1
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
2
|
Ito SS, Nakagawa Y, Matsubayashi M, Sakaguchi YM, Kobashigawa S, Matsui TK, Nanaura H, Nakanishi M, Kitayoshi F, Kikuchi S, Kajihara A, Tamaki S, Sugie K, Kashino G, Takahashi A, Hasegawa M, Mori E, Kirita T. Inhibition of the ATR kinase enhances 5-FU sensitivity independently of nonhomologous end-joining and homologous recombination repair pathways. J Biol Chem 2020; 295:12946-12961. [PMID: 32675286 DOI: 10.1074/jbc.ra120.013726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/13/2020] [Indexed: 10/23/2022] Open
Abstract
The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Soichiro S Ito
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Nakagawa
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko M Sakaguchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan; Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan; Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Atsuhisa Kajihara
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shigehiro Tamaki
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Genro Kashino
- Radioisotope Research Center, Nara Medical University, Kashihara, Nara, Japan
| | | | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Nara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
3
|
Cohen J, Vo NTK, Seymour CB, Mothersill CE. Parallel comparison of pre-conditioning and post-conditioning effects in human cancers and keratinocytes upon acute gamma irradiation. Int J Radiat Biol 2019; 95:170-178. [PMID: 30496014 DOI: 10.1080/09553002.2019.1547850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE To determine and compare the effects of pre-conditioning and post-conditioning towards gamma radiation responses in human cancer cells and keratinocytes. MATERIAL AND METHODS The clonogenic survival of glioblastoma cells (T98G), keratinocytes (HaCaT), and colorectal carcinoma cells (HCT116 p53+/+ and p53-/-) was assessed following gamma ray exposure from a Cs-137 source. The priming dose preceded the challenge dose in pre-conditioning whereas the priming dose followed the challenge dose in post-conditioning. The priming dose was either 5 mGy or 0.1 Gy. The challenge dose was 0.5-5 Gy. RESULTS In both pre- and post-conditioning where the priming dose was 0.1 Gy and the challenge dose was 4 Gy, RAR developed in T98G but not in HaCaT cells. In HCT116 p53+/+, pre-conditioning had either no effect or a radiosensitizing effect and whereas post-conditioning induced either radiosensitizing or radioadaptive effect. The different observed outcomes were dependent on dose, the time interval between the priming and challenge dose, and the time before the first irradiation. Post-conditioning effects could occur with a priming dose as low as 5 mGy in HCT116 p53+/+ cells. When HCT116 cells had no p53 protein expression, the radiosensitizing or radioadaptive response by the conditioning effect was abolished. CONCLUSIONS The results suggest that radiation conditioning responses are complex and depend on at least the following factors: the magnitude of priming/challenge dose, the time interval between priming and challenge dose, p53 status, cell seeding time prior to the first radiation treatment. This work is the first parallel comparison demonstrating the potential outcomes of pre- and post-conditioning in different human cell types using environmentally and medically relevant radiation doses.
Collapse
Affiliation(s)
- Jason Cohen
- a Radiation Sciences , McMaster University , Hamilton , Canada
| | - Nguyen T K Vo
- b Department of Biology , McMaster University , Hamilton , Canada
| | - Colin B Seymour
- b Department of Biology , McMaster University , Hamilton , Canada
| | | |
Collapse
|
4
|
Takahashi A, Ikeda H, Yoshida Y. Role of High-Linear Energy Transfer Radiobiology in Space Radiation Exposure Risks. Int J Part Ther 2018; 5:151-159. [PMID: 31773027 DOI: 10.14338/ijpt-18-00013.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
Many manned missions to the Moon and Mars are scheduled in the near future. However, space radiation presents a major hazard to humans, and astronauts are constantly exposed to radiation, including high linear energy transfer (LET) radiation, which differs from radiation on Earth. Thus, there is thus an urgent need to clarify the biological effects of space radiation and reduce the associated risks. In this review, we consider the role of high-LET radiobiology in relation to space-radiation exposure.
Collapse
Affiliation(s)
| | - Hiroko Ikeda
- Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
5
|
Slezak J, Kura B, Ravingerová T, Tribulova N, Okruhlicova L, Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol 2015; 93:737-53. [PMID: 26030720 DOI: 10.1139/cjpp-2015-0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In addition to cytostatic treatment and surgery, the most common cancer treatment is gamma radiation. Despite sophisticated radiological techniques however, in addition to irradiation of the tumor, irradiation of the surrounding healthy tissue also takes place, which results in various side-effects, depending on the absorbed dose of radiation. Radiation either damages the cell DNA directly, or indirectly via the formation of oxygen radicals that in addition to the DNA damage, react with all cell organelles and interfere with their molecular mechanisms. The main features of radiation injury besides DNA damage is inflammation and increased expression of pro-inflammatory genes and cytokines. Endothelial damage and dysfunction of capillaries and small blood vessels plays a particularly important role in radiation injury. This review is focused on summarizing the currently available data concerning the mechanisms of radiation injury, as well as the effectiveness of various antioxidants, anti-inflammatory cytokines, and cytoprotective substances that may be utilized in preventing, mitigating, or treating the toxic effects of ionizing radiation on the heart.
Collapse
Affiliation(s)
- Jan Slezak
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Branislav Kura
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Narcisa Tribulova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Ludmila Okruhlicova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Miroslav Barancik
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Edin NJ, Sandvik JA, Vollan HS, Reger K, Görlach A, Pettersen EO. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation. JOURNAL OF RADIATION RESEARCH 2013; 54:1015-28. [PMID: 23685670 PMCID: PMC3823782 DOI: 10.1093/jrr/rrt061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2-0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation.
Collapse
Affiliation(s)
- Nina Jeppesen Edin
- Department of Physics, University of Oslo, 0316 Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, University Hospital, University of Oslo, 0310 Oslo, Norway
- Corresponding author. Department of Physics, Biophysics Group, PB 1048 Blindern, N-0316 Oslo, Norway. Tel: +47-22-85-54-92; Fax: +47-228-556-71;
| | | | - Hilde Synnøve Vollan
- Department of Clinical Molecular Biology (EpiGen), Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway
| | - Katharina Reger
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Lazarettstr. 36, 80636 Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Lazarettstr. 36, 80636 Munich, Germany
| | | |
Collapse
|
7
|
Yu KN, Tung MMT, Choi VWY, Cheng SH. Alpha radiation exposure decreases apoptotic cells in zebrafish embryos subsequently exposed to the chemical stressor, Cd. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3831-3839. [PMID: 22714403 DOI: 10.1007/s11356-012-1032-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to demonstrate that zebrafish embryos subjected to a priming exposure provided by one environmental stressor (low-dose alpha particles) can induce an adaptive response against a subsequent challenging exposure provided by another environmental stressor (heavy metal Cd). The effect thus identified would be an antagonistic multiple stressor effect. The effects of alpha particle radiation and/or Cd on whole embryos were studied through quantification of apoptotic signals at 24 h post-fertilization (hpf). Embryos were stained with the vital dye acridine orange, followed by counting the stained cells. For each set of experiments, 30 dechorionated embryos were divided into three groups, each having ten embryos. The three groups of embryos were referred to as (A) the control group, which received no more further treatments after dechorionation, (B) Cd-treated group, which did not receive any priming exposure and would receive a challenging exposure at 10 hpf and (C) (alpha + Cd)-treated group, which would receive both priming and challenging exposures. We defined the normalized net number of apoptotic signals in the (alpha + Cd)-treated group as N (C) * = [(apoptotic signals for (alpha + Cd)-treated group - average apoptotic signals for the corresponding control group)/average apoptotic signals for the corresponding control group] and that in the Cd-treated group as N (B)* = [(apoptotic signals for Cd-treated group - average apoptotic signals for the corresponding control group)/ average apoptotic signals for the corresponding control group]. By using the non-parametric Mann-Whitney U statistic, we were able to show that N (C) * was significantly smaller than N (B) *(p = 0.006). These demonstrated an antagonistic multiple stressor effect between ionizing radiation and Cd through the induction of an adaptive response by the ionizing radiation against subsequent exposures to Cd.
Collapse
Affiliation(s)
- K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | | | | | | |
Collapse
|
8
|
Klammer H, Zhang LH, Kadhim M, Iliakis G. Dependence of adaptive response and its bystander transmission on the genetic background of tested cells. Int J Radiat Biol 2012; 88:720-6. [PMID: 22574641 DOI: 10.3109/09553002.2012.691613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation-induced adaptive response (AR) is a phenomenon of increased radioresistance mediated by a low priming dose of ionizing radiation (IR) applied prior to a higher challenging dose. We have previously shown that in mouse-embryo fibroblasts (MEF) and human A549 cells, AR is associated with enhanced repair of DNA double-strand breaks (DSB) by the DNA-PK-dependent pathway of non-homologous end-joining (D-NHEJ). Importantly, AR was 'transmitted' to non-irradiated bystander cells through transfer of medium from cells that had received a priming dose of IR. Here, we examine the influence of the genetic background in these responses. MATERIALS AND METHODS Two plasmid-based assays specifically designed to measure the efficiency of NHEJ and HRR (homologous recombination repair) were deployed. MEF and the primary human fibroblast cell lines HF12 and HF19 were exposed to 10 mGy to 5 Gy X-rays. Bystander effects were investigated using the medium-transfer technique. RESULTS In contrast to MEF, which induce robust AR to NHEJ, even as a bystander response, human fibroblasts fail to develop such phenomena. CONCLUSIONS The development of AR is cell-type-specific. The same holds true for the development of AR as a bystander effect. Better understanding of the underlying mechanisms will help to understand the molecular basis of these differences in response.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | | | |
Collapse
|
9
|
Ota I, Okamoto N, Yane K, Takahashi A, Masui T, Hosoi H, Ohnishi T. Therapeutic strategies for head and neck cancer based on p53 status. Exp Ther Med 2012; 3:585-591. [PMID: 22969933 DOI: 10.3892/etm.2012.474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/19/2011] [Indexed: 12/15/2022] Open
Abstract
Squamous cell carcinomas of the head and neck (HNSCC) are one of the most common types of cancers worldwide, and despite advances in treatment, they still represent a clinical challenge. Inactivation of one or more components in the p53 signaling pathway is an extremely common event in human neoplasia, including HNSCC. The loss of p53 function is responsible for increased aggressiveness in cancers, while tumor chemoresistance and radioresistance can depend on deleted p53 expression, or on the expression of mutated-p53 proteins. Thus, consideration and manipulation of the p53 status during HNSCC cancer therapy should be considered. This review discusses the p53 signaling pathways activated by various cellular stresses, including exposure to cancer therapies. The recognition of the p53 status in cancer cells is a significant factor and could provide valuable assistance during the selection of an effective therapeutic approach.
Collapse
Affiliation(s)
- Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522
| | | | | | | | | | | | | |
Collapse
|
10
|
Takahashi A, Su X, Suzuki H, Omori K, Seki M, Hashizume T, Shimazu T, Ishioka N, Iwasaki T, Ohnishi T. p53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations. Int J Radiat Oncol Biol Phys 2010; 78:1171-6. [DOI: 10.1016/j.ijrobp.2010.04.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/20/2010] [Accepted: 04/21/2010] [Indexed: 11/26/2022]
|
11
|
Abstract
Oxidative stress is recognized as an important environmental factor in aging; however, because reactive oxygen species (ROS) and related free radicals are normally produced both intra- and extracellularly, air-living organisms cannot avoid the risk of oxidative stress. Consequently, these organisms have evolved various anti-oxidant systems to prevent ROS, scavenge free radicals, repair damaged components and adaptive responses. This review will focus on the repair and adaptive response to oxidative stress, and summarize the changes of these systems as a result aging and their relationship to premature aging.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Functional Genomics, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan.
| | | |
Collapse
|
12
|
Ma S, Liu X, Jiao B, Yang Y, Liu X. Low-dose radiation-induced responses: focusing on epigenetic regulation. Int J Radiat Biol 2010; 86:517-28. [PMID: 20545569 DOI: 10.3109/09553001003734592] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE With the widespread use of ionising radiation, the risks of low-dose radiation have been increasingly highlighted for special attention. This review introduces the potential role of epigenetic elements in the regulation of the effects of low-dose radiation. MATERIALS AND METHODS The related literature has been analysed according to the topics of DNA methylation, histone modifications, chromatin remodelling and non-coding RNA modulation in low-dose radiation responses. RESULTS DNA methylation and radiation can reciprocally regulate effects, especially in the low-dose radiation area. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase inhibitors show a promising application to enhance radiation sensitivity, both in the low-dose and high-dose areas; phosphorylated histone 2 AX (H2AX) shows a low sensitivity with 1-15 Gy irradiation as compared with lower dose radiation; and histone ubiquitination plays an important role in DNA damage repair mechanisms. Moreover, chromatin remodelling has an integral role in the repair of DNA double-strand breaks and the response of chromatin to ionising radiation. Finally, the effect of radiation on microRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. CONCLUSION Small advances have been made in the understanding of epigenetic regulation of low-dose radiation responses. Many questions and blind spots deserve to be investigated. Many new epigenetic elements will be identified in low-dose radiation responses, which may give new insights into the mechanisms of radiation response and their exploitation in radiotherapy.
Collapse
Affiliation(s)
- Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
13
|
Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status. Int J Radiat Oncol Biol Phys 2010; 77:559-65. [DOI: 10.1016/j.ijrobp.2009.12.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 12/02/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
|
14
|
Yuan D, Pan Y, Zhang J, Shao C. Role of nuclear factor-kappaB and P53 in radioadaptive response in Chang live cells. Mutat Res 2010; 688:66-71. [PMID: 20307555 DOI: 10.1016/j.mrfmmm.2010.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/26/2010] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
Abstract
Understanding the mechanism governing radioadaptive response (RAR) has important implication for cancer risk assessment of a low-dose radiation (LDR). However the related knowledge especially the key gene of RAR is still limited. In this study, Chang liver cells were irradiated with a priming dose of 0.016 Gy, 0.08 Gy, or 0.16 Gy of gamma-rays, and with 4 h interval, they were irradiated again with a challenging dose of 2 Gy or 3 Gy. It was found that only 0.08 Gy, but not 0.016 Gy or 0.16 Gy, induced RAR of micronuclei induction to the challenging irradiation. This RAR could be slightly reduced by pifithrin-alpha, an inhibitor of P53, however it was completely suppressed by BAY11-7082, an inhibitor of nuclear factor-kappaB (NF-kappaB). Further assays using western blotting and luciferase reporter gene found that nuclear NF-kappaB and its activity could be triggered by the priming irradiation of 0.08 Gy so that the expressions of them in the primed cells were higher than those in the cells exposed to the challenging dose alone. In contrast, LDR neither influenced the expressions of both P53 and phospho-P53 (ser15) nor enhanced P53 activity; the expression of phospho-P53 and the activity of P53 in the primed cells were lower than that in the non-primly challenged cells. Our results demonstrate that the induction of RAR relays on an optimum priming irradiation dose and it is NF-kappaB rather than P53 that contributes to RAR.
Collapse
Affiliation(s)
- Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | | | | | | |
Collapse
|
15
|
Takahashi A, Nagamatsu A, Su X, Suzuki M, Tsuruoka C, Omori K, Suzuki H, Shimazu T, Seki M, Hashizume T, Iwasaki T, Ishioka N, Ohnishi T. The First Life Science Experiments in ISS: Reports of "Rad Gene"-Space Radiation Effects on Human Cultured Cells-. ACTA ACUST UNITED AC 2010. [DOI: 10.2187/bss.24.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hamada N, Imaoka T, Masunaga SI, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T. Recent advances in the biology of heavy-ion cancer therapy. JOURNAL OF RADIATION RESEARCH 2010; 51:365-383. [PMID: 20679739 DOI: 10.1269/jrr.09137] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure. These ions, as a consequence, inactivate cells more effectively with less cell-cycle and oxygen dependence than conventional photons. The modes of heavy ion-induced cell death/inactivation include apoptosis, necrosis, autophagy, premature senescence, accelerated differentiation, delayed reproductive death of progeny cells, and bystander cell death. This paper briefly reviews the current knowledge of the biological aspects of heavy-ion therapy, with emphasis on the authors' recent findings. The topics include (i) repair mechanisms of heavy ion-induced DNA damage, (ii) superior effects of heavy ions on radioresistant tumor cells (intratumor quiescent cell population, TP53-mutated and BCL2-overexpressing tumors), (iii) novel capacity of heavy ions in suppressing cancer metastasis and neoangiogenesis, and (iv) potential of heavy ions to induce secondary (especially breast) cancer.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Komae, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Takahashi A, Ohnishi T. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat. JOURNAL OF RADIATION RESEARCH 2009; 50:385-393. [PMID: 19525615 DOI: 10.1269/jrr.09048s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, School of Medicine, Nara Medical University, Nara, Japan
| | | |
Collapse
|
18
|
Matsumoto H, Tomita M, Otsuka K, Hatashita M. A new paradigm in radioadaptive response developing from microbeam research. JOURNAL OF RADIATION RESEARCH 2009; 50 Suppl A:A67-A79. [PMID: 19346687 DOI: 10.1269/jrr.09003s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A classic paradigm in radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation on living tissue. Using this model, possible risks from exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to higher doses of radiation, using a linear non-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. These important responses to low dose/low dose-rate radiation are the radiation-induced adaptive response, the bystander response, low-dose hypersensitivity, and genomic instability. The mechanisms underlying these responses often involve biochemical and molecular signals generated in response to targeted and non-targeted events. In order to define and understand the bystander response to provide a basis for the understanding of non-targeted events and to elucidate the mechanisms involved, recent sophisticated research has been conducted with X-ray microbeams and charged heavy particle microbeams, and these studies have produced many new observations. Based on these observations, associations have been suggested to exist between the radioadaptive and bystander responses. The present review focuses on these two phenomena, and summarizes observations supporting their existence, and discusses the linkage between them in light of recent results obtained from experiments utilizing microbeams.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui 910-1193, Japan.
| | | | | | | |
Collapse
|
19
|
Edin NJ, Sandvik JA, Olsen DR, Pettersen EO. The Elimination of Low-Dose Hyper-radiosensitivity by Transfer of Irradiated-Cell Conditioned Medium Depends on Dose Rate. Radiat Res 2009; 171:22-32. [DOI: 10.1667/rr1143.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 06/24/2008] [Indexed: 11/03/2022]
|
20
|
Takahashi A, Yamakawa N, Kirita T, Omori K, Ishioka N, Furusawa Y, Mori E, Ohnishi K, Ohnishi T. DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus. JOURNAL OF RADIATION RESEARCH 2008; 49:645-652. [PMID: 18987440 DOI: 10.1269/jrr.08007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To identify the repair dynamics involved in high linear energy transfer (LET) radiation-induced DNA damage, phospho-H2AX (gammaH2AX) foci formation was analyzed after cellular exposure to iron ions (Fe-ions, 500 MeV u(-1), 200 KeV microm(-1)). The foci located at DNA damage sites were visualized using immunocytochemical methods. Since H2AX is phosphorylated at sites of radiation-induced double strand breaks (DSB), gammaH2AX foci were used to detect or illuminate tracks formed by DSB after exposure to various doses of ionizing radiation. Additional DSB-recognition proteins such as ATM phospho-serine 1981, DNA-PKcs phospho-threonine 2609, NBS1 phospho-serine 343 and CHK2 phospho-threonine 68 all co-localized with gammaH2AX at high LET radiation induced DSB. In addition, Fe-ion induced foci remained for longer times than X-radiation induced foci. These findings suggest that Fe-ion induced damage is repaired more slowly than X-radiation induced damage, possibly because Fe-ion induced damage or lesions are more complex or extensive. Antibodies for all these phosphorylated DNA DSB recognition proteins appear to be very effective for the detection and localization of DSB.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, School of Medicine, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takahashi A, Matsumoto H, Ohnishi T. Hdm2 and nitric oxide radicals contribute to the p53-dependent radioadaptive response. Int J Radiat Oncol Biol Phys 2008; 71:550-8. [PMID: 18410999 DOI: 10.1016/j.ijrobp.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/24/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this work was to characterize the radioadaptive response at the molecular level. METHODS AND MATERIALS We used wild-type (wt) p53 and mutated (m) p53-containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulations of p53, the human homolog of endogenous murine double minute 2 (Hdm2), and inducible nitric oxide synthase were analyzed with Western blotting. Quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. RESULTS In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low-dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about two- to fourfold after challenging irradiation subsequent to a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of 5, 5'-(2, 5-Furanidiyl)bis-2-thiophenemethanol (RITA) or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an inducible nitric oxide synthase inhibitor), and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover radioresistance developed when wtp53 cells were treated with isosorbide dinitrate (an NO-generating agent) alone. CONCLUSIONS These findings suggest that NO radicals are initiators of the radioadaptive response, acting through the activation of Hdm2 and the depression of p53 accumulations.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, School of Medicine, Nara Medical University, Nara, Japan
| | | | | |
Collapse
|
22
|
Nijhuis EHA, Poot AA, Feijen J, Vermes I. Hsp70- and p53-reponses after heat treatment and/or X-irradiation mediate the susceptibility of hematopoietic cells to undergo apoptosis. Int J Radiat Biol 2008; 84:99-105. [PMID: 18246479 DOI: 10.1080/09553000701817084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The effect of heat treatment in combination with X-irradiation was examined with regard to expression of p53, a tumor suppressor gene product, and Hsp70, a heat-shock protein, in association with the occurrence of programmed cell death (apoptosis). MATERIALS AND METHODS Three hematopoietic cell lines (HSB2, HL60 and Kasumi-1), which differ in p53 status, were exposed to 42.5 degrees C during one hour and/or X-radiation (total dose 8 Gy). After exposure, both mRNA and protein expression levels of Hsp70 and p53 were investigated by real-time PCR (polymerase chain reaction) and Western blotting. Apoptosis was simultaneously analyzed by observation of cell morphology as well as flowcytometric determination of Annexin V binding to phosphatidylserine and propidium iodide exclusion. RESULTS Both HL60 and HSB2 cell lines with a low p53 status and a quick response to heat treatment with Hsp70 over-expression are less susceptible to heat-induced apoptosis compared to Kasumi-1 cells with wild-type p53 protein and no Hsp70 response. The combination of first applying X-irradiation followed by heat treatment resulted in the most effective induction of apoptosis due to impairment of the Hsp70 response in all three cell lines. CONCLUSION These results indicate that the Hsp70 response and p53 status mediate the susceptibility of hematopoietic cells to undergo heat-induced apoptosis. Therefore, these parameters can be used as markers to predict the effectiveness of hyperthermia in cancer treatment.
Collapse
Affiliation(s)
- E H A Nijhuis
- University of Twente, Faculty of Science and Technology, Department of Polymer Chemistry and Biomaterials, Institute of Biomedical Technology (BMTI), The Netherlands
| | | | | | | |
Collapse
|
23
|
Abstract
The reduced biological effects of radiation exposure seen in cells after conditioning exposures to a low dose or at a low-dose rate (i.e., the acquisition of resistance against high-dose radiation) is called the "radioadaptive response" and many studies concerning this phenomenon have been reported since the 1980s. Radioadaptive responses have been observed using various end points, such as chromosomal aberrations, mutations, and clonogenic survival. However, the mechanisms of the radioadaptive response are not fully known. Here, we show that radiation-induced nitric oxide (NO) radicals contribute to the induction of radioresistance as determined by cell survival after a subsequent high-dose exposure. An accumulation of inducible NO synthase was produced, and the concentration of nitrite in the culture medium increased when cells were exposed to gamma-rays at a low-dose rate or to X-rays for a low dose followed by an acute high-dose X-irradiation. In addition, the induction of radioresistance was not observed in the presence of an inhibitor of inducible NO synthase or a scavenger of NO radicals. Moreover, radioresistance was observed when cultures were treated with a NO radical-generating agent. These findings suggest that NO radicals are an initiator of the radioadaptive response.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| | | | | |
Collapse
|
24
|
Ito M, Shibamoto Y, Ayakawa S, Tomita N, Sugie C, Ogino H. Low-dose whole-body irradiation induced radioadaptive response in C57BL/6 mice. JOURNAL OF RADIATION RESEARCH 2007; 48:455-60. [PMID: 17785936 DOI: 10.1269/jrr.07022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Radioadaptive survival responses after relatively low doses of radiation were investigated in C57BL/6 mice. The 8-week-old mice received whole-body mid-lethal challenging irradiation (5.9 Gy) at various intervals after conditioning whole-body irradiation with 50-400 mGy. Thereafter, survival of the mice was observed for 30 days. The mice receiving 400 mGy at 6 h before the challenging dose had a lower survival rate than the control group, but it was not observed when the conditioning 400-mGy irradiation was given 24 h beforehand. The conditioning doses of 100 and 200 mGy did not influence the survival of mice after the challenging dose. The mice receiving 50 mGy at 1 day, 3 days or 1 week before the challenging dose had a higher survival rate than the control, although this adaptive response was not observed when 50 mGy was given 6 h, 12 h, 3.5 weeks, or 5 weeks beforehand. When 50 mGy was given 2 weeks before the challenging dose, the adaptive response was observed in an experiment in which the mice were caged in our laboratory at the age of 5 weeks, whereas it was not observed in another experiment in which the mice were caged at 3 weeks. This study confirmed the presence of radioadaptive survival responses at the dose of 50 mGy given relatively shortly before the challenging dose.
Collapse
Affiliation(s)
- Masato Ito
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Okazaki R, Ootsuyama A, Norimura T. TP53 and TP53-Related Genes Associated with Protection from Apoptosis in the Radioadaptive Response. Radiat Res 2007; 167:51-7. [PMID: 17214514 DOI: 10.1667/rr0623.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 09/21/2006] [Indexed: 11/03/2022]
Abstract
We investigated the effect of administering priming low-dose radiation prior to high-dose radiation on the level of apoptosis and on the expression of TP53 and TP53-related genes in mouse splenocytes. The percentage of apoptotic cells was significantly lower in TP53(+/+) mice receiving priming radiation 2 to 168 h before the high-dose irradiation, compared to TP53(+/+) mice exposed to 2 Gy alone. In contrast, TP53(+/-) mice exhibited a reduced level of apoptosis only when priming was performed for 2 or 4 h prior to the high-dose irradiation. In TP53(+/+) mice, primed mice had higher TP53 expression than mice exposed to 2 Gy. Phospho-TP53 (ser15/18) expression was the highest in mice exposed to 2 Gy and intermediate in primed mice. Expression of p21 (CDKN1A) was higher in primed mice compared with mice exposed to 2 Gy. MDM2 expression remained at a high level in all mice receiving 2 Gy. Elevated phospho-ATM expression was observed only in mice exposed to 2 Gy. We conclude that TP53 plays a critical role in the radioadaptive response and that TP53 and TP53-related genes might protect cells from apoptosis through activation of the intracellular repair system.
Collapse
Affiliation(s)
- Ryuji Okazaki
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
26
|
Matsumoto H, Takahashi A, Ohnishi T. Radiation-induced adaptive responses and bystander effects. ACTA ACUST UNITED AC 2005; 18:247-54. [PMID: 15858392 DOI: 10.2187/bss.18.247] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A classical paradigm [correction of paradym] of radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation. However, there has been a recent growth of interest in the indirect actions of radiation including the radiation-induced adaptive response, the bystander effect, low-dose hypersensitivity, and genomic instability, which are specific modes of stress exhibited in response to low-dose/low-dose rate radiation. This review focuses on the radiation-induced bystander effect and the adaptive response, provides a description of the two phenomena, and discusses the contribution of the former to the latter.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Experimental Radiology and Health Physics, Faculty of Medical Science, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | |
Collapse
|
27
|
Okazaki R, Ootsuyama A, Norimura T. Radioadaptive response for protection against radiation-induced teratogenesis. Radiat Res 2005; 163:266-70. [PMID: 15733033 DOI: 10.1667/rr3315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.
Collapse
Affiliation(s)
- Ryuji Okazaki
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | |
Collapse
|
28
|
Masunaga SI, Takahashi A, Ohnishi K, Ohnishi T, Nagata K, Suzuki M, Kinashi Y, Ono K. Effects of mild temperature hyperthermia and p53 status on the size of hypoxic fractions in solid tumors, with reference to the effect in intratumor quiescent cell populations. Int J Radiat Oncol Biol Phys 2004; 60:570-7. [PMID: 15380594 DOI: 10.1016/j.ijrobp.2004.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/16/2004] [Accepted: 05/03/2004] [Indexed: 01/10/2023]
Abstract
PURPOSE To determine the effects of mild temperature hyperthermia (MTH) and p53 status of tumor cells on the size of hypoxic fractions (HFs) in solid tumors, with reference to the effect on intratumor quiescent (Q) cell populations. METHODS AND MATERIALS Human head-and-neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector as a control (SAS/neo) were inoculated subcutaneously into left hind legs of Balb/cA nude mice. Mice bearing the tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells in the tumors. The mice then received nicotinamide injection or carbogen gas (95% O(2), 5% CO(2)) inhalation combined with or without MTH. Nicotinamide prevents intermittent blood flow that could induce perfusion-limited acute hypoxia. Chronically hypoxic cells in regions beyond the limitation of oxygen diffusion in tumors are oxygenated by increasing the oxygen transport capacity of circulating blood with carbogen gas inhalation. After each treatment, the mice received a series of test doses of gamma-rays while alive or after tumor clamping to obtain HFs in the tumors. Immediately after irradiation, the tumors were excised, minced, and trypsinized. The tumor cell suspensions thus obtained were incubated with a cytokinesis blocker (cytochalasin-B) to inhibit cytoplasmic division while allowing nuclear division. Tumor cells not labeled with BrdU were detected with immunofluorescence staining of BrdU for P cells, and the micronucleus frequency in cells without BrdU labeling [ = Q cells] was determined. The micronucleus frequency in total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU. RESULTS SAS/mp53 tumors showed larger values for the size of not only the HF but also the diffusion-limited chronically HF than SAS/neo tumors. Q cell populations included a larger HF, particularly the chronically HF, than total cell populations in both tumors, especially in SAS/neo tumors. MTH could efficiently oxygenate the chronically HF, irrespective of p53 status. CONCLUSION MTH is a useful combined treatment with a radioenhancement effect on intratumor Q cells, irrespective of the p53 status of tumor cells. The p53 status has the potential to affect microenvironmental conditions within solid tumors.
Collapse
Affiliation(s)
- Shin-Ichiro Masunaga
- Radiation Oncology Research Laboratory, Research Reactor Institute, Kyoto, University, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Miura Y. Oxidative stress, radiation-adaptive responses, and aging. JOURNAL OF RADIATION RESEARCH 2004; 45:357-372. [PMID: 15613781 DOI: 10.1269/jrr.45.357] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.
Collapse
Affiliation(s)
- Yuri Miura
- Redox regulation research group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku. Tokyo, Japan.
| |
Collapse
|
30
|
Wang B, Ohyama H, Shang Y, Tanaka K, Aizawa S, Yukawa O, Hayata I. Adaptive response in embryogenesis: V. Existence of two efficient dose-rate ranges for 0.3 Gy of priming irradiation to adapt mouse fetuses. Radiat Res 2004; 161:264-72. [PMID: 14982488 DOI: 10.1667/rr3141] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges for the same dose of priming radiation to successfully induce an adaptive response in mouse fetuses.
Collapse
Affiliation(s)
- Bing Wang
- Radiation Hazards Research Group, Radiation Safety Research Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yasumoto J, Imai Y, Takahashi A, Ohnishi K, Yuki K, Kirita T, Ohnishi T. Analysis of apoptosis-related gene expression after X-ray irradiation in human tongue squamous cell carcinoma cells harboring wild-type or mutated p53 gene. JOURNAL OF RADIATION RESEARCH 2003; 44:41-45. [PMID: 12841598 DOI: 10.1269/jrr.44.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mutations in the p53 tumor suppressor gene have recently been reported to have an impact on clinical trials of several human tumors, including head and neck cancers. To confirm the p53-dependence of X-ray induced apoptosis, we used two cell lines derived from a human squamous cell carcinoma (SAS) with identical genetic backgrounds, except for the p53 gene, which are SAS/mp53 cells with mp53 and SAS/neo cells with wtp53. We previously reported that the radiosensitivity, Caspase-3 activity and apoptosis frequency in SAS/neo cells were clearly high as compared with SAS/mp53 cells. In order to elucidate the expression of apoptosis-related genes after irradiation, we used cDNA array analysis. The expressions of apoptosis-inductive genes, such as DFF40, Caspase-3, Caspase-8, Caspase-9, Caspase-10 and CRADD, were increased by X-ray irradiation in SAS cells with wtp53, but not in SAS cells expressing mp53. These results suggest that the X-ray sensitivity of wtp53 cells may come from the expression of these apoptosis-related genes.
Collapse
Affiliation(s)
- Junichi Yasumoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Takahashi A, Kondo N, Inaba H, Uotani K, Kiyohara Y, Ohnishi K, Ohnishi T. Radiation-induced apoptosis in scid mice spleen after low dose irradiation. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2003; 31:1569-1573. [PMID: 12971412 DOI: 10.1016/s0273-1177(03)00093-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To assess the radioadaptive response of the whole body system in mice, we examined the temporal effect of low dose priming as an indicator of challenging irradiation-induced apoptosis through a p53 tumor suppressor protein- mediated signal transduction pathway. The p53 protein also plays an important role both in cell cycle control and DNA repair through cellular signal transduction. Using severe combined immunodeficiency mice defective in DNA-dependent protein kinase catalytic subunit, we examined the role of DNA-dependent protein kinase activity in radioadaptation induced by low dose irradiation. Specific pathogen free 5-week-old female severe combined immunodeficiency mice and the parental mice (CB- 17 Icr +/+) were irradiated with X-ray at 3.0 Gy at 1, 2, 3 or 4 weeks after the conditioning irradiation at 0.15, 0.30, 0.45 or 0.60 Gy. The mice spleens were fixed for immunohistochemistry 12 h after the challenging irradiation. The p53-dependent apoptosis related Bax proteins on formalin-fixed paraffin-embedded sections were stained by the avidin-biotin peroxidase complex method. The apoptosis incidence in the sections was measured by hematoxylin-eosin staining. The frequency of Bax- and apoptosis-positive cells increased up to 12 h after the challenging irradiation in the spleen of both mice. However, these cells were not observed after a low dose irradiation at 0.15-0.60 Gy. When pre-irradiation at 0.45 Gy 2 weeks before the challenging irradiation at 3.0 Gy was performed, Bax accumulation and apoptosis induced by challenging irradiation were depressed in the spleens of CB-17 Icr +/+ mice, but not in severe combined immunodeficiency mice. These data suggest that DNA-dependent protein kinase might play a major role in radioadaptation induced by pre-irradiation with a low dose in mice spleen. We expect that the present findings will provide useful information in the health care of space crews.
Collapse
Affiliation(s)
- A Takahashi
- Department of Biology, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Yasumoto JI, Takahashi A, Ohnishi K, Ohnishi T. The Role of p53 Molecule in Radiation and Hyperthermic Therapies. ACTA ACUST UNITED AC 2003. [DOI: 10.1248/jhs.49.273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jun-ichi Yasumoto
- Departments of Oral and Maxillofacial Surgery, Nara Medical University
| | | | - Ken Ohnishi
- Department of Biology, Nara Medical University
| | | |
Collapse
|
34
|
Masunaga SI, Ono K, Takahashi A, Ohnishi K, Ohnishi T, Suzuki M, Nagata K, Kinashi Y, Nagasawa H, Uto Y, Hori H. Usefulness of combined treatment with mild temperature hyperthermia and/or tirapazamine in the treatment of solid tumors: its independence of p53 status. Cancer Sci 2003; 94:125-33. [PMID: 12708486 PMCID: PMC11160248 DOI: 10.1111/j.1349-7006.2003.tb01363.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 11/07/2002] [Accepted: 11/13/2002] [Indexed: 01/10/2023] Open
Abstract
Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector as a control (SAS/neo) were inoculated subcutaneously into both hind legs of Balb/cA nude mice. Mice bearing the tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells in the tumors. The mice then received tirapazamine (TPZ) with or without mild temperature hyperthermia (40 degrees C, 60 min) (MTH), gamma-ray irradiation with or without MTH and/or TPZ, cisplatin (CDDP) with or without MTH and/or TPZ, or paclitaxel (TXL) with or without MTH and/or TPZ. After each treatment, the tumors were excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with a cytokinesis blocker (cytochalasin-B), and the micronucleus (MN) frequency in cells without BrdU labeling (i.e., quiescent (Q) cells) was determined by using immunofluorescence staining for BrdU. Meanwhile, 6 h after gamma-ray irradiation or 24 h after other cytotoxic treatments, tumor cell suspensions obtained in the same manner were used for determining the frequency of apoptosis in Q cells. The MN frequency and apoptosis frequency in total (P+Q) tumor cells were determined from the tumors that were not pretreated with BrdU. On the whole, gamma-ray irradiation and CDDP injection induced a higher frequency of apoptosis and lower frequency of MN in SAS/neo cells than SAS/mp53 cells. There were no apparent differences in the induced frequency of apoptosis and MN between SAS/neo and SAS/mp53 cells after TPZ or TXL treatment. MTH sensitized cells to TPZ-inducing cytotoxicity more markedly in SAS/mp53 and Q cells than in SAS/neo cells and total cells, respectively. In gamma-ray irradiation and CDDP treatment, the enhancement in combination with MTH and/or TPZ was more remarkable in SAS/mp53 cells and Q cells than in SAS/neo and total tumor cells, respectively. Also in the case of TXL treatment, the combination with MTH and/or TPZ induced a slightly greater enhancement effect in SAS/mp53 cells and Q cells. In view of the difficulty in controlling mutated p53 status tumors and intratumor Q cells, combination treatment with MTH and/or TPZ as a cooperative modality in cancer therapy is considered to have potential for controlling solid tumors as a whole.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Apoptosis/radiation effects
- Bromodeoxyuridine/analysis
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Carcinoma, Squamous Cell/therapy
- Cell Hypoxia
- Cisplatin/administration & dosage
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Combined Modality Therapy
- DNA Damage
- Gamma Rays
- Genes, p53
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Hyperthermia, Induced
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Micronucleus Tests
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/physiology
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Radiation-Sensitizing Agents/administration & dosage
- Radiation-Sensitizing Agents/pharmacology
- Radiation-Sensitizing Agents/therapeutic use
- Tirapazamine
- Triazines/administration & dosage
- Triazines/pharmacology
- Triazines/therapeutic use
- Tumor Cells, Cultured/transplantation
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/physiology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shin-ichiro Masunaga
- Radiation Oncology Research Laboratory, Research Reactor Institute, Kyoto University, Noda, Kumatori-cho, Sennan-gun, Osaka 590-0494.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Masunaga SI, Ono K, Takahashi A, Sakurai Y, Ohnishi K, Kobayashi T, Kinashi Y, Takagaki M, Ohnishi T. Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells. Jpn J Cancer Res 2002; 93:1366-77. [PMID: 12495477 PMCID: PMC5926926 DOI: 10.1111/j.1349-7006.2002.tb01246.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human head and neck squamous cell carcinoma cells transfected with mutant p53 (SAS/mp53) or with neo vector as a control (SAS/neo) were inoculated subcutaneously into both the hind legs of Balb/cA nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells in the tumors. After administration of sodium borocaptate-10B (BSH) or p-boronophenylalanine-10B (BPA), the tumors were irradiated with neutron beams. The tumors not treated with 10B-compound were irradiated with neutron beams or gamma-rays. The tumors were then excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (=quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 h after irradiation, tumor cell suspensions obtained in the same manner were used for determining the frequency of apoptosis in Q cells. The MN and apoptosis frequencies in total (P+Q) tumor cells were determined from the tumors that were not pretreated with BrdU. Without 10B-carriers, in both tumors, the relative biological effectiveness of neutrons was greater in Q cells than in total cells, and larger for low than high cadmium ratio neutrons. With 10B-carriers, the sensitivity was increased for each cell population, especially for total cells. BPA increased both frequencies for total cells more than BSH. Nevertheless, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. These sensitization patterns in combination with 10B-carriers were clearer in SAS/neo than in SAS/mp53 tumors. The p53 status of the tumor cells had the potential to affect the response to reactor neutron beam irradiation following 10B-carrier administration.
Collapse
Affiliation(s)
- Shin-ichiro Masunaga
- Radiation Oncology Research Laboratory, Research Reactor Institute, Kyoto University, Sennan-gun, Osaka 590-0494, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Masunaga S, Ono K, Takahashi A, Ohnishi T, Kinashi Y, Takagaki M. Radiobiological characteristics of solid tumours depending on the p53 status of the tumour cells, with emphasis on the response of intratumour quiescent cells. Eur J Cancer 2002; 38:718-27. [PMID: 11916556 DOI: 10.1016/s0959-8049(01)00430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mTP53) or with a neo vector as a control (SAS/neo) were inoculated subcutaneously (s.c.) into both hind legs of Balb/cA nude mice. Mice bearing tumours received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all proliferating (P) cells in the tumours. The mice then received gamma-ray irradiation. Another group of mice received a series of test doses of gamma-rays while alive or after tumour clamping to obtain hypoxic fractions (HFs) in the tumours. Right after irradiation, the tumour cells were isolated and incubated with a cytokinesis blocker. The micronucleus (MN) frequency in the cells without BrdU labelling (=quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 h after irradiation, tumour cell suspensions obtained in the same manner were used for determining the frequency of apoptosis in the Q cells. The MN frequency and apoptosis frequency in total (P+Q) tumour cells were determined from the tumours that were not pretreated with BrdU. In total cell populations, SAS/mTP53 cells were more radioresistant than SAS/neo cells in clonogenic survival. Q tumour cells exhibited a significantly lower apoptosis and MN frequency, probably due to their much larger HF, than total cells. In both total and Q cell fractions, SAS/mTP53 cells were less susceptible to apoptosis and more susceptible to micronucleation than SAS/neo cells. Obviously, TP53 status had the potential to influence the radiosensitivity of not only the total cells, but also the Q cells. However, irrespective of the TP53 status, significant differences in radiosensitivity between total and Q tumour cells were consistently observed. From the viewpoint of tumour control as a whole, including intratumour Q tumour cell control, a treatment modality for enhancing the Q cell response has to be considered.
Collapse
Affiliation(s)
- S Masunaga
- Radiation Oncology Research Laboratory, Research Reactor Institute, Kyoto University, Noda, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Takahashi A. Pre-irradiation at a low dose-rate blunted p53 response. JOURNAL OF RADIATION RESEARCH 2002; 43:1-9. [PMID: 12056325 DOI: 10.1269/jrr.43.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We investigated whether chronic irradiation at a low dose-rate interferes with the p53-centered signal transduction pathway induced by radiation in human cultured cells and C57BL/6N mice. In in vitro experiments, we found that a challenge with X-ray irradiation immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge alone in glioblastoma cells (A-172). In addition, the levels of p53-centered apoptosis and its related proteins after the challenge were strongly correlated with the above-mentioned phenomena in squamous cell carcinoma cells (SAS/neo). In in vivo experiments, the accumulation of p53 and Bax, and the induction of apoptosis were observed dose-dependently in mouse spleen at 12 h after a challenge with X-rays (3.0 Gy). However, we found significant suppression of p53 and Bax accumulation and the induction of apoptosis 12 h after challenge irradiation at 3.0 Gy with a high dose-rate following chronic pre-irradiation (1.5 Gy, 0.001 Gy/min). These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced signaling and/or p53 stability.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|