1
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Nagashima H, Hayashi Y, Tanimoto S, Sakamoto Y, Tauchi H. DOSE AND DOSE-RATE DEPENDENCE OF DSB-TYPE MUTANTS INDUCED BY X-RAYS OR TRITIUM BETA-RAYS: AN APPROACH USING A HYPERSENSITIVE SYSTEM. RADIATION PROTECTION DOSIMETRY 2022; 198:1009-1013. [PMID: 36083726 DOI: 10.1093/rpd/ncac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/26/2021] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
To evaluate biological effects triggered by low levels of radiation, we established a uniquely sensitive experimental system to detect somatic mutations. By using the system, we found that mutant frequencies induced by X-rays were statistically significant at doses over 0.15 Gy, and a linear dose relationship with the mutant frequency was observed at doses over 0.15 Gy. The mutation spectra analysis revealed that mutation events generated by X-ray doses below 0.1 Gy were similar to those observed in unirradiated controls. In addition, a significant inflection point for both, the mutant frequency and the mutation spectra, was found at dose-rates around 11 mGy/day when cells were cultured in medium containing tritiated water. Because induced radiation-type events presented a clear dose/dose-rate dependency above the critical dose or the inflection point, these observations suggest that mutation events generated by radiation could change at a threshold dose-rate or a critical dose.
Collapse
Affiliation(s)
- Haruki Nagashima
- Department of Biological Sciences, Ibaraki University, Ibaraki 310-8512, Japan
- Institute of Environmental Sciences, Aomori 039-3213, Japan
| | - Yuki Hayashi
- Department of Biological Sciences, Ibaraki University, Ibaraki 310-8512, Japan
| | - Saki Tanimoto
- Department of Biological Sciences, Ibaraki University, Ibaraki 310-8512, Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Ibaraki University, Ibaraki 310-8512, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Ibaraki 310-8512, Japan
| |
Collapse
|
3
|
Tanooka H. Radiation cancer risk at different dose rates: new dose-rate effectiveness factors derived from revised A-bomb radiation dosimetry data and non-tumor doses. JOURNAL OF RADIATION RESEARCH 2022; 63:1-7. [PMID: 34927198 PMCID: PMC8776691 DOI: 10.1093/jrr/rrab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Indexed: 06/14/2023]
Abstract
The dose rate of atomic bomb (A-bomb) radiation to the survivors has still remained unclear, although the dose-response data of A-bomb cancers has been taken as a standard in estimating the cancer risk of radiation and the dose and dose-rate effectiveness factor (DDREF). Since the applicability of the currently used DDREF of 2 derived from A-bomb data is limited in a narrow dose-rate range, 0.25-75 Gy/min as estimated from analysis of DS86 dosimetry data in the present study, a non-tumor dose (Dnt) was applied in an attempt to gain a more universal dose-rate effectiveness factor (DREF), where Dnt is an empirical parameter defined as the highest dose at which no statistically significant tumor increase is observed above the control level and its magnitude depends on the dose rate. The new DREF values were expressed as a function of the dose rate at four exposure categories, i.e. partial body low LET, whole body low linear energy transfer (LET), partial body high LET and whole body high LET and provided a value of 14 for environmental level radiation at a dose rate of 10-9 Gy/min for whole body low LET.
Collapse
Affiliation(s)
- Hiroshi Tanooka
- Corresponding author. National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Tel. +81-3-3542-2511, Ext. 3224; Fax. +81-3-3542-0623; E-mail address:
| |
Collapse
|
4
|
Nagashima H, Hayashi Y, Sakamoto Y, Komatsu K, Tauchi H. Induction of somatic mutations by low concentrations of tritiated water (HTO): evidence for the possible existence of a dose-rate threshold. JOURNAL OF RADIATION RESEARCH 2021; 62:582-589. [PMID: 33899106 PMCID: PMC8273808 DOI: 10.1093/jrr/rrab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Indexed: 05/09/2023]
Abstract
Tritium is a low energy beta emitter and is discharged into the aquatic environment primarily in the form of tritiated water (HTO) from nuclear power plants or from nuclear fuel reprocessing plants. Although the biological effects of HTO exposures at significant doses or dose rates have been extensively studied, there are few reports concerning the biological effects of HTO exposures at very low dose rates. In the present study using a hyper-sensitive assay system, we investigated the dose rate effect of HTO on the induction of mutations. Confluent cell populations were exposed to HTO for a total dose of 0.2 Gy at dose rates between 4.9 mGy/day and 192 mGy/day by incubating cells in medium containing HTO. HTO-induced mutant frequencies and mutation spectra were then investigated. A significant inflection point for both the mutant frequency and mutation spectra was found between 11 mGy/day and 21.6 mGy/day. Mutation spectra analysis revealed that a mechanistic change in the nature of the mutation events occurred around 11 mGy/day. The present observations and published experimental results from oral administrations of HTO to mice suggest that a threshold dose-rate for HTO exposures might exist between 11 mGy/day and 21.6 mGy/day where the nature of the mutation events induced by HTO becomes similar to those seen in spontaneous events.
Collapse
Affiliation(s)
- Haruki Nagashima
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Yuki Hayashi
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-Konoe Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
- Corresponding author. Hiroshi Tauchi, Ph.D. Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan. Phone +81-29-228-8383, Fax +81-29-228-8403,
| |
Collapse
|
5
|
Matsumoto H, Shimada Y, Nakamura AJ, Usami N, Ojima M, Kakinuma S, Shimada M, Sunaoshi M, Hirayama R, Tauchi H. Health effects triggered by tritium: how do we get public understanding based on scientifically supported evidence? JOURNAL OF RADIATION RESEARCH 2021; 62:557-563. [PMID: 33912931 PMCID: PMC8273802 DOI: 10.1093/jrr/rrab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The Commission for 'Corresponding to Radiation Disaster of the Japanese Radiation Research Society' formulated a description of potential health effects triggered by tritium. This was in response to the issue of discharging water containing tritium filtered by the Advanced Liquid Processing System (ALPS), generated and stored in Fukushima Daiichi Nuclear Power Station after the accident. In this review article, the contents of the description, originally provided in Japanese, which gives clear and detailed explanation about potential health effects triggered by tritium based on reliable scientific evidence in an understandable way for the public, were summarized. Then, additional information about biochemical or environmental behavior of organically bound tritium (OBT) were summarized in order to help scientists who communicate with general public.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Experimental Radiology and Health Physics, University of Fukui School of Medical Sciences, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Yoshiya Shimada
- Institute for Environmental Sciences, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Noriko Usami
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Mitsuaki Ojima
- Department of Environmental Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Oookayaka, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Hiroshi Tauchi
- Corresponding author. Hiroshi Tauchi, Ph.D., Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan. Phone +81-29-228-8383 / Fax +81-29-228-8403;
| |
Collapse
|
6
|
Hto, Tritiated Amino Acid Exposure and External Exposure Induce Differential Effects on Hematopoiesis and Iron Metabolism. Sci Rep 2019; 9:19919. [PMID: 31882739 PMCID: PMC6934712 DOI: 10.1038/s41598-019-56453-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023] Open
Abstract
The increased potential for tritium releases from either nuclear reactors or from new facilities raises questions about the appropriateness of the current ICRP and WHO recommendations for tritium exposures to human populations. To study the potential toxicity of tritium as a function of dose, including at a regulatory level, mice were chronically exposed to tritium in drinking water at one of three concentrations, 10 kBq.l−1, 1 MBq.l−1 or 20 MBq.l−1. Tritium was administered as either HTO or as tritiated non-essential amino acids (TAA). After one month’s exposure, a dose-dependent decrease in red blood cells (RBC) and iron deprivation was seen in all TAA exposed groups, but not in the HTO exposed groups. After eight months of exposure this RBC decrease was compensated by an increase in mean globular volume - suggesting the occurrence of an iron deficit-associated anemia. The analysis of hematopoiesis, of red blood cell retention in the spleen and of iron metabolism in the liver, the kidneys and the intestine suggested that the iron deficit was due to a decrease in iron absorption from the intestine. In contrast, mice exposed to external gamma irradiation at equivalent dose rates did not show any change in red blood cell numbers, white blood cell numbers or in the plasma iron concentration. These results showed that health effects only appeared following chronic exposure to concentrations of tritium above regulatory levels and the effects seen were dependent upon the speciation of tritium.
Collapse
|
7
|
The low dose effects of human mammary epithelial cells induced by internal exposure to low radioactive tritiated water. Toxicol In Vitro 2019; 61:104608. [PMID: 31348984 DOI: 10.1016/j.tiv.2019.104608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/16/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Tritium is an important radioactive waste which needs to be monitored for radiation protection. Due to long biological half-life of organically bound tritium (OBT), the adverse consequence caused by chronic exposure of tritiated water (HTO) attracts concern. In this study, fibroblast cells were exposed to 2 × 106 Bq/ml HTO to investigate the cellular behaviors. The dose relationship of survival fraction and γH2AX foci was a "U-shaped" curve. And the results of γH2AX intensity produced by ICCM, which was obtained from different doses, demonstrated bystander signal accounted for the protective effects induced by intermediate dose of 100 mGy. The comparison of temporal kinetics and spatial dynamics of DNA repair between tritium β-rays and γ-rays showed longer time was need for the dephosphorylation of H2AX protein after HTO exposure. It indicated complex cluster DSBs induced by tritium β-rays at the low dose impaired efficient recovery of DNA damage, which bear responsibility for the persistence of residual foci after low dose expsoure. It suggests after exposed to low dose radiation cells prefer to eliminate damage population to avoid DNA damage increasing the mutation potential.
Collapse
|
8
|
Nowosielska EM, Cheda A, Zdanowski R, Lewicki S, Scott BR, Janiak MK. Effect of internal contamination with tritiated water on the neoplastic colonies in the lungs, innate anti-tumour reactions, cytokine profile, and haematopoietic system in radioresistant and radiosensitive mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:251-264. [PMID: 29626227 PMCID: PMC6060768 DOI: 10.1007/s00411-018-0739-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 05/14/2023]
Abstract
Tritium is a potentially significant source of internal radiation exposure which, at high levels, can be carcinogenic. We evaluated whether single intraperitoneal injection of BALB/c and C57BL/6 mice with tritiated water (HTO) leading to exposure to low (0.01 or 0.1 Gy) and intermediate (1.0 Gy) cumulative whole-body doses of β radiation is immunosuppressive, as judged by enhancement of artificial tumour metastases, functioning of NK lymphocytes and macrophages, circulating cytokine's levels, and numbers of bone marrow, spleen, and peripheral blood cells. We demonstrate that internal contamination of radiosensitive BALB/c and radioresistant C57BL/6 mice with HTO at all the absorbed doses tested did not affect the development of neoplastic colonies in the lungs caused by intravenous injection of syngeneic cancer cells. However, internal exposure of BALB/c and C57BL/6 mice to 0.1 and 0.01 Gy of β radiation, respectively, up-regulated cytotoxic activity of and IFN-γ synthesis in NK lymphocytes and boosted macrophage secretion of nitric oxide. Internal contamination with HTO did not affect the serum levels of pro- (IL-1β, IL-2, IL-6, TNF-α,) and anti-inflammatory (IL-1Ra, IL-4, IL-10) cytokines. In addition, exposure of mice of both strains to low and intermediate doses from the tritium-emitted β-particles did not result in any significant changes in the numbers of bone marrow, spleen, and peripheral blood cells. Overall, our data indicate that internal tritium contamination of both radiosensitive and radioresistant mice leading to low and intermediate absorbed β-radiation doses is not immunosuppressive but may enhance some but not all components of anticancer immunity.
Collapse
Affiliation(s)
- Ewa M Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland.
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Bobby R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, 87108, NM, USA
| | - Marek K Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| |
Collapse
|
9
|
Nagashima H, Shiraishi K, Ohkawa S, Sakamoto Y, Komatsu K, Matsuura S, Tachibana A, Tauchi H. Induction of somatic mutations by low-dose X-rays: the challenge in recognizing radiation-induced events. JOURNAL OF RADIATION RESEARCH 2018; 59:ii11-ii17. [PMID: 29053826 PMCID: PMC5941164 DOI: 10.1093/jrr/rrx053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/21/2017] [Indexed: 05/24/2023]
Abstract
It is difficult to distinguish radiation-induced events from spontaneous events during induction of stochastic effects, especially in the case of low-dose or low-dose-rate exposures. By using a hypersensitive system for detecting somatic mutations at the HPRT1 locus, we investigated the frequency and spectrum of mutations induced by low-dose X-rays. The mutant frequencies induced by doses of >0.15 Gy were statistically significant when compared with the spontaneous frequency, and a clear dose dependency was also observed for mutant frequencies at doses of >0.15 Gy. In contrast, mutant frequencies at doses of <0.1 Gy occurred at non-significant levels. The mutation spectrum in HPRT-deficient mutants revealed that the type of mutations induced by low-dose exposures was similar to that seen in spontaneous mutants. An apparent change in mutation type was observed for mutants induced by doses of >0.2 Gy. Our observations suggest that there could be a critical dose for mutation induction at between 0.1 Gy and 0.2 Gy, where mutagenic events are induced by multiple DNA double-strand breaks (DSBs). These observations also suggest that low-dose radiation delivered at doses of <0.1 Gy may not result in DSB-induced mutations but may enhance spontaneous mutagenesis events.
Collapse
Affiliation(s)
- Haruki Nagashima
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Kumiko Shiraishi
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Saori Ohkawa
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-Konoe Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Matsuura
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 Japan
| | - Akira Tachibana
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 Japan
| |
Collapse
|
10
|
|
11
|
Taylor K, Lemon JA, Phan N, Boreham DR. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice. Mutagenesis 2014; 29:289-94. [PMID: 24870563 DOI: 10.1093/mutage/geu017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[(18)F] fluoro-2-deoxy-d-glucose ((18)F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modification of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy (18)F-FDG, 4 Gy γ-rays, 10 mGy (18)F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from (18)F-FDG, with respect to malignancy, is approximately 1. However; when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.
Collapse
Affiliation(s)
- Kristina Taylor
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada and Department of Nuclear Medicine, McMaster University Medical Centre, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Jennifer A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada and
| | - Nghi Phan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada and
| | - Douglas R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada and
| |
Collapse
|
12
|
Pasternack JB, Howell RW. RadNuc: a graphical user interface to deliver dose rate patterns encountered in nuclear medicine with a 137Cs irradiator. Nucl Med Biol 2013; 40:304-11. [PMID: 23265668 PMCID: PMC3840905 DOI: 10.1016/j.nucmedbio.2012.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. METHODS Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. RESULTS The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. CONCLUSION The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides.
Collapse
Affiliation(s)
- Jordan B Pasternack
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, University of Medicine & Dentistry of New Jersey, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
13
|
Sanders CL. Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiations. Dose Response 2012; 10:610-25. [PMID: 23304108 DOI: 10.2203/dose-response.12-017.sanders] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10-450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans.
Collapse
Affiliation(s)
- Charles L Sanders
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and 2030 New Hampshire Street, Loveland, CO 80538
| |
Collapse
|
14
|
|
15
|
Tauchi H, Imamura H, Inoue M, Komatsu K, Tachibana A. Assessment of Biological Effect of Tritiated Water by Using Hypersensitive System. FUSION SCIENCE AND TECHNOLOGY 2011. [DOI: 10.13182/fst11-a12624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito-City, IBARAKI 310-8512 Japan
| | - Hiroto Imamura
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito-City, IBARAKI 310-8512 Japan
| | - Masanao Inoue
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito-City, IBARAKI 310-8512 Japan
| | - Kenshi Komatsu
- Radiation Biology Center, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto-City, KYOTO 606-8501 Japan
| | - Akira Tachibana
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito-City, IBARAKI 310-8512 Japan
| |
Collapse
|
16
|
Vares G, Uehara Y, Ono T, Nakajima T, Wang B, Taki K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M. Transcription factor-recognition sequences potentially involved in modulation of gene expression after exposure to low-dose-rate γ-rays in the mouse liver. JOURNAL OF RADIATION RESEARCH 2011; 52:249-256. [PMID: 21343681 DOI: 10.1269/jrr.10110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In vivo modulation of gene expression profiles after low-dose and low-dose-rate irradiation has been observed in a variety of experimental systems. However, few studies actually investigated the underlying mechanisms for these genetic responses. In this study, we used pre-existing microarray data and searched for gene modulations in response to long-term, low-dose-rate irradiation. Nucleotide sequences in the neighboring region of the up-regulated, down-regulated, and unaffected genes were retrieved from the Entrez Gene database, and recognition sequences for transcription factors (TFs) were searched using the TFSEARCH database. As a result, we suggested 21 potential TF-binding sites with significantly different incidence between the three gene groups (up-regulated, down-regulated and unaffected gene groups). The binding sites for sterol regulatory element-binding protein 1 (SREBP-1), aryl hydrocarbon receptor (AhR/Ar) and olfactory 1 (Olf-1) were suggested to be involved in up-regulation, while the binding sites for glucocorticoid receptor (GR(GGTACAANNT GTYCTK) ) and hepatocyte nuclear factor 1 (HNF-1) were suggested to be involved in down-regulation of the genes. In addition, the binding sites for activating enhancer-binding protein 4 (AP-4), nuclear factor-κB (NFκB), GR (NNNNNNCNNTNTGTNCTNN) and early growth response 3 (Egr-3) were correlated with modulation of gene expression regardless of the direction of modulation. Our results suggest that these TF-binding sites are involved in gene modulations after long-term continuous irradiation with low-dose-rate γ rays. GR and/or SREBP-1 might be associated with the altered metabolic process observed in liver after exposure to low-dose-rate irradiation.
Collapse
Affiliation(s)
- Guillaume Vares
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Purpose: Quantitative analysis of cancer risk of ionising radiation as a function of dose-rate. Materials and methods: Non-tumour dose, Dnt, defined as the highest dose of radiation at which no statistically significant tumour increase was observed above the control level, was analysed as a function of dose-rate of radiation. Results: An inverse correlation was found between Dnt and dose-rate of the radiation. Dnt increased 20-fold with decreasing dose-rate from 1-10−8 Gy/min for whole body irradiation with low linear energy transfer (LET) radiation. Partial body radiation also showed a dose-rate dependence with a 5- to 10-fold larger Dnt as dose rate decreased. The dose-rate effect was also found for high LET radiation but at 10-fold lower Dnt levels. Conclusions: The cancer risk of ionising radiation varies 1000-fold depending on the dose-rate of radiation and exposure conditions. This analysis explains the discrepancy of cancer risk between A-bomb survivors and radium dial painters.
Collapse
Affiliation(s)
- Hiroshi Tanooka
- Radiation Effects Association, Kaji-cho, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Uehara Y, Ito Y, Taki K, Nenoi M, Ichinohe K, Nakamura S, Tanaka S, Oghiso Y, Tanaka K, Matsumoto T, Paunesku T, Woloschak GE, Ono T. Gene Expression Profiles in Mouse Liver after Long-Term Low-Dose-Rate Irradiation with Gamma Rays. Radiat Res 2010; 174:611-7. [DOI: 10.1667/rr2195.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yasuko Ito
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Keiko Taki
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Yoichi Oghiso
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Tsuneya Matsumoto
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Tatjana Paunesku
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gayle E. Woloschak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tetsuya Ono
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
19
|
Olipitz W, Hembrador S, Davidson M, Yanch JC, Engelward BP. Development and characterization of a novel variable low dose-rate irradiator for in vivo mouse studies. HEALTH PHYSICS 2010; 98:727-34. [PMID: 20386202 PMCID: PMC3020895 DOI: 10.1097/hp.0b013e3181d26dc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Radiation exposure of humans generally results in low doses delivered at low dose rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb Life Span Study (LSS) cohort. However, the total doses and dose rates in the LSS cohort are still higher than most environmental and occupational exposures in humans. Importantly, the dose rate is a critical determinant of health risks stemming from radiation exposure. Understanding the shape of the dose-rate response curve for different biological outcomes is thus crucial for projecting the biological hazard from radiation in different environmental and man-made conditions. A significant barrier to performing low dose-rate studies is the difficulty in creating radiation source configurations compatible with long-term cellular or animal experiments. In this study the design and characterization of a large area, I-based irradiator is described. The irradiator allows continuous long-term exposure of mice at variable dose rates and can be sited in standard animal care facilities. The dose rate is determined by the level of I activity added to a large NaOH-filled rectangular phantom. The desired dose rate is maintained at essentially constant levels by weekly additions of I to compensate for decay. Dosimetry results for long-term animal irradiation at targeted dose rates of 0.00021 and 0.0021 cGy min are presented.
Collapse
Affiliation(s)
- Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Sheena Hembrador
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Matthew Davidson
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Jacquelyn C. Yanch
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
20
|
Nakamura S, Tanaka IB, Tanaka S, Nakaya K, Sakata N, Oghiso Y. Adiposity in Female B6C3F1 Mice Continuously Irradiated with Low-Dose-Rate γ Rays. Radiat Res 2010; 173:333-41. [DOI: 10.1667/rr1962.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Vaiserman AM. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment. Dose Response 2010; 8:172-91. [PMID: 20585444 PMCID: PMC2889502 DOI: 10.2203/dose-response.09-037.vaiserman] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure.
Collapse
Affiliation(s)
- Alexander M. Vaiserman
- Laboratory of Mathematical Modeling of Aging Processes, Institute of Gerontology, Kiev, Ukraine
| |
Collapse
|
22
|
Umata T, Kunugita N, Norimura T. A comparison of the mutagenic and apoptotic effects of tritiated water and acute or chronic caesium-137 gamma exposure on spleen T lymphocytes on normal and p53-deficient mice. Int J Radiat Biol 2009; 85:1082-8. [PMID: 19995234 DOI: 10.3109/09553000903242131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE This study was carried out to compare the mutagenic effects on spleen T lymphocytes of mice exposed to tritiated water (HTO) and chronic or acute (137)Cs gamma irradiation. MATERIALS AND METHODS p53 wild type (p53(+/+)) and p53 null type (p53(-/-)) mice were exposed to a total dose of 3 Gy of HTO, chronic (137)Cs and acute (137)Cs. RESULTS In spontaneous T-cell receptor (TCR) variant fractions and fractions following exposure to HTO, chronic (137)Cs and acute (137)Cs, TCR variant fractions in p53(+/+) mice were 5.9 x 10(-4), 9.8 x 10(-4), 6.4 x 10(-4) and 20.1 x 10(-4), respectively. In contrast, those fractions were increased in p53(-/-) mice to 11.2 x 10(-4), 18.8 x 10(-4), 15.7 x 10(-4) and 31.3 x 10(-4), respectively. The frequency of apoptotic cells of the spleen 12 h after HTO injection increased to 5.0% in p53(+/+) mice, but did not increase at all in p53(-/-) mice. CONCLUSIONS When compared on the basis of induced TCR variant fractions in p53(-/-) mice, HTO (7.6 x 10(-4)) was 1.7 times more mutagenic than chronic (137)Cs (4.5 x 10(-4)), but 2.6 times less mutagenic than acute (137)Cs gamma irradiation (20.1 x 10(-4)).
Collapse
Affiliation(s)
- Toshiyuki Umata
- Radioisotope Research Center, University ofOccupational and Environmental Health, Japan.
| | | | | |
Collapse
|
23
|
La prévention du cancer et la relation dose–effet : l’effet cancérogène des rayonnements ionisants. Cancer Radiother 2009; 13:238-58. [DOI: 10.1016/j.canrad.2009.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/04/2009] [Accepted: 03/20/2009] [Indexed: 01/05/2023]
|
24
|
Tubiana M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 2009; 91:4-15; discussion 1-3. [PMID: 19201045 DOI: 10.1016/j.radonc.2008.12.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/27/2008] [Accepted: 12/31/2008] [Indexed: 12/19/2022]
Abstract
Second primary malignancies (SPMs) occurring after oncological treatment have become a major concern during the past decade. Their incidence has long been underestimated because most patients had a short life expectancy after treatment or their follow-up was shorter than 15 years. With major improvement of long-term survival, longer follow-up, cancer registries and end-result programs, it was found that the cumulative incidence of SPM could be as high as 20% of patients treated by radiotherapy. This cumulative proportion varies with several factors, which ought to be studied more accurately. The delay between irradiation and solid tumor emergence is seldom shorter than 10 years and can be as long as half a century. Thus, inclusion in a cohort of patients with a short follow-up leads to an underestimation of the proportion of SPM caused by treatment, unless actuarial cumulative incidence is computed. The incidence varies with the tissue and organs, the age of the patient at treatment, hereditary factors, but also, and probably mainly, with dose distribution, size of the irradiated volume, dose, and dose-rate. An effort toward a reduction in their incidence is mandatory. Preliminary data suggest that SPMs are mainly observed in tissues having absorbed doses above 2 Gy (fractionated irradiation) and that their incidence increases with the dose. However, in children thyroid and breast cancers are observed following doses as low as 100 mGy, and in adults lung cancers have been reported for doses of 500 mGy, possibly due to interaction with tobacco. The dose distribution and the dose per fraction have a major impact. However, the preliminary data regarding these factors need confirmation. Dose-rates appear to be another important factor. Some data suggest that certain patients, who could be identified, have a high susceptibility to radiocancer induction. Efforts should be made to base SPM reduction on solid data and not on speculation or models built on debatable hypotheses regarding the dose-carcinogenic effect relationship. In parallel, radiation therapy philosophy must evolve, and the aim of treatment should be to deliver the minimal effective radiation therapy rather than the maximal tolerable dose.
Collapse
|
25
|
|
26
|
Feinendegen L, Hahnfeldt P, Schadt EE, Stumpf M, Voit EO. Systems biology and its potential role in radiobiology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:5-23. [PMID: 18087710 DOI: 10.1007/s00411-007-0146-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 11/21/2007] [Indexed: 05/25/2023]
Abstract
About a century ago, Conrad Röentgen discovered X-rays, and Henri Becquerel discovered a new phenomenon, which Marie and Pierre Curie later coined as radio-activity. Since their seminal work, we have learned much about the physical properties of radiation and its effects on living matter. Alas, the more we discover, the more we appreciate the complexity of the biological processes that are triggered by radiation exposure and eventually lead (or do not lead) to disease. Equipped with modern biological methods of high-throughput experimentation, imaging, and vastly increased computational prowess, we are now entering an era where we can piece some of the multifold aspects of radiation exposure and its sequelae together, and develop a more systemic understanding of radiogenic effects such as radio-carcinogenesis than has been possible in the past. It is evident from the complexity of even the known processes that such an understanding can only be gained if it is supported by mathematical models. At this point, the construction of comprehensive models is hampered both by technical inadequacies and a paucity of appropriate data. Nonetheless, some initial steps have been taken already and the generally increased interest in systems biology may be expected to speed up future progress. In this context, we discuss in this article examples of relatively small, yet very useful models that elucidate selected aspects of the effects of exposure to ionizing radiation and may shine a light on the path before us.
Collapse
Affiliation(s)
- Ludwig Feinendegen
- Department of Nuclear Medicine, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Scott BR. Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose Response 2007; 5:131-49. [PMID: 18648600 PMCID: PMC2477691 DOI: 10.2203/dose-response.05-037.scott] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A low-dose protective apoptosis-mediated (PAM) process is discussed that appears to be turned on by low-dose gamma and X rays but not by low-dose alpha radiation. PAM is a bystander effect that involves cross-talk between genomically compromised [e.g., mutants, neoplastically transformed, micronucleated] cells and nongenomically compromised cells. A novel neoplastic cell transformation model, NEOTRANS(3), is discussed that includes PAM. With NEOTRANS(3), PAM is activated by low doses and inhibited by moderate or high doses and is, therefore, a hormetic process. A low-dose region of suppression of the transformation frequency below the spontaneous frequency relates to the hormetic zone over which PAM is presumed to operate. The magnitude of suppression relates to what is called the hormetic intensity. Both the hormetic intensity and width of the hormetic zone are expected to depend on dose rate, being more pronounced after low dose rates. It is expected that PAM likely had a significant role in the following observations after chronic irradiation: (1) what appears to be a tremendous reduction in the cancer incidence below the spontaneous level for Taiwanese citizens residing for years in cobalt-60 contaminated apartments; and (2) the published reductions in the lung cancer incidence below the spontaneous level in humans after protracted X irradiation and after chronic gamma plus alpha irradiation. Implications of PAM for cancer prevention and low-dose cancer therapy are briefly discussed.
Collapse
Affiliation(s)
- B R Scott
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
28
|
Tanaka IB, Tanaka S, Ichinohe K, Matsushita S, Matsumoto T, Otsu H, Oghiso Y, Sato F. Cause of Death and Neoplasia in Mice Continuously Exposed to Very Low Dose Rates of Gamma Rays. Radiat Res 2007; 167:417-37. [PMID: 17388697 DOI: 10.1667/rr0728.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 11/15/2006] [Indexed: 11/03/2022]
Abstract
Four thousand 8-week-old SPF B6C3F1 mice (2000 of each sex) were divided into four groups, one nonirradiated (control) and three irradiated. The irradiated groups were exposed to (137)Cs gamma rays at dose rates of 21, 1.1 and 0.05 mGy day(-1) for approximately 400 days with total doses equivalent to 8000, 400 and 20 mGy, respectively. All mice were kept until natural death, and pathological examination was performed to determine the cause of death. Neoplasms accounted for >86.7% of all deaths. Compared to the nonirradiated controls, the frequency of myeloid leukemia in males, soft tissue neoplasms and malignant granulosa cell tumors in females, and hemangiosarcoma in both sexes exposed to 21 mGy day(-1) were significantly increased. The number of multiple primary neoplasms per mouse was significantly increased in mice irradiated at 21 mGy day(-1). Significant increases in body weights were observed from 32 to 60 weeks of age in males and females exposed to 1.1 mGy day(-1) and 21 mGy day(-1), respectively. Our results suggest that life shortening (Tanaka et al., Radiat. Res. 160, 376-379, 2003) in mice continuously exposed to low-dose-rate gamma rays is due to early death from a variety of neoplasms and not from increased incidence of specific neoplasms.
Collapse
Affiliation(s)
- I B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Feinendegen LE, Pollycove M, Neumann RD. Whole-body responses to low-level radiation exposure: New concepts in mammalian radiobiology. Exp Hematol 2007; 35:37-46. [PMID: 17379086 DOI: 10.1016/j.exphem.2007.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review of low dose-induced whole-body effects, especially cancer, shows: 1) Biological systems appear in hierarchy levels of organization, from atoms to molecules, to cells, to tissues and organs, to the whole system; 2) System responses to low-level exposures depend on: quality and number of energy depositions in tissue micromasses (microdoses) being potential triggers to damage and protection; time interval between two microdose events per exposed micromass, that determines cellular responses to the preceding microdose; and responses to microdose events in the system being the target, with the balance between damage and benefit determining the net effect; 3) System responses to acute or chronic low-level exposures evolve from damage to the basic molecular level, mainly to DNA of stem cells, and from adaptive responses that may occur in the whole body. Damage may propagate to successive higher levels of organization, meeting protective barriers which may become upregulated by adaptive responses. The balance between damage and protection at each level per individual depends on tissue dose. At single tissue doses below congruent with 0.1 Gy net benefit tends to outweigh detriment. Thus, progression of damage to clinical disease is not linear; 4) Quality and extent of system responses are under genetic control. Thus, system net responses expectedly vary among individuals; 5) The balance between health risk and benefit of low-level exposure for a given individual may become predictable by gene-expression profiles in control and irradiated cells of this individual; and 6) Clinical trials applying individualized low-level irradiation are justified.
Collapse
|
30
|
Scott BR. Stochastic thresholds: a novel explanation of nonlinear dose-response relationships for stochastic radiobiological effects. Dose Response 2006; 3:547-67. [PMID: 18648632 DOI: 10.2203/dose-response.003.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
New research data for low-dose, low-linear energy transfer (LET) radiation-induced, stochastic effects (mutations and neoplastic transformations) are modeled using the recently published NEOTRANS(3) model. The model incorporates a protective, stochastic threshold (StoThresh) at low doses for activating cooperative protective processes considered to include presumptive p53-dependent, high-fidelity repair of nuclear DNA damage in competition with presumptive p53-dependent apoptosis and a novel presumptive p53-independent protective apoptosis mediated (PAM) process which selectively removes genomically compromised cells (mutants, neoplastic transformants, micronucleated cells, etc.). The protective StoThresh are considered to fall in a relatively narrow low-dose zone (Transition Zone A). Below Transition Zone A is the ultra-low-dose region where it is assumed that only low-fidelity DNA repair is activated along with presumably apoptosis. For this zone there is evidence for an increase in mutations with increases in dose. Just above Transition Zone A, a Zone of Maximal Protection (suppression of stochastic effects) arises and is attributed to maximal cooperation of high-fidelity, DNA repair/apoptosis and the PAM process. The width of the Zone of Maximal Protection depends on low-LET radiation dose rate and appears to depend on photon radiation energy. Just above the Zone of Maximal Protection is Transition Zone B, where deleterious StoThresh for preventing the PAM process fall. Just above Transition Zone B is a zone of moderate doses where complete inhibition of the PAM process appears to occur. However, for both Transition Zone B and the zone of complete inhibition of the PAM process, high-fidelity DNA repair/apoptosis are presumed to still operate. The indicated protective and deleterious StoThresh lead to nonlinear, hormetic-type dose-response relationships for low-LET radiation-induced mutations, neoplastic transformation and, presumably, also for cancer.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| |
Collapse
|
31
|
Ina Y, Tanooka H, Yamada T, Sakai K. Suppression of Thymic Lymphoma Induction by Life-Long Low-Dose-Rate Irradiation Accompanied by Immune Activation in C57BL/6 Mice. Radiat Res 2005; 163:153-8. [PMID: 15658890 DOI: 10.1667/rr3289] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.
Collapse
Affiliation(s)
- Yasuhiro Ina
- Low Dose Radiation Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| | | | | | | |
Collapse
|
32
|
Real A, Sundell-Bergman S, Knowles JF, Woodhead DS, Zinger I. Effects of ionising radiation exposure on plants, fish and mammals: relevant data for environmental radiation protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2004; 24:A123-A137. [PMID: 15700702 DOI: 10.1088/0952-4746/24/4a/008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to develop a framework for the assessment of the environmental impact of radiation, it is necessary to establish the relationship between exposure (dose rate, accumulated dose) and the effects that may be induced in plants and animals. With this purpose in mind, the data available on effects induced by ionising radiation in various wildlife groups have been reviewed as part of the FASSET project. This paper has highlighted that the available information on the effects of low dose rate, continuous irradiation (< 10(3) microGy h(-1)) is reasonable for plants, fish and mammals, but is scarce or non-existent for other wildlife groups. Thus, the effects induced in plants, fish and mammals after chronic exposure to radiation are presented in this paper. The fragmentary nature of the available, relevant information has made it very difficult to characterise the desired dose rate-response relationships in any detail. However, it can be broadly concluded that, although minor effects may be seen at lower dose rates in the most sensitive species and systems, the threshold for statistically significant effects in most studies is about 10(2) microGy h(-1). The responses then increase progressively with increasing dose rate and usually become very clear at dose rates > 10(3) microGy h(-1) sustained for a large fraction of the lifespan.
Collapse
Affiliation(s)
- A Real
- Spanish Research Centre in Energy, Environment and Technology, Avenida Complutense, 22 Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
33
|
Scott BR, Walker DM, Walker VE. Low-dose radiation and genotoxic chemicals can protect against stochastic biological effects. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:185-211. [PMID: 19330143 PMCID: PMC2657487 DOI: 10.1080/15401420490507602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A protective apoptosis-mediated (PAM) process that is turned on in mammalian cells by low-dose photon (X and gamma) radiation and appears to also be turned on by the genotoxic chemical ethylene oxide is discussed. Because of the PAM process, exposure to low-dose photon radiation (and possibly also some genotoxic chemicals) can lead to a reduction in the risk of stochastic effects such as problematic mutations, neoplastic transformation (an early step in cancer occurrence), and cancer. These findings indicate a need to revise the current low-dose risk assessment paradigm for which risk of cancer is presumed to increase linearly with dose (without a threshold) after exposure to any amount of a genotoxic agent such as ionizing radiation. These findings support a view seldom mentioned in the past, that cancer risk can actually decrease, rather than increase, after exposure to low doses of photon radiation and possibly some other genotoxic agents. The PAM process (a form of natural protection) may contribute substantially to cancer prevention in humans and other mammals. However, new research is needed to improve our understanding of the process. The new research could unlock novel strategies for optimizing cancer prevention and novel protocols for low-dose therapy for cancer. With low-dose cancer therapy, normal tissue could be spared from severe damage while possibly eliminating the cancer.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | | |
Collapse
|
34
|
Feinendegen LE, Pollycove M, Sondhaus CA. Responses to low doses of ionizing radiation in biological systems. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:143-71. [PMID: 19330141 PMCID: PMC2657485 DOI: 10.1080/15401420490507431] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.To examine tissue effects specific for low-dose radiation, (1) absorbed dose in tissue is replaced by the sum of the energies deposited by each track event, or hit, in a cell-equivalent tissue micromass (1 ng) in all micromasses exposed, that is, by the mean energy delivered by all microdose hits in the exposed micromasses, with cell dose expressing the total energy per micromass from multiple microdoses; and (2) tissue effects are related to cell damage and protective cellular responses per average microdose hit from a given radiation quality for all such hits in the exposed micromasses.The probability of immediate DNA damage per low-linear-energy-transfer (LET) average micro-dose hit is extremely small, increasing over a certain dose range in proportion to the number of hits. Delayed temporary adaptive protection (AP) involves (a) induced detoxification of reactive oxygen species, (b) enhanced rate of DNA repair, (c) induced removal of damaged cells by apoptosis followed by normal cell replacement and by cell differentiation, and (d) stimulated immune response, all with corresponding changes in gene expression. These AP categories may last from less than a day to weeks and be tested by cell responses against renewed irradiation. They operate physiologically against nonradiogenic, largely endogenous DNA damage, which occurs abundantly and continually. Background radiation damage caused by rare microdose hits per micromass is many orders of magnitude less frequent. Except for apoptosis, AP increasingly fails above about 200 mGy of low-LET radiation, corresponding to about 200 microdose hits per exposed micromass. This ratio appears to exceed approximately 1 per day for protracted exposure. The balance between damage and protection favors protection at low cell doses and damage at high cell doses. Bystander effects from high-dosed cells to nonirradiated neighboring cells appear to include both damage and protection.Regarding oncogenesis, a model based on the aforementioned dual response pattern at low doses and dose rates is consistant with the nonlinear reponse data and contradicts the linear no-threshold dose-risk hypothesis for radiation-induced cancer. Indeed, a dose-cancer risk function should include both linear and nonlinear terms.
Collapse
Affiliation(s)
- Ludwig E Feinendegen
- Nuclear Medicine, Heinrich-Heine-University Düsseldorf, Germany; and Medical Department, Brookhaven National Laboratory, Upton, New York
| | | | | |
Collapse
|
35
|
Mitchel REJ, Jackson JS, Morrison DP, Carlisle SM. Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation-sensitive Trp53 heterozygous mice. Radiat Res 2003; 159:320-7. [PMID: 12600234 DOI: 10.1667/0033-7587(2003)159[0320:ldorit]2.0.co;2] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mice heterozygous for Trp53 are radiation-sensitive and cancer-prone, spontaneously developing a variety of cancer types. Osteosarcomas in the spine lead to paralysis, while lymphomas lead rapidly to death, distinct events that provide objective measures of latency. The effects of a single low-dose (10 or 100 mGy), low-dose-rate (0.5 mGy/min) (60)Co gamma irradiation on lymphoma or spinal osteosarcoma frequency and latency, defined as time of death or of onset of paralysis, respectively, were examined. Compared to spontaneous lymphomas or to spinal osteosarcomas leading to paralysis in unexposed mice, an exposure of 7-8-week-old Trp53(+/-) mice to 10 or 100 mGy had no significant effect on tumor frequency, indicating no effect on tumor initiation. All tumors are therefore assumed to be of spontaneous origin. However, a 10-mGy exposure reduced the risk of both lymphomas and spinal osteosarcomas by significantly increasing tumor latency, indicating that the main in vivo effect of a low-dose exposure is a reduction in the rate at which spontaneously initiated cells progress to malignancy. The effect of this adaptive response persisted for the entire life span of all the animals that developed these tumors. Exposure to 100 mGy delayed lymphoma latency longer than the 10-mGy exposure. However, the 100-mGy dose increased spinal osteosarcoma risk by decreasing overall latency compared to unexposed control mice. That result suggested that this higher dose was in a transition zone between reduced and increased risk, but that the dose at which the transition occurs varies with the tumor type.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiation Biology and Health Physics Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 Canada.
| | | | | | | |
Collapse
|
36
|
Scott BR, Walker DM, Tesfaigzi Y, Schöllnberger H, Walker V. Mechanistic basis for nonlinear dose-response relationships for low-dose radiation-induced stochastic effects. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2003; 1:93-122. [PMID: 19330114 PMCID: PMC2651611 DOI: 10.1080/15401420390844492] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The linear nonthreshold (LNT) model plays a central role in low-dose radiation risk assessment for humans. With the LNT model, any radiation exposure is assumed to increase one's risk of cancer. Based on the LNT model, others have predicted tens of thousands of deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Here, we introduce a mechanism-based model for low-dose, radiation-induced, stochastic effects (genomic instability, apoptosis, mutations, neoplastic transformation) that leads to a LNT relationship between the risk for neoplastic transformation and dose only in special cases. It is shown that nonlinear dose-response relationships for risk of stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected based on known biological mechanisms. Further, for low-dose, low-dose rate, low-LET radiation, large thresholds may exist for cancer induction. We summarize previously published data demonstrating large thresholds for cancer induction. We also provide evidence for low-dose-radiation-induced, protection (assumed via apoptosis) from neoplastic transformation. We speculate based on work of others (Chung 2002) that such protection may also be induced to operate on existing cancer cells and may be amplified by apoptosis-inducing agents such as dietary isothiocyanates.
Collapse
Affiliation(s)
- Bobby R. Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108
- Corresponding author: Phone 505-348-9470, Fax: 505-348-8567,
| | - Dale M. Walker
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108
| | - Helmut Schöllnberger
- Institute for Physics and Biophysics, University of Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria
| | - Vernon Walker
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108
| |
Collapse
|
37
|
Yin H, Bhattacharjee D, Roy G, Fujimoto N, Nakatani T, Ito A. Tumorigenesis in infant C3H/HeN mice exposed to tritiated water (HTO). JOURNAL OF RADIATION RESEARCH 2002; 43:345-351. [PMID: 12674198 DOI: 10.1269/jrr.43.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to determine the carcinogenicity and retention of tritiated water (HTO) in mice. A two-part study was undertaken. In an HTO-incorporation study, both sexes of 12-day old C3H/HeN mice were i.p. injected with 3.70 MBq/pup of HTO and sacrificed 3 hr and 1, 3, 7, 14 days after HTO administration; in a carcinogenicity study, pups were given a single i.p. injection of HTO at doses of 0, 0.23, 0.92 and 3.70 MBq/mouse, and then observed for 14 months. The survival rates of both sexes slightly decreased upon increasing the HTO administered doses. The results indicated that the administration of HTO to infants led to a significant increase of liver tumors in male mice, but not in females. In female mice, ovarian tumors were observed for the high-dose group of injected HTO.
Collapse
Affiliation(s)
- Hong Yin
- Department of Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Ohnishi T, Nagaoka S. [Emphasis of biological research for space radiation]. UCHU SEIBUTSU KAGAKU 1998; 12:5-13. [PMID: 11541824 DOI: 10.2187/bss.12.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The paper summarized issues, current status and the recent topics in biological research of space radiation. Researches to estimate a risk associated with space radiation exposure during a long-term manned space flight, such as in the International Space Station, is emphasized because of the large uncertainty of biological effects and a complexity of the radiation environment in space. The Issues addressed are; 1) biological effects and end points in low dose radiation, 2) biological effects under low dose rate and long-term radiation exposure, 3) modification of biological responses to radiation under space environments, 4) various aspects of biological end points vs. cellular and molecular mechanisms, 5) estimation of human risk associated with radiation exposure in space flight, 6) regulations for radiation exposure limits for space workers. The paper also summarized and introduced recent progress in space related radiation researches with various biological systems.
Collapse
Affiliation(s)
- T Ohnishi
- Department of Biology, Nara Medical University, Japan.
| | | |
Collapse
|