1
|
A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/1105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.
Collapse
|
2
|
Al-Hetlani E, Amin MO, Bezzu CG, Carta M. Spirobifluorene-based polymers of intrinsic microporosity for the adsorption of methylene blue from wastewater: effect of surfactants. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200741. [PMID: 33047036 PMCID: PMC7540755 DOI: 10.1098/rsos.200741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Owing to their high surface area and superior adsorption properties, spirobifluorene polymers of intrinsic microporosity (PIMs), namely PIM-SBF-Me (methyl) and PIM-SBF-tBu (tert-butyl), were used for the first time, to our knowledge, for the removal of methylene blue (MB) dye from wastewater. Spirobifluorene PIMs are known to have large surface area (can be up to 1100 m2 g-1) and have been previously used mainly for gas storage applications. Dispersion of the polymers in aqueous solution was challenging owing to their extreme hydrophobic nature leading to poor adsorption efficiency of MB. For this reason, cationic (cetyl-pyridinium chloride), anionic (sodium dodecyl sulfate; SDS) and non-ionic (Brij-35) surfactants were used and tested with the aim of enhancing the dispersion of the hydrophobic polymers in water and hence improving the adsorption efficiencies of the polymers. The effect of surfactant type and concentration were investigated. All surfactants offered a homogeneous dispersion of the polymers in the aqueous dye solution; however, the highest adsorption efficiency was obtained using an anionic surfactant (SDS) and this seems owing to the predominance of electrostatic interaction between its molecules and the positively charges dye molecules. Furthermore, the effect of polymer dosage and initial dye concentration on MB adsorption were also considered. The kinetic data for both polymers were well described by a pseudo-second-order model, while the Langmuir model better simulated the adsorption process of MB dye on PIM-SBF-Me and the Freundlich model was more suitable for PIM-SBF-tBu. Moreover, the maximum adsorption capacities recorded were 84.0 and 101.0 mg g-1 for PIM-SBF-Me and PIM-SBF-tBu, respectively. Reusability of both polymers was tested by performing three adsorption cycles and the results substantiate that both polymers can be effectively re-used with insignificant loss of their adsorption efficiency (%AE). These preliminary results suggested that incorporation of a surfactant to enhance the dispersion of hydrophobic polymers and adsorption of organic contaminants from wastewater is a simple and cost-effective approach that can be adapted for many other environmental applications.
Collapse
Affiliation(s)
- Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, PO Box 5969, 13060 Safat, Kuwait
| | - Mohamed O. Amin
- Department of Chemistry, Faculty of Science, Kuwait University, PO Box 5969, 13060 Safat, Kuwait
| | - C. Grazia Bezzu
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Mariolino Carta
- Department of Chemistry, College of Science, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
3
|
Samuel MS, Jose S, Selvarajan E, Mathimani T, Pugazhendhi A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111642. [PMID: 31734434 DOI: 10.1016/j.jphotobiol.2019.111642] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022]
Abstract
The present study reports the biosynthesis of silver nanoparticles (AgNPs) using Bacillus amyloliquefaciens MSR5. The cellfree supernatant of B. amyloliquefaciens acted as a stabilizing agent for the synthesis of AgNPs. The synthesized AgNPs were characterized using UV-vis spectrophotometer, PXRD, FTIR, SEM-EDX, DLS, and TEM. TEM image showed the spherical shape of the biosynthesized AgNPs and it was found to be 20-40 nm in range. In this study, the AgNPs were prepared by ultrasonic irradiation. The stability of the AgNPs was found to be -33.4 mV using zeta potential. The catalytic 4-nitrophenol (4-NP) degradation by AgNPs was examined under solar irradiation and furthermore, the effects of several degradation parameters were studied. The biosynthesized AgNPs exhibited a strong chemocatalytic action with a comprehensive degradation (98%) of 4-NP to 4-aminophenol (4-AP) using NaBH4 within 15 min. In addition, MTT assay was performed to evaluate the cytotoxicity of the biosynthesized AgNPs (10 - 200 μg). The results have shown that the AgNPs exhibited significant activity on A549 cells, which was dosedependent. The study elucidates the AgNPs synthesized using cellfree culture supernatant can be used for the elimination of hazardous pollutants from wastewater.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Evaluation of Fresh Water Actinomycete Bioflocculant and Its Biotechnological Applications in Wastewaters Treatment and Removal of Heavy Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183337. [PMID: 31510036 PMCID: PMC6765771 DOI: 10.3390/ijerph16183337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022]
Abstract
This study evaluated the potential of a biopolymeric flocculant produced by Terrabacter sp. isolated from Sterkfontein Dam, South Africa. Microbial flocculants aid the aggregation of suspended solutes in solutions, thus, suggesting its alternative application to inorganic and synthetic organic flocculants, which are associated with health-related problems. The 16S rDNA analysis revealed the bacteria to have 98% similarity to Terrabacter sp. MUSC78T and the sequence was deposited in the Genbank as Terrabacter sp. with accession number KF682157.1. A series of experimental parameters such as bioflocculant dosage, cations concentrations, pH, and application of the purified bioflocculant in wastewaters treatment were investigated. In the presence of glucose as a sole carbon source, Ca2+ as cation at pH 8, the optimal flocculating activity attained was 85%. Optimum bioflocculant dosage of 0.5 mg/mL was able to remove chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS), nitrate, and turbidity in dairy wastewater. In addition, the tested bioflocculant exhibited higher flocculating efficiency as compared to polyaluminum chloride, polyethylenime, and alum. Inductible coupled plasma optical emission spectroscopy (ICP-OES) analyses confirmed significant removal of 77.7% Fe, 74.8% Al, 61.9% Mn, and 57.6% Zn as representatives of heavy metals from treated dairy wastewater. Fourier transform infrared spectroscopy (FTIR) indicated the presence of carboxyl, hydroxyl, and amino groups in the purified bioflocculant which could be responsible for flocculation. Findings from this study showed the prospect of the studied bioflocculant as an alternative candidate in wastewater treatment and remediating of heavy metals.
Collapse
|
5
|
Samuel MS, Shah SS, Subramaniyan V, Qureshi T, Bhattacharya J, Pradeep Singh N. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium(VI) removal from aqueous solution. Int J Biol Macromol 2018; 119:540-547. [DOI: 10.1016/j.ijbiomac.2018.07.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/07/2022]
|
6
|
Agunbiade M, Pohl C, Ashafa O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz J Microbiol 2018; 49:731-741. [PMID: 29674102 PMCID: PMC6175721 DOI: 10.1016/j.bjm.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022] Open
Abstract
A bacterium isolated from Sterkfontein dam was confirmed to produce bioflocculant with excellent flocculation activity. The 16S rDNA nucleotide sequence analyses revealed the bacteria to have 99% similarity to Streptomyces platensis strain HBUM174787 and the sequence was deposited in the Genbank as Streptomyces platensis with accession number FJ 486385.1. Culture conditions for optimal production of the bioflocculant included glucose as a sole carbon source, resulting in flocculating activity of 90%. Other optimal conditions included: peptone as nitrogen source; presence of Mg2+ as cations and inoculum size of 1.0% (v/v) at neutral pH of 7. Optimum dose of the purified bioflocculant for the clarification of 4g/L kaolin clay suspension at neutral pH was 0.2mg/mL. Energy Dispersive X-ray analysis confirmed elemental composition of the purified bioflocculant in mass proportion (%w/w): carbon (21.41), oxygen (35.59), sulphur (26.16), nitrogen (0.62) and potassium (7.48). Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of hydroxyl, carboxyl, methoxyl and amino group in the bioflocculant. The bioflocculant produced by S. platensis removed chemical oxygen demand (COD) in river water and meat processing wastewater at efficiencies of 63.1 and 46.6% respectively and reduced their turbidity by 84.3 and 75.6% respectively. The high flocculating rate and removal efficiencies displayed by S. platensis suggests its industrial application in wastewater treatment.
Collapse
Affiliation(s)
- Mayowa Agunbiade
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa; University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Carolina Pohl
- University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Omotayo Ashafa
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa.
| |
Collapse
|
7
|
Agunbiade MO, Van Heerden E, Pohl CH, Ashafa AT. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol 2017; 17:51. [PMID: 28606076 PMCID: PMC5469021 DOI: 10.1186/s12896-017-0375-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Results Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. Conclusions The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.
Collapse
Affiliation(s)
- Mayowa Oladele Agunbiade
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa. .,Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa.
| | - Esta Van Heerden
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Anofi Tom Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa
| |
Collapse
|
8
|
Assessment of Bacillus pumilus Isolated from Fresh Water Milieu for Bioflocculant Production. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6080211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
10
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. ENVIRONMENTAL TECHNOLOGY 2016; 37:1829-1842. [PMID: 26797258 DOI: 10.1080/09593330.2015.1133717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Uchechukwu U Nwodo
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Leonard V Mabinya
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Arinze S Okoli
- c GenØK Centre for Biosafety , Forskningsparken i Breivika , Tromsø , Norway
| | - Anthony I Okoh
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| |
Collapse
|
11
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Characterization of a Bioflocculant (MBF-UFH) Produced by Bacillus sp. AEMREG7. Int J Mol Sci 2015; 16:12986-3003. [PMID: 26062133 PMCID: PMC4490482 DOI: 10.3390/ijms160612986] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 01/28/2023] Open
Abstract
A bioflocculant named MBF-UFH produced by a Bacillus species isolated from sediment samples of Algoa Bay of the Eastern Cape Province of South Africa was characterized. The bacterial identification was through 16S rDNA sequencing; nucleotide sequences were deposited in GenBank as Bacillus sp. AEMREG7 with Accession Number KP659187. The production of the bioflocculant was observed to be closely associated with cell growth. The bioflocculant had the highest flocculating activity of 83.2% after 72 h of cultivation, and approximately 1.6 g of purified MBF-UFH was recovered from 1 L of fermentation broth. Its chemical analyses indicated that it is a glycoprotein composed of polysaccharide (76%) and protein (14%). Fourier transform infrared spectroscopy (FTIR) revealed that it consisted of hydroxyl, amide, carboxyl and methoxyl as the functional moieties. Scanning electron microscopy (SEM) revealed the amorphous structure of MBF-UFH and flocculated kaolin clay particles. The maximum flocculating activity of 92.6% against kaolin clay suspension was achieved at 0.3 mg/mL over pH ranges of 3-11 with the peak flocculating rate at pH 8 in the presence of MgCl2. The bioflocculant retained high flocculating activity of 90% after heating at 100 °C for 1 h. MBF-UFH appears to have immense potential as an alternative to conventional chemical flocculants.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- South Africa-Medical Research Council (SA-MRC), Microbial Water Quality Monitoring Centre, University of Fort Hare, 5700 Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, 5700 Alice, South Africa.
| | - Uchechukwu U Nwodo
- South Africa-Medical Research Council (SA-MRC), Microbial Water Quality Monitoring Centre, University of Fort Hare, 5700 Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, 5700 Alice, South Africa.
| | - Leonard V Mabinya
- South Africa-Medical Research Council (SA-MRC), Microbial Water Quality Monitoring Centre, University of Fort Hare, 5700 Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, 5700 Alice, South Africa.
| | - Arinze S Okoli
- GenØK-Centre for Biosafety, Forskningsparken i Breivika, Postboks 6418, 9294 Tromsø, Norway.
| | - Anthony I Okoh
- South Africa-Medical Research Council (SA-MRC), Microbial Water Quality Monitoring Centre, University of Fort Hare, 5700 Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, 5700 Alice, South Africa.
| |
Collapse
|
12
|
Verma AK, Bhunia P, Dash RR, Tyagi RD, Surampalli RY, Zhang TC. Effects of physico-chemical pre-treatment on the performance of an upflow anaerobic sludge blanket (UASB) reactor treating textile wastewater: application of full factorial central composite design. CAN J CHEM ENG 2015. [DOI: 10.1002/cjce.22168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Akshaya K. Verma
- Department of Civil Engineering, School of Infrastructure; Indian Institute of Technology Bhubaneswar; Odisha -751 013 India
| | - Puspendu Bhunia
- Department of Civil Engineering, School of Infrastructure; Indian Institute of Technology Bhubaneswar; Odisha -751 013 India
| | - Rajesh R. Dash
- Department of Civil Engineering, School of Infrastructure; Indian Institute of Technology Bhubaneswar; Odisha -751 013 India
| | - Rajeshwar D. Tyagi
- Institut National de la Recherche Scientifique; Centre Eau, Terre et Environnement, Universite du Quebec; 490 rue de la Couronne Quebec QC G1K 9A9 Canada
| | - Rao Y. Surampalli
- Department of Civil Engineering; University of Nebraska-Lincoln; N104 SEC, PO Box 886105 Lincoln NE 68588-6105 USA
| | - Tian C. Zhang
- Department of Civil Engineering; University of Nebraska-Lincoln; N104 SEC, PO Box 886105 Lincoln NE 68588-6105 USA
| |
Collapse
|
13
|
Sun C, Zhao Y, Zhang Z, Zhang Y, Zhang X. Decolorization of dyeing wastewater and characterization of flocs during coagulation by a new composite coagulant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:187-193. [PMID: 26177400 DOI: 10.2166/wst.2015.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A composite coagulant, polymeric aluminum ferric chloride-poly-epichlorohydrin-ethylenediamine (PAFC-EPI-ETA), was synthesized and then used for the treatment of synthetic reactive brilliant red (RBR) dyeing wastewater. Effects of (Fe+Al) to EPI-ETA mass ratio (P) on the color removal and zeta potential were investigated under different coagulant dosages and initial pHs. Experimental results indicate that the removal of reactive dye and the charge neutralization ability of composite coagulant were improved by increasing the content of organic EPI-ETA. PAFC-EPI-ETA with P=1 achieved the best color removal percentage and strongest charge neutralization ability. Decolorization efficiency using PAFC-EPI-ETA was quite effecient with pH range of 6.0-7.5 for RBR dye removal. Characteristics of the formed floc were investigated with the dosage of PAFC-EPI-ETA under different P values. The low (Fe+Al) to EPI-ETA mass ratio contributed to the formation of flocs with high growth rate, large size and large size variation.
Collapse
Affiliation(s)
- Cuizhen Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ;
| | - Yang Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ;
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ; ; Center for Sustainable Development and Global Competitiveness, Stanford University, Stanford, CA 94305, USA
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ;
| | - Xiaorui Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ;
| |
Collapse
|
14
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. Evaluation of the flocculation potential and characterization of bioflocculant produced by Micrococcus sp. Leo. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s000368381406012x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Rodrigues CSD, Boaventura RAR, Madeira LM. Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton's oxidation. ENVIRONMENTAL TECHNOLOGY 2014; 35:1307-1319. [PMID: 24701928 DOI: 10.1080/09593330.2013.866983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aims to investigate the efficiency of individual and integrated processes applied to organic matter abatement and biodegradability improvement of a polyester dyeing wastewater, namely coagulation/flocculation combined with Fenton's reagent (Approach 1), Fenton oxidation alone (Approach 2) and its integration with coagulation/flocculation (Approach 3). The effects of Fe2+ dose, initial concentration of the oxidant (H202) and temperature during Fenton's oxidation were evaluated in Approaches 1 and 2, whereas in Approach 3 the influence ofpH and flocculant dose was also assessed, during the coagulation/flocculation stage. Toxicity and biodegradability of the final effluent were also evaluated. After oxidation, a slight increase in the specific oxygen uptake rate of the effluent was observed (from 27.0 up to 28.5-30.0mg O2/(gVSSh)) and the inhibition to Vibrio fischeri was eliminated. An effluent that complies with discharge standards was obtained in all cases; however, Approach 3 revealed to be a promising solution for treating this effluent as it leads to smaller operating costs. Therefore, the use of dissolved iron resulting from Fenton's oxidation as coagulant in the second stage was shown to be an innovative, efficient and economically attractive strategy for treating these effluents.
Collapse
|
16
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. Characterization of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5097-110. [PMID: 24135818 PMCID: PMC3823338 DOI: 10.3390/ijerph10105097] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 11/16/2022]
Abstract
The physicochemical and flocculating properties of a bioflocculant produced by a bacterial consortium composed of Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The purified bioflocculant was cation and pH dependent, and optimally flocculated kaolin clay suspension at a dosage of 0.1 mg/mL. The flocculating activity of the bioflocculant was stimulated in the presence of Ca2+, Mn2+, Al3+ and had a wide pH range of 2–10, with the highest flocculating activity of 86% at pH 8. The bioflocculant was thermostable and retained more than 70% of its flocculating activity after being heated at 80 °C for 30 min. Thermogravimetric analyses revealed a partial thermal decomposition of the biofloculant at 400 °C. The infrared spectrum showed the presence of hydroxyl, carboxyl and amino moieties as functional groups. The bioflocculant produced by the bacterial consortium appears to hold promising alternative to inorganic and synthetic organic flocculants that are widely used in wastewater treatment.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | | | | | | |
Collapse
|
17
|
Luvuyo N, Nwodo UU, Mabinya LV, Okoh AI. Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol 2013; 13:62. [PMID: 23915393 PMCID: PMC3750929 DOI: 10.1186/1472-6750-13-62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/25/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bioflocculants effect the aggregation of suspended solutes in solutions thus, a viable alternative to inorganic poly-ionic and synthetic organic flocculants which are associated with deleterious health problems. Consequently, a consortium of two bacteria species were evaluated for optimized bioflocculant yield following the inadequacies of axenic cultures. Results 16S rDNA nucleotide sequencing and BLAST analysis of nucleotide sequences were used to identify the bacterial species, carbon and nitrogen sources optimally supporting bioflocculant production were assessed and the purified bioflocculant characterized. Nucleotide sequences showed 97% and 96% similarity to Methylobacterium sp. AKB-2008-KU9 and Methylobacterium sp. strain 440. The second isolate, likewise, showed 98% similarity to Actinobacterium OR-221. The sequences were deposited in GenBank as Methylobacterium sp. Obi [accession number HQ537130] and Actinobacterium sp. Mayor [accession number JF799090]. Flocculating activity of 95% was obtained in the presence of Ca2+ and heat-stability was exhibited with retention of above 70% activity at 100°C in 30 min. In addition, bioflocculant yield was about 8.203 g/l. A dose of 1 mg/ml of purified bioflocculant was optimal for the clarification of Kaolin suspension (100 ml) following Jar test. FTIR spectrum revealed the presence of carboxyl and hydroxyl functional groups amongst others. Conclusions The mixed culture produced bioflocculant with high flocculating activity and an improved yield. The efficiency observed with jar test may imply industrial applicability.
Collapse
|
18
|
Camarillo R, Rincón J. Photocatalytic Discoloration of Dyes: Relation between Effect of Operating Parameters and Dye Structure. Chem Eng Technol 2011. [DOI: 10.1002/ceat.201100063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Nordström F, Terrazas E, Welander U. Decolorization of a mixture of textile dyes using Bjerkandera sp. BOL-13. ENVIRONMENTAL TECHNOLOGY 2008; 29:921-929. [PMID: 18724647 DOI: 10.1080/09593330802131628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The white-rot fungus Bjerkandera sp. BOL-13 was evaluated regarding decolorization of four textile dyes Reactive blue 21, Reactive black 5, Reactive orange 13 and Reactive yellow 206. Experiments were performed in batch and continuous modes. The total dye concentration in all experiments was 100 mg l(-1). The results of the batch experiments showed that the fungus decolorized all dyes but at different rates. There was, however, an increase in the ultraviolet (UV) absorbance when a medium with a low concentration of nitrogen was used. No increase in UV range was observed when the nitrogen concentration was increased. A continuous experiment was performed to study the decolorization of a mixture of three of the dyes Reactive blue 21, Reactive black 5 and Reactive orange 13. Scanning of inlet and outlet samples showed that the absorbance at the peaks in the visible range decreased by 60-66%. The UV absorbance of the outlet increased during the first days of operation after which it decreased again to reach the same level as the inlet. The hydraulic retention time in the reactor was 3 days. The medium containing the higher nitrogen concentration was used in the continuous experiment.
Collapse
Affiliation(s)
- F Nordström
- Center for Chemistry and Chemical Engineering, Department of Biotechnology, Lund University, Lund, Sweden
| | | | | |
Collapse
|