1
|
Drbalova J, Musilova P, Kubickova S, Sebestova H, Vahala J, Rubes J. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae. Cytogenet Genome Res 2015; 144:306-14. [PMID: 25765057 DOI: 10.1159/000377712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.
Collapse
Affiliation(s)
- Jitka Drbalova
- Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
2
|
Musilova P, Drbalova J, Kubickova S, Cernohorska H, Stepanova H, Rubes J. Illegitimate recombination between T cell receptor genes in humans and pigs (Sus scrofa domestica). Chromosome Res 2014; 22:483-93. [PMID: 25038896 DOI: 10.1007/s10577-014-9434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023]
Abstract
T cell receptor (TCR) genes (TRA/TRD, TRB and TRG) reside in three regions on human chromosomes (14q11.2, 7q34 and 7p14, respectively) and pig chromosomes (7q15.3-q21, 18q11.3-q12 and 9q21-22, respectively). During the maturation of T cells, TCR genes are rearranged by site-specific recombination. Occasionally, interlocus recombination of different TCR genes takes place, resulting in chromosome rearrangements. It has been suggested that the absolute number of these "innocent" trans-rearrangements correlates with the risk of lymphoma. The aims of this work were to assess the frequencies of rearrangements with breakpoints in TCR genes in domestic pig lymphocytes and to compare these with the frequencies of corresponding rearrangements in human lymphocytes by using fluorescence in situ hybridization with chromosome painting probes. We show that frequencies of trans-rearrangements involving TRA/TRD locus in pigs are significantly higher than the frequency of translocations with breakpoints in TRB and TRG genes in pigs and the frequencies of corresponding trans-rearrangements involving TRA/TRD locus in humans. Complex structure of the pig TRA/TRD locus with high number of potential V(D)J rearrangements compared to the human locus may account for the observed differences. Furthermore, we demonstrated that trans-rearrangements involving pig TRA/TRD locus occur at lower frequencies in γδ T cells than in αβ T lymphocytes. The decrease of the frequencies in γδ T cells is probably caused by the absence of TRA recombination during maturation of this T cell lineage. High numbers of innocent trans-rearrangements in pigs may indicate a higher risk of T-cell lymphoma than in humans.
Collapse
Affiliation(s)
- Petra Musilova
- Department of Genetics and Reproduction, Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic,
| | | | | | | | | | | |
Collapse
|
3
|
D'Arce LPG, Bassi CL, Fachin AL, Passos GAS, Sakamoto-Hojo ET. Occurrence of TRGV-BJ hybrid gene in SV40-transformed fibroblast cell lines. Genetica 2009; 136:471-8. [PMID: 19142737 DOI: 10.1007/s10709-008-9348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.
Collapse
Affiliation(s)
- L P G D'Arce
- Laboratório de Citogenética e Mutagênese, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006; 209:142-58. [PMID: 16448540 DOI: 10.1111/j.0105-2896.2006.00361.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune system is capable of recognizing and eliminating an enormous array of pathogens due to the extremely diverse antigen receptor repertoire of T and B lymphocytes. However, the development of lymphocytes bearing receptors with unique specificities requires the generation of programmed double strand breaks (DSBs) coupled with bursts of proliferation, rendering lymphocytes susceptible to mutations contributing to oncogenic transformation. Consequently, mechanisms responsible for monitoring global genomic integrity must be activated during lymphocyte development to limit the oncogenic potential of antigen receptor locus recombination. Mutations in ATM (ataxia-telangiectasia mutated), a kinase that coordinates DSB monitoring and the response to DNA damage, result in impaired T-cell development and predispose to T-cell leukemia. Here, we review recent evidence providing insight into the mechanisms by which ATM promotes normal lymphocyte development and protects from neoplastic transformation.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
5
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
6
|
Ballinger SW, Judice SA, Nicklas JA, Albertini RJ, O'Neill JP. DNA sequence analysis of interlocus recombination between the human T-cell receptor gamma variable (GV) and beta diversity-joining (BD/BJ) sequences on chromosome 7 (inversion 7). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 40:85-92. [PMID: 12203400 DOI: 10.1002/em.10099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
V(D)J recombinase-mediated recombination between the T-cell receptor (TCR) gamma variable (GV) genes at chromosome 7p15 and the TCR beta joining (BJ) genes at 7q35 leads to the formation of a hybrid TCR gene. These TCR gamma/beta interlocus rearrangements occur at classic V(D)J recombination signal sequences (RSS) and, because the loci are in an inverted orientation, result in inversion events that are detectable in the chromosome structure as inv(7)(p15;q35). Similar rearrangements involving oncogenes and either TCR or immunoglobulin genes mediated by the V(D)J recombinase are found in lymphoid malignancies. Oligonucleotide primers that allow polymerase chain reaction (PCR) amplification across the inv(7) genomic recombination junction sequence have been described. Southern blot analysis has been primarily used to confirm the GV/BJ hybrid nature of the product, with limited information on the DNA sequence of these recombinations. We have modified this PCR method using total genomic DNA from the mononuclear cells in peripheral blood samples to increase specificity and to allow direct sequencing of the translocation junction that results from the recombination between the GV1 and BJ1 families of TCR genes in 25 examples from 11 individuals (three adults, one child, six newborns, and one ataxia telangiectasia (AT) patient). We focused on samples from newborns based on previous studies indicating that the predominant hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutations in newborns are V(D)J recombinase-mediated deletion events and that the frequency of these mutations decreases with increasing age. Although the dilution series-based PCR assay utilized does not yield sharply defined quantitative endpoints, results of this study strongly suggest that inv(7) recombinations in newborns occur at equal or lower frequencies than those seen in adults. Consistent with the PCR primer pairs, all sequenced products contain a GV1 and a BJ1 segment and most also contain a BD1 segment. GV1s2 and 1s4 were the most frequently found GV1 genes (8 and 9 examples, respectively) and BJ1s5 and 1s6 were the most frequently found BJ1 genes (9 and 10 examples, respectively). These results demonstrate the effectiveness of this methodology for assessing GV/BJ interlocus rearrangements mediated by V(D)J recombinase.
Collapse
|
7
|
De Schouwer PJ, Dyer MJ, Brito-Babapulle VB, Matutes E, Catovsky D, Yuille MR. T-cell prolymphocytic leukaemia: antigen receptor gene rearrangement and a novel mode of MTCP1 B1 activation. Br J Haematol 2000; 110:831-8. [PMID: 11054065 DOI: 10.1046/j.1365-2141.2000.02256.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T-cell prolymphocytic leukaemia (T-PLL) is a sporadic, mature T-cell disorder in which there is usually an aberrant T-cell receptor alpha (TCRA) rearrangement that activates the TCL1 or MTCP1-B1 oncogenes. As mutations of the Ataxia Telangiectasia (A-T) gene, ATM, are frequent in T-PLL and as ATM seems to act as a tumour suppressor through a mechanism involving V(D)J recombination, we examined V(D)J recombination in T-PLL. Using Southern blotting and the polymerase chain reaction, two of 60 TCRG coding joints were abnormal. In all cases, both TCRD alleles were deleted, IGH was germline, and patterns of TCRB and TCRA rearrangement were normal. However, in a case harbouring t(X;7)(q28;q35), we identified TCRB segment J beta 2.7 juxtaposed to MTCP1 exon 1. This is the first time that TCRB has been implicated in MTCP1 B1 activation. The structure of the breakpoint supports a model in which translocation activates a cryptic MTCP1 promoter. This analysis of V(D)J recombination is consistent with it being a variable that is independent of ATM in T-PLL.
Collapse
Affiliation(s)
- P J De Schouwer
- Academic Department of Haematology and Cytogenetics, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | |
Collapse
|
8
|
Meydan D, Nilsson T, Törnblom M, Hagmar L, Hellgren D, Fuscoe JC, Lambert B. The frequency of illegitimate TCRbeta/gamma gene recombination in human lymphocytes: influence of age, environmental exposure and cytostatic treatment, and correlation with frequencies of t(14;18) and hprt mutation. Mutat Res 1999; 444:393-403. [PMID: 10521679 DOI: 10.1016/s1383-5718(99)00110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromosome translocations in lymphoid malignancies often involve V(D)J recombinase mediated events giving rise to aberrant T-cell receptor (TCR) and immunoglobulin genes, which have been suggested to be useful as markers of genomic instability, genotoxic exposure and cancer risk. Illegitimate rearrangements involving the TCRbeta/gamma loci on chromosome 7 create TCRbeta/gamma hybrid genes which occur at low frequency in peripheral blood lymphocytes (PBLs) of normal healthy individuals. To evaluate the utility of this marker, we studied the possible effects of age and genotoxic exposures on the TCRbeta/gamma gene variant frequency (VF), and compared the frequencies of hypoxanthine guanine phosphoribosyl transferase (hprt) mutation, hprt exon 2/3 deletion, t(14;18) and TCRbeta/gamma gene rearrangements in cells from the same donors. The TCRbeta/gamma VF ranged five-fold among 16 middle aged blood donors with a mean of 0.74+/-0.29/10(5) PBLs, which is consistent with our previous estimate in healthy subjects. The TCRbeta/gamma VF was found to increase from birth until early adult life, and then to decrease with increasing age. Four testis cancer patients, who 6 years earlier had been treated with etoposide and other cytostatic drugs, showed TCRbeta/gamma VF similar to that in healthy controls. No increase of the TCRbeta/gamma VF was found among non-smoking PAH-exposed aluminum smelter workers compared to non-smoking controls. Smoking smelter workers showed decreased TCRbeta/gamma VF compared to non-smoking workers and controls, but in a follow-up study 2 years later the difference was no longer statistically significant, although the smoking smelter workers still showed a lower TCRbeta/gamma VF than the controls. No correlation was obtained between the TCRbeta/gamma VF and the t(14;18) or hprt mutant frequency (MF) in a group of healthy individuals. However, there was a statistically significant correlation between the TCRbeta/gamma VF and the hprt exon 2/3 deletion frequency in PBL DNA from the same donors. These results show that the TCRbeta/gamma VF in healthy individuals changes with age and correlates with the frequency of hprt exon 2/3 deletion, another marker of aberrant V(D)J recombination in T-cells. However, no effect of smoking or present or previous exposure to genotoxic agents on TCRbeta/gamma VF was observed in this study. Thus, further studies are needed to prove the utility of TCRbeta/gamma gene rearrangement as a marker of genotoxic exposure.
Collapse
Affiliation(s)
- D Meydan
- Department of Biosciences, Environmental Medicine Unit, CNT, Novum, The Karolinska Institute, SE-141 57, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The autosomal recessive genetic disorder, Nijmegen Breakage Syndrome, is characterised by an excessively high risk for the development of lymphatic tumours and an extreme sensitivity towards ionising radiation. The most likely explanation for these characteristics, a deficiency in the repair of DNA lesions, has been greatly substantiated by the recent cloning of the gene mutated in Nijmegen Breakage Syndrome patients and the analysis of its protein product, nibrin. The direct involvement of this protein in the processing of DNA double strand breaks caused by ionising radiation and those also necessary for normal DNA metabolism can be correlated with many of the cellular and clinical aspects of the disease, including the cancer predisposition of patients and their heterozygous relatives.
Collapse
Affiliation(s)
- M Digweed
- Institut für Humangenetik, Charité-Campus Virchow Klinikum, Humboldt Universität zu Berlin, Berlin, Germany.
| | | | | |
Collapse
|
10
|
Rathbun GA, Ziv Y, Lai JH, Hill D, Abraham RH, Shiloh Y, Cantley LC. ATM and lymphoid malignancies; use of oriented peptide libraries to identify novel substrates of ATM critical in downstream signaling pathways. Curr Top Microbiol Immunol 1999; 246:267-73; discussion 274. [PMID: 10396065 DOI: 10.1007/978-3-642-60162-0_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- G A Rathbun
- Center for Blood Research, Harvard Medical School, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This review aims at providing a general understanding of how the multiple cytogenetic aberrations in cancer cells arise and exemplifies this by considering the specific role of chromosome 11q loci in carcinogenesis. Section I provides a theoretical molecular and structural framework for understanding the cytogenetic aberrations described in cancer. Given this background, Section II describes advances in the identification and localization of cancer susceptibility genes on chromosome 11q, highlighting ongoing areas of investigation.
Collapse
Affiliation(s)
- J Koreth
- University of Oxford, Nuffield Department of Pathology and Bacteriology, John Radcliffe Hospital, Headington, U.K
| | | | | |
Collapse
|
12
|
Yamada Y, Inoue R, Fukao T, Kaneko H, Isogai K, Fukuda S, Shimozawa N, Suzuki Y, Kondo N, Azuma E, Sakurai M. Ataxia telangiectasia associated with B-cell lymphoma: the effect of a half-dose of the drugs administered according to the acute lymphoblastic leukemia standard risk protocol. Pediatr Hematol Oncol 1998; 15:425-9. [PMID: 9783309 DOI: 10.3109/08880019809016571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, and variable degrees of humoral and cellular immunodeficiency. Affected individuals are known to exhibit a high incidence of lymphoma and leukemia. Because of increased chemosensitivity, the treatment of A-T patients with malignancies requires extremely careful planning and caution with respect to the use of chemotherapy. The authors report on a 12-year-old boy with A-T who developed B-cell lymphoma. He received a half-dose of the drugs administered according to the acute lymphoblastic leukemia (ALL) protocol issued by our children's cancer study group (9104 Standard Risk Protocol, Tokai Pediatric Oncology Study Group). As a result, he continues to be in complete remission and free of treatment complications 32 months after the diagnosis of B-cell lymphoma.
Collapse
Affiliation(s)
- Y Yamada
- Department of Pediatrics, Gifu University, School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Gene mutations provide valuable clues to cellular metabolism. In humans such insights come mainly from genetic disorders. Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are two distinct but closely related, single gene disorders that highlight a complex junction of several signal transduction pathways. These pathways appear to control defense mechanisms against specific types of damage to cellular macromolecules, and probably regulate the processing of certain types of DNA damage or normal intermediates of DNA metabolism. A-T is characterized primarily by cerebellar degeneration, immunodeficiency, genome instability, clinical radiosensitivity, and cancer predisposition. NBS shares all these features except cerebellar deterioration. The cellular phenotypes of A-T and NBS are almost indistinguishable, however, and include chromosomal instability, radiosensitivity, and defects in cell cycle checkpoints normally induced by ionizing radiation. The recent identification of the gene responsible for A-T, ATM, has revealed its product to be a large, constitutively expressed phosphoprotein with a carboxy-terminal region similar to the catalytic domain of phosphatidylinositol 3-kinases (PI 3-kinases). ATM is a member of a family of proteins identified in various organisms, which share the PI 3-kinase domain and are involved in regulation of cell cycle progression and response to genotoxic agents. Some of these proteins, most notably the DNA-dependent protein kinase, have an associated protein kinase activity, and preliminary data indicate this activity in ATM as well. Mutations in A-T patients are null alleles that truncate or destabilize the ATM protein. Atm-deficient mice recapitulate the human phenotype with slower nervous-system degeneration. Two ATM interactors, c-Abl and p53, underscore its role in cellular responses to genotoxic stress. The complexity of ATM's structure and mode of action make it a paradigm of multifaceted signal transduction proteins involved in many physiological pathways via multiple protein-protein interactions. The as yet unknown NBS protein may be a component in an ATM-based complex, with a key role in sensing and processing specific DNA damage or intermediates and signaling their presence to the cell cycle machinery.
Collapse
Affiliation(s)
- Y Shiloh
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
14
|
Affiliation(s)
- G Bebb
- Department of Advanced Therapeutics, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | |
Collapse
|
15
|
Shpilberg O, Dorman JS, Shahar A, Kuller LH. Molecular epidemiology of hematological neoplasms--present status and future directions. Leuk Res 1997; 21:265-84. [PMID: 9150344 DOI: 10.1016/s0145-2126(96)00093-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The field of molecular epidemiology, using modern epidemiological approaches and taking the advantage of the advances in molecular biology can provide new tools for the exploration of etiological determinants, either environmental or hereditary, in the development of hematological neoplasms. It is now possible to identify some host susceptibility characteristics, to measure the effective dose of exposure, and to identify early, pre-clinical biological effects, using sensitive and specific biomarkers. The significant variation in the incidence of hematological neoplasms in different geographical areas, races, and age groups, the high rates of familial aggregation in certain populations, the involvement of protooncogenes and tumor suppressor genes in the development of hematological neoplasms, as well as of many environmental agents such as chemicals, radiation, and viruses, support the important role of molecular epidemiology in the investigation of the development of hematological neoplasms.
Collapse
Affiliation(s)
- O Shpilberg
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, USA
| | | | | | | |
Collapse
|
16
|
Meydan D, Lambert B, Hellgren D. Frequency and cell specificity of T-cell receptor interlocus recombination in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 30:245-253. [PMID: 9366901 DOI: 10.1002/(sici)1098-2280(1997)30:3<245::aid-em1>3.0.co;2-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Immunoglobulin and T-cell receptor (TCR) genes are assembled by a site-specific rearrangement known as V(D)J [variable-(diversity)-joining] recombination. These rearrangements occur normally in pre-B- and pre-T-cells using signal sequences adjacent to coding exons for immunoglobulin and TCR genes, respectively. However, aberrant recombination may result in the generation of hybrid TCR genes by joining of TCR-beta with TCR-gamma specific sequences. Such hybrid TCR genes occur at a low frequency in peripheral blood lymphocytes (PBL) of healthy individuals, and can be detected by PCR amplification. We have determined the in vivo frequency of hybrid V gamma-J beta 1 TCR (hybrid TCR) genes in lymphocyte DNA from 12 healthy individuals. The average frequency was found to be 5.83 in 0.75 x 10(6) PBL, with a threefold difference between the highest and lowest individual value. The presence of similar TCR gene rearrangements in individual samples suggests that T-cells with a hybrid TCR gene are capable of clonal expansion in vivo. The individual hybrid TCR gene frequency remained relatively constant during 72 hours of in vitro cultivation. In long-term culture, the frequency gradually decreased, and after 28 days no hybrid TCR genes were detectable in lymphocyte DNA. These results show that T-cells with a hybrid TCR gene are able to respond to mitogen stimulation in vitro, and may have a proliferative disadvantage or are selected against during prolonged in vitro cultivation. No hybrid TCR genes were detected in ten proliferating T-cell clones, indicating that the rate of hybrid TCR gene formation is < 2.0 x 10(-8) per cell per cell division. No hybrid TCR genes were detected in DNA from B-lymphocytes, sperm, granulocytes, fibroblasts, keratinocytes, and three B-lymphoblastoid ataxia telangiectasia cell lines. In agreement with previous reports, the frequency of hybrid TCR genes in peripheral blood DNA from two ataxia telangiectasia patients was found to be more than 15-fold higher than in lymphocytes from normal individuals. These data show that formation of hybrid TCR genes is restricted to T-cells in vivo, and occurs at a very low frequency, if at all, in proliferating T-cells in vitro, and with an increased frequency in patients with ataxia telangiectasia.
Collapse
Affiliation(s)
- D Meydan
- Karolinska Institute, Department of Biosciences, Huddinge, Sweden
| | | | | |
Collapse
|
17
|
Abstract
The autosomal recessive human disorder ataxia-telangiectasia (A-T) was first described as a separate disease entity 40 years ago. It is a multisystem disease characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, radiosensitivity, predisposition to lymphoid malignancies and immunodeficiency, with defects in both cellular and humoral immunity. The pleiotropic nature of the clinical and cellular phenotype suggests that the gene product involved is important in maintaining stability of the genome but also plays a more general role in signal transduction. The chromosomal instability and radiosensitivity so characteristic of this disease appear to be related to defective activation of cell cycle checkpoints. Greater insight into the nature of the defect in A-T has been provided by the recent identification, by positional cloning, of the responsible gene, ATM. The ATM gene is related to a family of genes involved in cellular responses to DNA damage and/or cell cycle control. These genes encode large proteins containing a phosphatidylinositol 3-kinase domain, some of which have protein kinase activity. The mutations causing A-T completely inactivate or eliminate the ATM protein. This protein has been detected and localized to different subcellular compartments.
Collapse
Affiliation(s)
- M F Lavin
- Queensland Institute of Medical Research, Bancroft Centre, PO Royal Brisbane Hospital, Herston, Australia
| | | |
Collapse
|
18
|
Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J, Leder P. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A 1996; 93:13084-9. [PMID: 8917548 PMCID: PMC24050 DOI: 10.1073/pnas.93.23.13084] [Citation(s) in RCA: 399] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have generated a mouse model for ataxia-telangiectasia by using gene targeting to generate mice that do not express the Atm protein. Atm-deficient mice are retarded in growth, do not produce mature sperm, and exhibit severe defects in T cell maturation while going on to develop thymomas. Atm-deficient fibroblasts grow poorly in culture and display a high level of double-stranded chromosome breaks. Atm-deficient thymocytes undergo spontaneous apoptosis in vitro significantly more than controls. Atm-deficient mice then exhibit many of the same symptoms found in ataxia-telangiectasia patients and in cells derived from them. Furthermore, we demonstrate that the Atm protein exists as two discrete molecular species, and that loss of one or of both of these can lead to the development of the disease.
Collapse
Affiliation(s)
- A Elson
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Shiloh Y, Rotman G. Ataxia-telangiectasia and the ATM gene: linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J Clin Immunol 1996; 16:254-60. [PMID: 8886993 DOI: 10.1007/bf01541389] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Defects in regulation of the cellular life cycle may lead to premature cellular death or malignant transformation. Most of the proteins known to be involved in these processes are mediators of mitogenic signals or components of the cell cycle machinery. It has recently become evident, however, that systems responsible for ensuring genome stability and integrity are no less important in maintaining the normal life cycle of the cell. These systems include DNA repair enzymes and a recently emerging group of proteins that alert growth regulating mechanisms to the presence of DNA damage. These signals slow down the cell cycle while DNA repair ensues. Ataxia telangiectasia (A-T) is a genetic disorder whose clinical and cellular phenotype points to a defect in such a signaling system. A-T is characterized by neurodegeneration, immunodeficiency, radiosensitivity, cancer predisposition, and defective cell cycle checkpoints. The responsible gene, ATM, was recently cloned and sequenced. ATM encodes a large protein with a region highly similar to the catalytic domain of PI 3-kinases. The ATM protein is similar to a group of proteins in various organisms which are directly involved in the cell cycle response to DNA damage. It is expected to be part of a protein complex that responds to a specific type of DNA strand break by conveying a regulatory signal to other proteins. Interestingly, the immune and nervous systems, which differ markedly in their proliferation rates, are particularly sensitive to the absence of ATM function. The identification of the ATM gene highlights the growing importance of signal transduction initiated in the nucleus rather than in the external environment, for normal cellular growth.
Collapse
Affiliation(s)
- Y Shiloh
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
20
|
Kaneko H, Inoue R, Yamada Y, Kasahara K, Takami T, Kondo N. Ataxia telangiectasia syndrome with B cell lymphoma. Clin Genet 1996; 49:331-2. [PMID: 8884089 DOI: 10.1111/j.1399-0004.1996.tb03803.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Lohrer HD. Regulation of the cell cycle following DNA damage in normal and Ataxia telangiectasia cells. EXPERIENTIA 1996; 52:316-28. [PMID: 8620934 DOI: 10.1007/bf01919534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A proportion of the population is exposed to acute doses of ionizing radiation through medical treatment or occupational accidents, with little knowledge of the immediate effects. At the cellular level, ionizing radiation leads to the activation of a genetic program which enables the cell to increase its chances of survival and to minimize detrimental manifestations of radiation damage. Cytotoxic stress due to ionizing radiation causes genetic instability, alterations in the cell cycle, apoptosis, or necrosis. Alterations in the G1, S and G2 phases of the cell cycle coincide with improved survival and genome stability. The main cellular factors which are activated by DNA damage and interfere with the cell cycle controls are: p53, delaying the transition through the G1-S boundary; p21WAF1/CIP1, preventing the entrance into S-phase; proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), blocking DNA replication; and the p53 variant protein p53 as together with the retinoblastoma protein (Rb), with less defined functions during the G2 phase of the cell cycle. By comparing a variety of radioresistant cell lines derived from radiosensitive ataxia telangiectasia cells with the parental cells, some essential mechanisms that allow cells to gain radioresistance have been identified. The results so far emphasise the importance of an adequate delay in the transition from G2 to M and the inhibition of DNA replication in the regulation of the cell cycle after exposure to ionizing radiation.
Collapse
Affiliation(s)
- H D Lohrer
- Gray Laboratory, Mount Vernon Hospital, Northwood, United Kingdom
| |
Collapse
|
22
|
Affiliation(s)
- C T Keith
- Howard Hughes Medical Institute, Department of Chemistry, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
23
|
Enoch T, Norbury C. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 1995; 20:426-30. [PMID: 8533157 DOI: 10.1016/s0968-0004(00)89093-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
'Checkpoint' controls arrest the cell cycle after DNA damage, allowing repair to take place before mutations can be perpetuated. In multicellular organisms, DNA damage can also induce apoptotic cell death, protecting the organism at the expense of the individual cell. How does a cell 'choose' between cycle arrest and death? Analysis of two human tumour suppressor proteins, p53 and the ATM (ataxia-telangiectasia mutated) gene product, may provide some answers.
Collapse
Affiliation(s)
- T Enoch
- Harvard Medical School, Department of Genetics, Boston, MA 02115, USA
| | | |
Collapse
|