, acquired and other inherited bleeding disorders, thromboinflammation, platelets and coagulation, clot structure and composition, fibrinolysis, vascular biology, venous thromboembolism, women's health, arterial thrombosis, pediatrics, COVID-related thrombosis, vaccine-induced thrombocytopenia with thrombosis, and omics and diagnostics. These areas are elegantly reviewed in this Illustrated Review article. The Illustrated Review is a highlight of the ISTH Congress. The format lends itself very well to explaining the science, and the collection of beautiful graphical summaries of recent developments in the field are stunning and self-explanatory. This clever and effective way to communicate research is revolutionary and different from traditional formats. We hope you enjoy this article and will be inspired by its content to generate new research ideas.
Collapse
Affiliation(s)
| | | | - Ejaife O. Agbani
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Robert Ahrends
- Institute of Analytical ChemistryUniversity of ViennaViennaAustria
| | - Raza Alikhan
- Haemostasis & ThrombosisUniversity Hospital of WalesCardiffUK
| | | | - Zsuzsa Bagoly
- Faculty of Medicine, Department of Laboratory Medicine, Division of Clinical Laboratory Sciences and ELKH‐DE Neurodegenerative and Cerebrovascular Research GroupUniversity of DebrecenDebrecenHungary
| | | | - Elena Barbon
- San Raffaele Telethon Institute for Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Christopher D. Barrett
- Division of Acute Care Surgery and Surgical Critical Care, Department of SurgeryUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Koch Institute, Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Division of Surgical Critical Care, Department of Surgery, Boston University Medical CenterBoston University School of MedicineBostonMassachusettsUSA
| | | | | | - Wee Shian Chan
- University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Moniek de Maat
- Department of HematologyErasmus MCRotterdamThe Netherlands
| | - Kerstin de Wit
- Queen’s University and McMaster UniversityKingstonONCanada
| | | | - Martin H. Ellis
- Hematology Institute and Blood Bank, Meir Medical Center and Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Renee Eslick
- Haematology DepartmentCanberra HospitalGarranAustralian Capital TerritoryAustralia
| | - Hongxia Fu
- Division of Hematology, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | | | - Frederikus A. Klok
- Department of Medicine – Thrombosis and HemostasisLeiden University Medical CenterLeidenThe Netherlands
| | - Riten Kumar
- Dana Farber/Boston Children’s Cancer and Blood Disorders CenterBostonMassachusettsUSA
| | | | - Rustem I. Litvinov
- Department of Cell and Developmental BiologyUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William A. E. Parker
- Cardiovascular Research Unit, Northern General HospitalUniversity of SheffieldSheffieldUK
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, Department of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
| | | | - Alireza R. Rezaie
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Lara N. Roberts
- King’s Thrombosis Centre, Department of Haematological MedicineKing’s College Hospital NHS Foundation TrustLondonUK
| | - Bianca Rocca
- Department of Safety and Bioethics, Section of PharmacologyCatholic University School of MedicineRomeItaly
| | - Susan Shapiro
- Oxford University Hospitals NHS Foundation TrustOxfordUK
- Radcliffe Department of MedicineOxford UniversityOxfordUK
| | - Deborah M. Siegal
- Ottawa Hospital Research Institute and University of OttawaOttawaOntarioCanada
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Katsue Suzuki‐Inoue
- Department of Clinical and Laboratory MedicineUniversity of YamanashiYamanashiJapan
| | - Tahira Zafar
- Frontier Medical CollegeAbbotabadPakistan
- Hemophilia Treatment CenterRawalpindiPakistan
| | - Jiaxi Zhou
- Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
23
|
Wallner B, Schenk B, Paal P, Falk M, Strapazzon G, Martini WZ, Brugger H, Fries D. Hypothermia Induced Impairment of Platelets: Assessment With Multiplate vs. ROTEM—An In Vitro Study. Front Physiol 2022; 13:852182. [PMID: 35422712 PMCID: PMC9002345 DOI: 10.3389/fphys.2022.852182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: This experimental in vitro study aimed to identify and characterize hypothermia-associated coagulopathy and to compare changes in mild to severe hypothermia with the quantitative measurement of rotational thromboelastometry (ROTEM) and multiple-electrode aggregometry (MULTIPLATE). Methods: Whole blood samples from 18 healthy volunteers were analyzed at the target temperatures of 37, 32, 24, 18, and 13.7°C with ROTEM (ExTEM, InTEM and FibTEM) and MULTIPLATE using the arachidonic acid 0.5 mM (ASPI), thrombin receptor-activating peptide-6 32 µM (TRAP) and adenosine diphosphate 6.4 µM (ADP) tests at the corresponding incubating temperatures for coagulation assessment. Results: Compared to baseline (37°C) values ROTEM measurements of clotting time (CT) was prolonged by 98% (at 18°C), clot formation time (CFT) was prolonged by 205% and the alpha angle dropped to 76% at 13.7°C (p < 0.001). At 24.0°C CT was prolonged by 56% and CFT by 53%. Maximum clot firmness was only slightly reduced by ≤2% at 13.7°C. Platelet function measured by MULTIPLATE was reduced with decreasing temperature (p < 0.001): AUC at 13.7°C −96% (ADP), −92% (ASPI) and −91% (TRAP). Conclusion: Hypothermia impairs coagulation by prolonging coagulation clotting time and by decreasing the velocity of clot formation in ROTEM measurements. MULTIPLATE testing confirms a linear decrease in platelet function with decreasing temperatures, but ROTEM fails to adequately detect hypothermia induced impairment of platelets.
Collapse
Affiliation(s)
- Bernd Wallner
- Department of Anaesthesiology and General Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of General and Surgical Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- *Correspondence: Bernd Wallner,
| | | | - Peter Paal
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Markus Falk
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Wenjun Z. Martini
- US Army Institute of Surgical Research, San Antonio, TX, United States
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Dietmar Fries
- Department of General and Surgical Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Mi YH, Xu MY. Trauma-induced pulmonary thromboembolism: What's update? Chin J Traumatol 2022; 25:67-76. [PMID: 34404569 PMCID: PMC9039469 DOI: 10.1016/j.cjtee.2021.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
Trauma-induced pulmonary thromboembolism is the second leading cause of death in severe trauma patients. Primary fibrinolytic hyperactivity combined with hemorrhage and consequential hypercoagulability in severe trauma patients create a huge challenge for clinicians. It is crucial to ensure a safe anticoagulant therapy for trauma patients, but a series of clinical issues need to be answered first, for example, what are the risk factors for traumatic venous thromboembolism? How to assess and determine the status of coagulation dysfunction of patients? When is the optimal timing to initiate pharmacologic prophylaxis for venous thromboembolism? What types of prophylactic agents should be used? How to manage the anticoagulation-related hemorrhage and to determine the optimal timing of restarting chemoprophylaxis? The present review attempts to answer the above questions.
Collapse
|
25
|
Fields AT, Lee MC, Mayer F, Santos YA, Bainton CM, Matthay ZA, Callcut RA, Mayer N, Cuschieri J, Kober KM, Bainton RJ, Kornblith LZ. A new trauma frontier: Exploratory pilot study of platelet transcriptomics in trauma patients. J Trauma Acute Care Surg 2022; 92:313-322. [PMID: 34738997 PMCID: PMC8781218 DOI: 10.1097/ta.0000000000003450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors. METHODS Preresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography. RESULTS Differential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls. CONCLUSION Our findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level.
Collapse
|
26
|
Duque P, Calvo A, Lockie C, Schöchl H. Pathophysiology of Trauma-Induced Coagulopathy. Transfus Med Rev 2021; 35:80-86. [PMID: 34610877 DOI: 10.1016/j.tmrv.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
There is no standard definition for trauma-induced coagulopathy (TIC). However, it could be defined as an abnormal hemostatic response secondary to trauma. The terms "early TIC" and "late TIC" have been recently suggested. "Early TIC" would refer to the inability to achieve effective hemostasis exacerbating an uncontrolled bleeding in a shocked patient with ischemia-reperfusion damage (bleeding phenotype) and takes place usually early after injury, whereas "late TIC" would represent a hypercoagulable state after surviving a severe tissue injury, that would contribute to thromboembolic events and multiorgan failure (MOF), (thrombotic phenotype), occurring typically hours after the trauma insult though it could be delayed for days. In addition, severe tissue injury when there is no associated shock could be followed by an early hypercoagulable state, representing an evolutionary maladaptive response of a physiologic mechanism created to increase clot formation and prevent bleeding. Therefore, TIC is not a uniform phenotype, ranging from bleeding to pro-thrombotic profiles. This current concept of TIC is mainly based on the recognition of TIC as a unique clotting disorder following trauma in which alterations in the endothelial function, fibrinolysis regulation and platelet behavior after major trauma are the main cornerstones.
Collapse
Affiliation(s)
- Patricia Duque
- Anesthesiology and Critical Care Department, Gregorio Marañon Hospital, Madrid, Spain.
| | - Alberto Calvo
- Anesthesiology and Critical Care Department, Gregorio Marañon Hospital, Madrid, Spain
| | - Christopher Lockie
- Department of Anesthesiology and Intensive Care Medicine AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, and Ludwig Boltzmann Institute for experimental and clinical traumatology Vienna, Austria
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, and Ludwig Boltzmann Institute for experimental and clinical traumatology Vienna, Austria
| |
Collapse
|
27
|
Leung J, Cau MF, Kastrup CJ. Emerging gene therapies for enhancing the hemostatic potential of platelets. Transfusion 2021; 61 Suppl 1:S275-S285. [PMID: 34269451 DOI: 10.1111/trf.16519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
Platelet transfusions are an integral component of balanced hemostatic resuscitation protocols used to manage severe hemorrhage following trauma. Enhancing the hemostatic potential of platelets could lead to further increases in the efficacy of transfusions, particularly for non-compressible torso hemorrhage or severe hemorrhage with coagulopathy, by decreasing blood loss and improving overall patient outcomes. Advances in gene therapies, including RNA therapies, are leading to new strategies to enhance platelets for better control of hemorrhage. This review will highlight three approaches for creating modified platelets using gene therapies: (i) direct transfection of transfusable platelets ex vivo, (ii) in vitro production of engineered platelets from platelet-precursor cells, and (iii) modifying the bone marrow for in vivo production of modified platelets. In summary, modifying platelets to enhance their hemostatic potential is an exciting new frontier in transfusion medicine, but more preclinical development as well as studies testing the safety and efficacy of these agents are needed.
Collapse
Affiliation(s)
- Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Sayce AC, Neal MD, Leeper CM. Viscoelastic monitoring in trauma resuscitation. Transfusion 2021; 60 Suppl 6:S33-S51. [PMID: 33089933 DOI: 10.1111/trf.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Traumatic injury results in both physical and physiologic insult. Successful care of the trauma patient depends upon timely correction of both physical and biochemical injury. Trauma-induced coagulopathy is a derangement of hemostasis and thrombosis that develops rapidly and can be fatal if not corrected. Viscoelastic monitoring (VEM) assays have been developed to provide rapid, accurate, and relatively comprehensive depictions of an individual's coagulation profile. VEM are increasingly being integrated into trauma resuscitation guidelines to provide dynamic and individualized guidance to correct coagulopathy. STUDY DESIGN AND METHODS We performed a narrative review of the search terms viscoelastic, thromboelastography, thromboelastometry, TEG, ROTEM, trauma, injury, resuscitation, and coagulopathy using PubMed. Particular focus was directed to articles describing algorithms for management of traumatic coagulopathy based on VEM assay parameters. RESULTS Our search identified 16 papers with VEM-guided resuscitation strategies in adult patients based on TEG, 12 such protocols in adults based on ROTEM, 1 protocol for children based on TEG, and 2 protocols for children based on ROTEM. CONCLUSIONS This review presents evidence to support VEM use to detect traumatic coagulopathy, discusses the role of VEM in trauma resuscitation, provides a summary of proposed treatment algorithms, and discusses pending questions in the field.
Collapse
Affiliation(s)
- Andrew C Sayce
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christine M Leeper
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Tantry US, Hartmann J, Neal MD, Schöechl H, Bliden KP, Agarwal S, Mason D, Dias JD, Mahla E, Gurbel PA. The role of viscoelastic testing in assessing peri-interventional platelet function and coagulation. Platelets 2021; 33:520-530. [PMID: 34369848 DOI: 10.1080/09537104.2021.1961709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We carried out a literature search in MEDLINE (PubMed) and EMBASE literature databases to provide a concise review of the role of viscoelastic testing in assessing peri-interventional platelet function and coagulation. The search identified 130 articles that were relevant for the review, covering the basic science of VHA and VHA in clinical settings including cardiac surgery, cardiology, neurology, trauma, non-cardiac surgery, obstetrics, liver disease, and COVID-19. Evidence from these articles is used to describe the important role of VHAs and platelet function testing in various peri-interventional setups. VHAs can help us to comprehensively assess the contribution of platelets and coagulation dynamics to clotting at the site-of-care much faster than standard laboratory measures. In addition to standard coagulation tests, VHAs are beneficial in reducing allogeneic transfusion requirements and bleeding, in predicting ischemic events, and improving outcomes in several peri-interventional care settings. Further focused studies are needed to confirm their utility in the peri-interventional case.
Collapse
Affiliation(s)
- Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Jan Hartmann
- Medical Affairs and Clinical Development, Haemonetics Corporation, Boston, MA, USA
| | - Matthew D Neal
- Department of General Surgery, The University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Herbert Schöechl
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.,AUVA Trauma Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Seema Agarwal
- Department of Anaesthesia, Manchester University Foundation Trust, Manchester, UK
| | - Dan Mason
- Medical Affairs and Clinical Development, Haemonetics Corporation, Boston, MA, USA
| | - Joao D Dias
- Medical Affairs and Clinical Development, Haemonetics Corporation, Boston, MA, USA
| | - Elisabeth Mahla
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| |
Collapse
|
30
|
Loss of GPVI and GPIbα contributes to trauma-induced platelet dysfunction in severely injured patients. Blood Adv 2021; 4:2623-2630. [PMID: 32556282 DOI: 10.1182/bloodadvances.2020001776] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/17/2020] [Indexed: 11/20/2022] Open
Abstract
Trauma-induced coagulopathy (TIC) is a complex, multifactorial failure of hemostasis that occurs in 25% of severely injured patients and results in a fourfold higher mortality. However, the role of platelets in this state remains poorly understood. We set out to identify molecular changes that may underpin platelet dysfunction after major injury and to determine how they relate to coagulopathy and outcome. We performed a range of hemostatic and platelet-specific studies in blood samples obtained from critically injured patients within 2 hours of injury and collected prospective data on patient characteristics and clinical outcomes. We observed that, although platelet counts were preserved above critical levels, circulating platelets sampled from trauma patients exhibited a profoundly reduced response to both collagen and the selective glycoprotein VI (GPVI) agonist collagen-related peptide, compared with those from healthy volunteers. These responses correlated closely with overall clot strength and mortality. Surface expression of the collagen receptors GPIbα and GPVI was reduced on circulating platelets in trauma patients, with increased levels of the shed ectodomain fragment of GPVI detectable in plasma. Levels of shed GPVI were highest in patients with more severe injuries and TIC. Collectively, these observations demonstrate that platelets experience a loss of GPVI and GPIbα after severe injury and translate into a reduction in the responsiveness of platelets during active hemorrhage. In turn, they are associated with reduced hemostatic competence and increased mortality. Targeting proteolytic shedding of platelet receptors is a potential therapeutic strategy for maintaining hemostatic competence in bleeding and improving the efficacy of platelet transfusions.
Collapse
|
31
|
Moore EE, Moore HB, Kornblith LZ, Neal MD, Hoffman M, Mutch NJ, Schöchl H, Hunt BJ, Sauaia A. Trauma-induced coagulopathy. Nat Rev Dis Primers 2021; 7:30. [PMID: 33927200 PMCID: PMC9107773 DOI: 10.1038/s41572-021-00264-3] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Uncontrolled haemorrhage is a major preventable cause of death in patients with traumatic injury. Trauma-induced coagulopathy (TIC) describes abnormal coagulation processes that are attributable to trauma. In the early hours of TIC development, hypocoagulability is typically present, resulting in bleeding, whereas later TIC is characterized by a hypercoagulable state associated with venous thromboembolism and multiple organ failure. Several pathophysiological mechanisms underlie TIC; tissue injury and shock synergistically provoke endothelial, immune system, platelet and clotting activation, which are accentuated by the 'lethal triad' (coagulopathy, hypothermia and acidosis). Traumatic brain injury also has a distinct role in TIC. Haemostatic abnormalities include fibrinogen depletion, inadequate thrombin generation, impaired platelet function and dysregulated fibrinolysis. Laboratory diagnosis is based on coagulation abnormalities detected by conventional or viscoelastic haemostatic assays; however, it does not always match the clinical condition. Management priorities are stopping blood loss and reversing shock by restoring circulating blood volume, to prevent or reduce the risk of worsening TIC. Various blood products can be used in resuscitation; however, there is no international agreement on the optimal composition of transfusion components. Tranexamic acid is used in pre-hospital settings selectively in the USA and more widely in Europe and other locations. Survivors of TIC experience high rates of morbidity, which affects short-term and long-term quality of life and functional outcome.
Collapse
Affiliation(s)
- Ernest E Moore
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO, USA.
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA.
| | - Hunter B Moore
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Lucy Z Kornblith
- Trauma and Surgical Critical Care, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Matthew D Neal
- Pittsburgh Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Maureane Hoffman
- Duke University School of Medicine, Transfusion Service, Durham VA Medical Center, Durham, NC, USA
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg and Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Trauma Research Centre, Vienna, Austria
| | | | - Angela Sauaia
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
32
|
Fletcher-Sandersjöö A, Thelin EP, Maegele M, Svensson M, Bellander BM. Time Course of Hemostatic Disruptions After Traumatic Brain Injury: A Systematic Review of the Literature. Neurocrit Care 2021; 34:635-656. [PMID: 32607969 PMCID: PMC8128788 DOI: 10.1007/s12028-020-01037-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Almost two-thirds of patients with severe traumatic brain injury (TBI) develop some form of hemostatic disturbance, which contributes to poor outcome. While the initial head injury often leads to impaired clot formation, TBI is also associated with an increased risk of thrombosis. Most likely there is a progression from early bleeding to a later prothrombotic state. In this paper, we systematically review the literature on the time course of hemostatic disruptions following TBI. A MEDLINE search was performed for TBI studies reporting the trajectory of hemostatic assays over time. The search yielded 5,049 articles, of which 4,910 were excluded following duplicate removal as well as title and abstract review. Full-text assessment of the remaining articles yielded 33 studies that were included in the final review. We found that the first hours after TBI are characterized by coagulation cascade dysfunction and hyperfibrinolysis, both of which likely contribute to lesion progression. This is then followed by platelet dysfunction and decreased platelet count, the clinical implication of which remains unclear. Later, a poorly defined prothrombotic state emerges, partly due to fibrinolysis shutdown and hyperactive platelets. In the clinical setting, early administration of the antifibrinolytic agent tranexamic acid has proved effective in reducing head-injury-related mortality in a subgroup of TBI patients. Further studies evaluating the time course of hemostatic disruptions after TBI are warranted in order to identify windows of opportunity for potential treatment options.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum J5:20, 171 64, Solna, Stockholm, Sweden.
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum J5:20, 171 64, Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Marc Maegele
- Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center, University Witten/Herdecke, Cologne, Germany
- Institute for Research in Operative Medicine, University Witten/Herdecke, Cologne, Germany
| | - Mikael Svensson
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum J5:20, 171 64, Solna, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum J5:20, 171 64, Solna, Stockholm, Sweden
| |
Collapse
|
33
|
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Windberger U, Läuger J. Blood Clot Phenotyping by Rheometry: Platelets and Fibrinogen Chemistry Affect Stress-Softening and -Stiffening at Large Oscillation Amplitude. Molecules 2020; 25:molecules25173890. [PMID: 32858936 PMCID: PMC7503632 DOI: 10.3390/molecules25173890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Together with treatment protocols, viscoelastic tests are widely used for patient care. Measuring at broader ranges of deformation than currently done will add information on a clot’s mechanical phenotype because fibrin networks follow different stretching regimes, and blood flow compels clots into a dynamic non-linear response. (2) Methods: To characterize the influence of platelets on the network level, a stress amplitude sweep test (LAOStress) was applied to clots from native plasma with five platelet concentrations. Five species were used to validate the protocol (human, cow, pig, rat, horse). By Lissajous plots the oscillation cycle for each stress level was analyzed. (3) Results: Cyclic stress loading generates a characteristic strain response that scales with the platelet quantity at low stress, and that is independent from the platelet count at high shear stress. This general behavior is valid in the animal models except cow. Here, the specific fibrinogen chemistry induces a stiffer network and a variant high stress response. (4) Conclusions: The protocol provides several thresholds to connect the softening and stiffening behavior of clots with the applied shear stress. This points to the reversible part of deformation, and thus opens a new route to describe a blood clot’s phenotype.
Collapse
Affiliation(s)
- Ursula Windberger
- Department for Biomedical Research, Decentralized Biomedical Facilities, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Correspondence: (U.W.); (J.L.); Tel.: +43-1-40160-37103 (U.W.)
| | - Jörg Läuger
- Anton Paar Germany GmbH, Helmuth-Hirth-Strasse 6, 73760 Ostfildern, Germany
- Correspondence: (U.W.); (J.L.); Tel.: +43-1-40160-37103 (U.W.)
| |
Collapse
|
35
|
Harrison P, Lordkipanidzé M, Frelinger AL, Thomas MR, Watson SP. Platelet count and disease – editorial policy. Platelets 2020; 31:969-970. [DOI: 10.1080/09537104.2020.1802002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Paul Harrison
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Lordkipanidzé
- Faculty of Pharmacy, Université De Montréal, Montréal, Canada
- Research Center, Montreal Heart Institute, Montréal, Canada
| | - Andrew L. Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Mark R. Thomas
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P. Watson
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|