1
|
Mackay SE, Eldridge DS, Malherbe F. Rapid low-level nitrate determination by UV spectroscopy in the presence of competing ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8471-8481. [PMID: 39560302 DOI: 10.1039/d4ay01641f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The presence of excessive nitrate in environmental and drinking water even at low levels can pose both environmental and health hazards. Because of this, various methods for its removal have been investigated. Essential to conducting such research is a method to reliably quantify nitrate in relevant matrices. However, current approaches have drawbacks related to cost, analysis time or health hazards. This study evaluates a UV spectroscopy-based method for nitrate determination, suitable for quantifying low nitrate concentrations in the presence of bicarbonate, sulfate, chloride and phosphate. The limits of detection and quantification were found to be 0.003 ppm N and 0.0077 ppm N respectively, lower than that observed in the ion chromatography method it was compared to. Additionally, a calibration curve created with 11 standards ranging from 0 to 2.5 ppm N demonstrated an exceptionally strong correlation, with an R2 value greater than 0.9999. This method is developed with a focus on accessibility and speed, minimising hazards and waste generation for reduced environmental footprint. The effects of contaminants introduced through the use of commercial laboratory consumables are also discussed.
Collapse
Affiliation(s)
- S E Mackay
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, 3122, Australia.
| | - D S Eldridge
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, 3122, Australia.
| | - F Malherbe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, 3122, Australia.
| |
Collapse
|
2
|
Mahmood A, Islam M, Gulyuk AV, Briese E, Velasco CA, Malu M, Sharma N, Spanias A, Yingling YG, Westerhoff P. Multiple Data Imputation Methods Advance Risk Analysis and Treatability of Co-occurring Inorganic Chemicals in Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20513-20524. [PMID: 39509340 PMCID: PMC11580165 DOI: 10.1021/acs.est.4c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Accurately assessing and managing risks associated with inorganic pollutants in groundwater is imperative. Historic water quality databases are often sparse due to rationale or financial budgets for sample collection and analysis, posing challenges in evaluating exposure or water treatment effectiveness. We utilized and compared two advanced multiple data imputation techniques, AMELIA and MICE algorithms, to fill gaps in sparse groundwater quality data sets. AMELIA outperformed MICE in handling missing values, as MICE tended to overestimate certain values, resulting in more outliers. Field data sets revealed that 75% to 80% of samples exhibited no co-occurring regulated pollutants surpassing MCL values, whereas imputed values showed only 15% to 55% of the samples posed no health risks. Imputed data unveiled a significant increase, ranging from 2 to 5 times, in the number of sampling locations predicted to potentially exceed health-based limits and identified samples where 2 to 6 co-occurring chemicals may occur and surpass health-based levels. Linking imputed data to sampling locations can pinpoint potential hotspots of elevated chemical levels and guide optimal resource allocation for additional field sampling and chemical analysis. With this approach, further analysis of complete data sets allows state agencies authorized to conduct groundwater monitoring, often with limited financial resources, to prioritize sampling locations and chemicals to be tested. Given existing data and time constraints, it is crucial to identify the most strategic use of the available resources to address data gaps effectively. This work establishes a framework to enhance the beneficial impact of funding groundwater data collection by reducing uncertainty in prioritizing future sampling locations and chemical analyses.
Collapse
Affiliation(s)
- Akhlak
U. Mahmood
- Materials
Science and Engineering, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Minhazul Islam
- School
of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexey V. Gulyuk
- Materials
Science and Engineering, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Emily Briese
- School
of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Carmen A. Velasco
- School
of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Mohit Malu
- School
of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Naushita Sharma
- School
of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Andreas Spanias
- School
of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Yaroslava G. Yingling
- Materials
Science and Engineering, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Paul Westerhoff
- School
of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Hu F, Ye J, Zhang J, Zhang W, Chen P, Yuan Z, Xu Z. Synergistic removal of bio-recalcitrant organic compounds and nitrate: Coupling photocatalysis and biodegradation to enhance the bioavailability of electron donors. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135605. [PMID: 39191007 DOI: 10.1016/j.jhazmat.2024.135605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Nitrate pollution poses significant threats to both aquatic ecosystems and human well-being, particularly due to eutrophication and increased risks of methemoglobinemia. Conventional treatment for nitrate-contaminated wastewater face challenges stemming from limited availability of carbon sources and the adverse impacts of toxins on denitrification processes. This study introduces an innovative Intimately Coupled Photocatalysis and Biodegradation (ICPB) system, which utilizes Ag3PO4/Bi4Ti3O12, denitrifying sludge, and polyurethane sponge within an anoxic environment. This system demonstrates remarkable efficacy in simultaneously removing bio-recalcitrant organic compounds (such as sulfamethoxazole) and nitrates, surpassing standalone treatment methods. Optimally, the ICPB achieves complete removal of sulfamethoxazole, along with 87.7 % removal of DOC, and 81.8 % reduction in nitrate levels. Its ability to sustain pollutant removal and biological activity over multiple cycles can be attributed to the special formation of biofilm and mineralization of sulfamethoxazole, minimizing both photocatalytic damage and toxic inhibitory effects on microbes. The dominant microbial genera of ICPB system included Castellaniella, Acidovorax, Raoultella, Giesbergeria, and Alicycliphilus. Additionally, the study sheds light on a potential mechanism for the concurrent treatment of recalcitrant organics and nitrates by the ICPB system, presenting a novel and highly effective approach for addressing biologically resistant wastewater.
Collapse
Affiliation(s)
- Feng Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jianfeng Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wencan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Peipei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhanzhan Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
5
|
Farshi YR, Ebadi T, Maknoon R, Kowsari E. A novel combined system for efficient nitrate removal using a continuous flow electrocoagulation and sand filtration (FECF) reactor: Statistical analysis by Taguchi design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4052-4066. [PMID: 38095796 DOI: 10.1007/s11356-023-31362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
In this study, a new hybrid bench-scale electrocoagulation-sand filtration (FECF) reactor was developed for purifying nitrate-contaminated samples. Before and after electrochemical treatment, two sand filters were included in this continuous system to facilitate the purification procedure, and the contaminated water flows horizontally through the entire system according to a specific hydraulic gradient within the reactor, resulting in water purification. Significant improvement in treatment performance was observed due to the presence of metal hydroxides in the second filter media that were not fully involved in the electrocoagulation treatment. Energy dispersive X-ray (EDX) analysis was performed to detect metal hydroxide species in the sand media, and the need for filter regeneration was evaluated by monitoring changes in the system flow rate. Moreover, an evaluation of the effects of different factors including operating time, current intensity, initial pH, type of anode and cathode, initial nitrate concentration, hydraulic head level inside the reactor, number of electrodes, and NaCl electrolyte concentration on the performance of nitrate removal was conducted through the Taguchi design. Further, ANOVA analysis verified the accuracy of the predicted model, and the variables were classified based on their relative importance in the FECF process. According to the regression model, 97% of nitrates were removed with Al electrodes as anode and Fe as cathode, 70 min purification time, current intensity of 3 A, 100 mg/l initial nitrate concentration, pH 8, electrolyte concentration of 1 g/l, electrode number of 6, and 1.5 cm head level.
Collapse
Affiliation(s)
- Yaser Rezaeizad Farshi
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, Iran
| | - Taghi Ebadi
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, Iran.
| | - Reza Maknoon
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, Iran
| |
Collapse
|
6
|
Mahlknecht J, Torres-Martínez JA, Kumar M, Mora A, Kaown D, Loge FJ. Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166863. [PMID: 37690767 DOI: 10.1016/j.scitotenv.2023.166863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Nitrate contamination in groundwater poses a significant threat to water quality and public health, especially in regions with limited data availability. This study addresses this challenge by employing machine learning (ML) techniques to predict nitrate (NO3--N) concentrations in Mexico's groundwater. Four ML algorithms-Extreme Gradient Boosting (XGB), Boosted Regression Trees (BRT), Random Forest (RF), and Support Vector Machines (SVM)-were executed to model NO3--N concentrations across the country. Despite data limitations, the ML models achieved robust predictive performances. XGB and BRT algorithms demonstrated superior accuracy (0.80 and 0.78, respectively). Notably, this was achieved using ∼10 times less information than previous large-scale assessments. The novelty lies in the first-ever implementation of the 'Support Points-based Split Approach' during data pre-processing. The models considered initially 68 covariates and identified 13-19 significant predictors of NO3--N concentration spanning from climate, geomorphology, soil, hydrogeology, and human factors. Rainfall, elevation, and slope emerged as key predictors. A validation incorporated nationwide waste disposal sites, yielding an encouraging correlation. Spatial risk mapping unveiled significant pollution hotspots across Mexico. Regions with elevated NO3--N concentrations (>10 mg/L) were identified, particularly in the north-central and northeast parts of the country, associated with agricultural and industrial activities. Approximately 21 million people, accounting for 10 % of Mexico's population, are potentially exposed to elevated NO3--N levels in groundwater. Moreover, the NO3--N hotspots align with reported NO3--N health implications such as gastric and colorectal cancer. This study not only demonstrates the potential of ML in data-scarce regions but also offers actionable insights for policy and management strategies. Our research underscores the urgency of implementing sustainable agricultural practices and comprehensive domestic waste management measures to mitigate NO3--N contamination. Moreover, it advocates for the establishment of effective policies based on real-time monitoring and collaboration among stakeholders.
Collapse
Affiliation(s)
- Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico.
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Puebla de Zaragoza, Puebla 72453, Mexico
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Frank J Loge
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
7
|
Samdan C. Synthesis and characterization of cylindrical electrode with sucrose binder as advanced electrode materials for copper 3D-electro-oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99511-99528. [PMID: 37612557 DOI: 10.1007/s11356-023-29388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
This study produced a biomass-based cylindrical electrode containing sucrose (an organic binder). The Cu2+ removal performance of the synthesized sucrose-bonded cylindrical electrode was evaluated in a 3-phase 3-dimensional electro-oxidation reactor (3D-EO) and the classical electro-oxidation method (2D-EO). Sodium Dodecyl Sulfate (SDs) was grafted onto activated carbon and used as microelectrode in 3D-EO reactors. SDs grafting resulted in a 57% reduction in the micropores of activated carbon. Therefore, the surface area of carbon after grafting decreased from 1328 m2/g to 580 m2/g. The sucrose-bonded cylindrical electrode has a rich carbon structure and consists of 84.04 wt% C, 12.10 wt% O and 3.20 wt%Si. According to CV measurement, the sucrose-bonded cylindrical electrode gives a surface reaction against Cu2+ at voltages lower than -0.62 V. Increasing the potential difference from 1V to 3V in 2D-EO and 3D-EO processes led to the removal of Cu2+ from the solution. The 3D-EO reactor achieved a removal rate of 87.12% at 3V. The 100 ppm solution was treated with a 3D-EO reactor containing 6 g/L of PC/SDs400Ws for 60 min, successfully removing 91.22% of Cu2+.
Collapse
Affiliation(s)
- Canan Samdan
- Faculty of Engineering and Architecture, Department of Chemical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey.
| |
Collapse
|
8
|
Shi M, Zhu X, Cheang I, Zhu Q, Guo Q, Liao S, Gao R, Li X. Associations of thiocyanate, nitrate, and perchlorate exposure with dyslipidemia: a cross-sectional, population-based analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17214-17225. [PMID: 36194328 DOI: 10.1007/s11356-022-23296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to assess the associations of urinary thiocyanate, nitrate, and perchlorate concentrations with dyslipidemia, individually and in combination, which has not previously been studied. Data from the 2001-2002 and 2005-2016 National Health and Nutrition Examination Surveys (NHANES) were analyzed in this cross-sectional study. The dependent variables were continuous serum lipid variables (triglycerides [TG], total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], non-HDL-C, and apolipoprotein B [Apo B]) and binary serum lipid variables, with the latter reflecting dyslipidemia (elevated TG, ≥ 150 mg/dL; elevated TC, ≥ 200 mg/dL; elevated LDL-C, ≥ 130 mg/dL; lowered HDL-C, < 40 mg/dL in men and < 5 0 mg/dL in women; elevated non-HDL-C, ≥ 160 mg/dL; and elevated Apo B, ≥ 130 mg/dL). Multivariate logistic, linear, and weighted quantile sum (WQS) regression analyses were used to explore the associations of thiocyanate, nitrate, and perchlorate with the continuous and binary serum lipid variables. The linearity of the associations with the binary serum lipid variables was assessed using restricted cubic spline (RCS) regression. A total of 15,563 adults were included in the analysis. The multivariate linear and logistic regression analyses showed that thiocyanate was positively associated with multiple continuous (TG, TC, LDL-C, non-HDL-C, and Apo B, but not HDL-C) and binary (elevated TG, TC, LDL-C, and non-HDL-C) serum lipid variables, whereas perchlorate was negatively associated with elevated LDL-C. Multivariate RCS logistic regression revealed a linear dose-response relationship between thiocyanate and elevated TG, TC, LDL-C, non-HDL-C, and Apo B, but a nonlinear relationship with lowered HDL-C (inflection point = 1.622 mg/L). WQS regression showed that a mixture of thiocyanate, nitrate, and perchlorate was positively associated with all binary serum lipid variables except for Apo B. Our findings indicate that urinary thiocyanate, nitrate, and perchlorate concentrations, individually and in combination, were associated with dyslipidemia.
Collapse
Affiliation(s)
- Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
9
|
García-Torres E, Rodríguez-Rodríguez FE. Letter to the editor. Additional critical information in regard to "Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation". CHEMOSPHERE 2022; 309:136718. [PMID: 36208802 DOI: 10.1016/j.chemosphere.2022.136718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Edgar García-Torres
- Admission and Diagnosis Clinic. Facultad de Odontología de la Universidad Juárez del Estado de Durango. Predio Canoas s/n, Los Ángeles, 34070, Durango, Dgo. Mexico.
| | - Fernanda Elizabeth Rodríguez-Rodríguez
- Admission and Diagnosis Clinic. Facultad de Odontología de la Universidad Juárez del Estado de Durango. Predio Canoas s/n, Los Ángeles, 34070, Durango, Dgo. Mexico
| |
Collapse
|
10
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
11
|
Wang H, Liu Y, Chai L, Wang H. Effects of nitrite exposure on metamorphosis and skeletal development of Bufo gargarizans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51847-51859. [PMID: 35253106 DOI: 10.1007/s11356-022-19468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Nitrite, as a part of nitrogen cycle, is one of the most common toxic compounds in aquatic ecosystems. Since skeletal development is an essential process during amphibian metamorphosis, exposure of larval amphibians to nitrite might disrupt skeletal development. To evaluate whether nitrite affects skeletal development of amphibian larvae, Bufo gargarizans larvae at Gs26 were exposed to 10, 100, 500 and 1000 μg/L nitrite-nitrogen (NO2-N) in the present study. The metamorphosis rate, body weight, body length, forelimb length and hindlimb length of B. gargarizans exposed to NO2-N were decreased. The microscopic structures of thyroid gland were altered under NO2-N exposure at Gs42. The skeletal lengths of the humerus, femur and fibulare of tadpole at Gs42 were significantly reduced under 100, 500 and 1000 μg/L NO2-N treatment groups, and the lengths of humerus, tibia-fibula and tibiale of tadpole at Gs46 were significantly reduced under 1000 μg/L NO2-N treatment groups. In addition, the expression levels of thyroid hormone (TH) and endochondral ossification-related genes of tadpoles at Gs42 and Gs46 were tested by qRT-PCR. Overall, NO2-N exposure could affect the expressions of these genes and then may influence the activity and function of thyroid gland, further disturbing the amphibian metamorphosis and skeletal development of amphibian larvae.
Collapse
Affiliation(s)
- Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Ríos-Sánchez E, González-Zamora A, Gonsebatt Bonaparte ME, Meza Mata E, González-Delgado MF, Zámago Amaro A, Pérez-Morales R. Regulation of the Tpo, Tg, Duox2, Pds, and Mct8 genes involved in the synthesis of thyroid hormones after subchronic exposure to sodium nitrate in female Wistar rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2380-2391. [PMID: 34409734 DOI: 10.1002/tox.23351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Nitrates are natural compounds present in soil and water; however, the intense use of fertilizers has increased their presence in groundwater with deleterious effects on human health. There is evidence of nitrates acting as endocrine disruptors; however, the underlying molecular mechanisms have not been fully described. Here, we investigated the effect of subchronic exposure to different concentrations of sodium nitrate in female Wistar rats, evaluating thyroid hormonal parameters, such as Nis transporter (Na+ /I- symporter, Slc5a5) and Tsh-R receptor protein expression, as well as transcription of the Tpo (thyroperoxidase), Tg (tiroglobulin), Duox2 (dual oxidase 2), Pds (pendrin), and Mct8 (Mct8 transporter, Slc16a2) genes. Hematological and histochemical changes in the liver and thyroid were also explored. Significant differences were found in platelet and leukocyte counts; although a significant increase in the weight of the thyroid gland was observed, no differences were found in the levels of the hormones Tsh, T3, and T4, but a modulation of the mRNA expression of the Tg, Tpo, Duox2, Mct8, and Pds genes was observed. Morphological changes were also found in liver and thyroid tissue according to the exposure doses. In conclusion, subchronic exposure to sodium nitrate induces leukocytosis consistent with an inflammatory response and upregulation of Sod2 in the liver and increases the expression of genes involved in the synthesis of thyroid hormones, keeping thyroid hormone levels stable. Histological changes in the thyroid gland suggest a goitrogenic effect.
Collapse
Affiliation(s)
- Efraín Ríos-Sánchez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alberto González-Zamora
- Laboratorio de Biología Evolutiva. Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - María Eugenia Gonsebatt Bonaparte
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Meza Mata
- Departamento de Patología, Unidad Médica de Alta Especialidad #71. Instituto Mexicano del Seguro Social, Torreón, Mexico
| | - María Fernanda González-Delgado
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alejandra Zámago Amaro
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rebeca Pérez-Morales
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| |
Collapse
|
13
|
Babić Leko M, Gunjača I, Pleić N, Zemunik T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int J Mol Sci 2021; 22:6521. [PMID: 34204586 PMCID: PMC8234807 DOI: 10.3390/ijms22126521] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones are necessary for the normal functioning of physiological systems. Therefore, knowledge of any factor (whether genetic, environmental or intrinsic) that alters the levels of thyroid-stimulating hormone (TSH) and thyroid hormones is crucial. Genetic factors contribute up to 65% of interindividual variations in TSH and thyroid hormone levels, but many environmental factors can also affect thyroid function. This review discusses studies that have analyzed the impact of environmental factors on TSH and thyroid hormone levels in healthy adults. We included lifestyle factors (smoking, alcohol consumption, diet and exercise) and pollutants (chemicals and heavy metals). Many inconsistencies in the results have been observed between studies, making it difficult to draw a general conclusion about how a particular environmental factor influences TSH and thyroid hormone levels. However, lifestyle factors that showed the clearest association with TSH and thyroid hormones were smoking, body mass index (BMI) and iodine (micronutrient taken from the diet). Smoking mainly led to a decrease in TSH levels and an increase in triiodothyronine (T3) and thyroxine (T4) levels, while BMI levels were positively correlated with TSH and free T3 levels. Excess iodine led to an increase in TSH levels and a decrease in thyroid hormone levels. Among the pollutants analyzed, most studies observed a decrease in thyroid hormone levels after exposure to perchlorate. Future studies should continue to analyze the impact of environmental factors on thyroid function as they could contribute to understanding the complex background of gene-environment interactions underlying the pathology of thyroid diseases.
Collapse
Affiliation(s)
| | | | | | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (M.B.L.); (I.G.); (N.P.)
| |
Collapse
|