1
|
Hong H, Eom E, Lee H, Choi S, Choi B, Kim JK. Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics. Nat Commun 2024; 15:8734. [PMID: 39384847 PMCID: PMC11464791 DOI: 10.1038/s41467-024-53095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
Epidemiological parameters such as the reproduction number, latent period, and infectious period provide crucial information about the spread of infectious diseases and directly inform intervention strategies. These parameters have generally been estimated by mathematical models that involve an unrealistic assumption of history-independent dynamics for simplicity. This assumes that the chance of becoming infectious during the latent period or recovering during the infectious period remains constant, whereas in reality, these chances vary over time. Here, we find that conventional approaches with this assumption cause serious bias in epidemiological parameter estimation. To address this bias, we developed a Bayesian inference method by adopting more realistic history-dependent disease dynamics. Our method more accurately and precisely estimates the reproduction number than the conventional approaches solely from confirmed cases data, which are easy to obtain through testing. It also revealed how the infectious period distribution changed throughout the COVID-19 pandemic during 2020 in South Korea. We also provide a user-friendly package, IONISE, that automates this method.
Collapse
Affiliation(s)
- Hyukpyo Hong
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Mathematics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eunjin Eom
- Department of Economic Statistics, Korea University, Sejong, 30019, Republic of Korea
| | - Hyojung Lee
- Department of Statistics, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sunhwa Choi
- Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Seongnam, 13449, Republic of Korea.
| | - Boseung Choi
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
- Division of Big Data Science, Korea University, Sejong, 30019, Republic of Korea.
- College of Public Health, The Ohio State University, OH, 43210, USA.
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea.
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Jiang X, Qiu Y, Gao F, Xin H, Li D, Qin Y, Li Z. Latent and incubation periods of Delta, BA.1, and BA.2 variant cases and associated factors: a cross-sectional study in China. BMC Infect Dis 2024; 24:294. [PMID: 38448822 PMCID: PMC10916204 DOI: 10.1186/s12879-024-09158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The latent and incubation periods characterize the transmission of infectious viruses and are the basis for the development of outbreak prevention and control strategies. However, systematic studies on the latent period and associated factors with the incubation period for SAS-CoV-2 variants are still lacking. We inferred the two durations of Delta, BA.1, and BA.2 cases and analyzed the associated factors. METHODS The Delta, BA.1, and BA.2 (and its lineages BA.2.2 and BA.2.76) cases with clear transmission chains and infectors from 10 local SAS-CoV-2 epidemics in China were enrolled. The latent and incubation periods were fitted by the Gamma distribution, and associated factors were analyzed using the accelerated failure time model. RESULTS The mean latent period for 672 Delta, 208 BA.1, and 677 BA.2 cases was 4.40 (95%CI: 4.24 ~ 4.63), 2.50 (95%CI: 2.27 ~ 2.76), and 2.58 (95%CI: 2.48 ~ 2.69) days, respectively, with 85.65% (95%CI: 83.40 ~ 87.77%), 97.80% (95%CI: 96.35 ~ 98.89%), and 98.87% (95%CI: 98.40 ~ 99.27%) of them starting to shed viruses within 7 days after exposure. In 405 Delta, 75 BA.1, and 345 BA.2 symptomatic cases, the mean latent period was 0.76, 1.07, and 0.79 days shorter than the mean incubation period [5.04 (95%CI: 4.83 ~ 5.33), 3.42 (95%CI: 3.00 ~ 3.89), and 3.39 (95%CI: 3.24 ~ 3.55) days], respectively. No significant difference was observed in the two durations between BA.1 and BA.2 cases. After controlling for the sex, clinical severity, vaccination history, number of infectors, the length of exposure window and shedding window, the latent period [Delta: exp(β) = 0.81, 95%CI: 0.66 ~ 0.98, p = 0.034; Omicron: exp(β) = 0.82, 95%CI: 0.71 ~ 0.94, p = 0.004] and incubation period [Delta: exp(β) = 0.69, 95%CI: 0.55 ~ 0.86, p < 0.001; Omicron: exp(β) = 0.83, 95%CI: 0.72 ~ 0.96, p = 0.013] were significantly shorter in 18 ~ 49 years but did not change significantly in ≥ 50 years compared with 0 ~ 17 years. CONCLUSION Pre-symptomatic transmission can occur in Delta, BA.1, and BA.2 cases. The latent and incubation periods between BA.1 and BA.2 were similar but shorter compared with Delta. Age may be associated with the latent and incubation periods of SARS-CoV-2.
Collapse
Affiliation(s)
- Yu Li
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinli Jiang
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yan Qiu
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Feng Gao
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hualei Xin
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Science (CAMS), Peking Union Medical College (PUMC), No. 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Dan Li
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Ying Qin
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhongjie Li
- Division of Infectious Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Science (CAMS), Peking Union Medical College (PUMC), No. 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
3
|
Zheng W, Tan Y, Zhao Z, Chen J, Dong X, Chen X. "Low-risk groups" deserve more attention than "high-risk groups" in imported COVID-19 cases. Front Med (Lausanne) 2023; 10:1293747. [PMID: 38098851 PMCID: PMC10720434 DOI: 10.3389/fmed.2023.1293747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To estimate the optimal quarantine period for inbound travelers and identify key risk factors to provide scientific reference for emerging infectious diseases. Methods A parametric survival analysis model was used to calculate the time interval between entry and first positive nucleic acid test of imported cases in Guangzhou, to identify the influencing factors. And the COVID-19 epidemic risk prediction model based on multiple risk factors among inbound travelers was constructed. Results The approximate 95th percentile of the time interval was 14 days. Multivariate analysis found that the mean time interval for inbound travelers in entry/exit high-risk occupations was 29% shorter (OR 0.29, 95% CI 0.18-0.46, p < 0.0001) than that of low-risk occupations, those from Africa were 37% shorter (OR 0.37, 95% CI 0.17-0.78, p = 0.01) than those from Asia, those who were fully vaccinated were 1.88 times higher (OR 1.88, 95% CI 1.13-3.12, p = 0.01) than that of those who were unvaccinated, and those in other VOC periods were lower than in the Delta period. Decision tree analysis showed that a combined entry/exit low-risk occupation group with Delta period could create a high indigenous epidemic risk by 0.24. Conclusion Different strata of imported cases can result in varying degrees of risk of indigenous outbreaks. "low-risk groups" with entry/exit low-risk occupations, fully vaccinated, or from Asia deserve more attention than "high-risk groups."
Collapse
Affiliation(s)
- Wanshan Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ying Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zedi Zhao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiongfei Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zheng L, Qiu L, Wu L, Wang J, Xie H, Wang J, Huang Y, Chen F. Association of SARS-CoV-2 viral load with abnormal laboratory characteristics and clinical outcomes in hospitalised COVID-19 patients. Epidemiol Infect 2023; 151:e173. [PMID: 37781778 PMCID: PMC10600908 DOI: 10.1017/s0950268823001619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
We conducted a retrospective, analytical cross-sectional and single-centre study that included 190 hospitalised COVID-19 patients in the Fujian Provincial Hospital South Branch between December 2022 and January 2023 to analyse the correlation of viral loads of throat swabs with clinical progression and outcomes. To normalise the Ct value as quantification of viral loads, we used RNase P gene as internal control gene and subtracted the Ct value of SARS-CoV-2 N gene from the Ct value of RNase P gene, termed △Ct. Most patients were discharged (84.2%), and only 10 (5.6%) individuals who had a lower △Ct value died. The initial △Ct value of participants was also significantly correlated with some abnormal laboratory characteristics, and the duration time of SARS-CoV-2 was longer in patients with severe symptoms and a lower △Ct value at admission. Our study suggested that the △Ct value may be used as a predictor of disease progression and outcomes in hospitalised COVID-19 patients.
Collapse
Affiliation(s)
- Lilan Zheng
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Liping Qiu
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Luxi Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Jianwei Wang
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Haihua Xie
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Junjun Wang
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Fawen Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Xu X, Wu Y, Kummer AG, Zhao Y, Hu Z, Wang Y, Liu H, Ajelli M, Yu H. Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med 2023; 21:374. [PMID: 37775772 PMCID: PMC10541713 DOI: 10.1186/s12916-023-03070-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND After the first COVID-19 wave caused by the ancestral lineage, the pandemic has been fueled from the continuous emergence of new SARS-CoV-2 variants. Understanding key time-to-event periods for each emerging variant of concern is critical as it can provide insights into the future trajectory of the virus and help inform outbreak preparedness and response planning. Here, we aim to examine how the incubation period, serial interval, and generation time have changed from the ancestral SARS-CoV-2 lineage to different variants of concern. METHODS We conducted a systematic review and meta-analysis that synthesized the estimates of incubation period, serial interval, and generation time (both realized and intrinsic) for the ancestral lineage, Alpha, Beta, and Omicron variants of SARS-CoV-2. RESULTS Our study included 280 records obtained from 147 household studies, contact tracing studies, or studies where epidemiological links were known. With each emerging variant, we found a progressive shortening of each of the analyzed key time-to-event periods, although we did not find statistically significant differences between the Omicron subvariants. We found that Omicron BA.1 had the shortest pooled estimates for the incubation period (3.49 days, 95% CI: 3.13-4.86 days), Omicron BA.5 for the serial interval (2.37 days, 95% CI: 1.71-3.04 days), and Omicron BA.1 for the realized generation time (2.99 days, 95% CI: 2.48-3.49 days). Only one estimate for the intrinsic generation time was available for Omicron subvariants: 6.84 days (95% CrI: 5.72-8.60 days) for Omicron BA.1. The ancestral lineage had the highest pooled estimates for each investigated key time-to-event period. We also observed shorter pooled estimates for the serial interval compared to the incubation period across the virus lineages. When pooling the estimates across different virus lineages, we found considerable heterogeneities (I2 > 80%; I2 refers to the percentage of total variation across studies that is due to heterogeneity rather than chance), possibly resulting from heterogeneities between the different study populations (e.g., deployed interventions, social behavior, demographic characteristics). CONCLUSIONS Our study supports the importance of conducting contact tracing and epidemiological investigations to monitor changes in SARS-CoV-2 transmission patterns. Our findings highlight a progressive shortening of the incubation period, serial interval, and generation time, which can lead to epidemics that spread faster, with larger peak incidence, and harder to control. We also consistently found a shorter serial interval than incubation period, suggesting that a key feature of SARS-CoV-2 is the potential for pre-symptomatic transmission. These observations are instrumental to plan for future COVID-19 waves.
Collapse
Affiliation(s)
- Xiangyanyu Xu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yanpeng Wu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Allisandra G Kummer
- Laboratory of Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Yuchen Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zexin Hu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Hengcong Liu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Marco Ajelli
- Laboratory of Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Alpers R, Kühne L, Truong HP, Zeeb H, Westphal M, Jäckle S. Evaluation of the EsteR Toolkit for COVID-19 Decision Support: Sensitivity Analysis and Usability Study. JMIR Form Res 2023; 7:e44549. [PMID: 37368487 DOI: 10.2196/44549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND During the COVID-19 pandemic, local health authorities were responsible for managing and reporting current cases in Germany. Since March 2020, employees had to contain the spread of COVID-19 by monitoring and contacting infected persons as well as tracing their contacts. In the EsteR project, we implemented existing and newly developed statistical models as decision support tools to assist in the work of the local health authorities. OBJECTIVE The main goal of this study was to validate the EsteR toolkit in two complementary ways: first, investigating the stability of the answers provided by our statistical tools regarding model parameters in the back end and, second, evaluating the usability and applicability of our web application in the front end by test users. METHODS For model stability assessment, a sensitivity analysis was carried out for all 5 developed statistical models. The default parameters of our models as well as the test ranges of the model parameters were based on a previous literature review on COVID-19 properties. The obtained answers resulting from different parameters were compared using dissimilarity metrics and visualized using contour plots. In addition, the parameter ranges of general model stability were identified. For the usability evaluation of the web application, cognitive walk-throughs and focus group interviews were conducted with 6 containment scouts located at 2 different local health authorities. They were first asked to complete small tasks with the tools and then express their general impressions of the web application. RESULTS The simulation results showed that some statistical models were more sensitive to changes in their parameters than others. For each of the single-person use cases, we determined an area where the respective model could be rated as stable. In contrast, the results of the group use cases highly depended on the user inputs, and thus, no area of parameters with general model stability could be identified. We have also provided a detailed simulation report of the sensitivity analysis. In the user evaluation, the cognitive walk-throughs and focus group interviews revealed that the user interface needed to be simplified and more information was necessary as guidance. In general, the testers rated the web application as helpful, especially for new employees. CONCLUSIONS This evaluation study allowed us to refine the EsteR toolkit. Using the sensitivity analysis, we identified suitable model parameters and analyzed how stable the statistical models were in terms of changes in their parameters. Furthermore, the front end of the web application was improved with the results of the conducted cognitive walk-throughs and focus group interviews regarding its user-friendliness.
Collapse
Affiliation(s)
- Rieke Alpers
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Lisa Kühne
- Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Hong-Phuc Truong
- Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
| | - Hajo Zeeb
- Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Max Westphal
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Sonja Jäckle
- Fraunhofer Institute for Digital Medicine MEVIS, Lübeck, Germany
| |
Collapse
|
7
|
Wang K, Luan Z, Guo Z, Ran J, Tian M, Zhao S. The Association Between Clinical Severity and Incubation Period of SARS-CoV-2 Delta Variants: Retrospective Observational Study. JMIR Public Health Surveill 2022; 8:e40751. [PMID: 36346940 PMCID: PMC9678331 DOI: 10.2196/40751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As of August 25, 2021, Jiangsu province experienced the largest COVID-19 outbreak in eastern China that was seeded by SARS-CoV-2 Delta variants. As one of the key epidemiological parameters characterizing the transmission dynamics of COVID-19, the incubation period plays an essential role in informing public health measures for epidemic control. The incubation period of COVID-19 could vary by different age, sex, disease severity, and study settings. However, the impacts of these factors on the incubation period of Delta variants remains uninvestigated. OBJECTIVE The objective of this study is to characterize the incubation period of the Delta variant using detailed contact tracing data. The effects of age, sex, and disease severity on the incubation period were investigated by multivariate regression analysis and subgroup analysis. METHODS We extracted contact tracing data of 353 laboratory-confirmed cases of SARS-CoV-2 Delta variants' infection in Jiangsu province, China, from July to August 2021. The distribution of incubation period of Delta variants was estimated by using likelihood-based approach with adjustment for interval-censored observations. The effects of age, sex, and disease severity on the incubation period were expiated by using multivariate logistic regression model with interval censoring. RESULTS The mean incubation period of the Delta variant was estimated at 6.64 days (95% credible interval: 6.27-7.00). We found that female cases and cases with severe symptoms had relatively longer mean incubation periods than male cases and those with nonsevere symptoms, respectively. One-day increase in the incubation period of Delta variants was associated with a weak decrease in the probability of having severe illness with an adjusted odds ratio of 0.88 (95% credible interval: 0.71-1.07). CONCLUSIONS In this study, the incubation period was found to vary across different levels of sex, age, and disease severity of COVID-19. These findings provide additional information on the incubation period of Delta variants and highlight the importance of continuing surveillance and monitoring of the epidemiological characteristics of emerging SARS-CoV-2 variants as they evolve.
Collapse
Affiliation(s)
- Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Zemin Luan
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Zihao Guo
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maozai Tian
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China (Hong Kong)
| |
Collapse
|
8
|
Heltberg ML, Michelsen C, Martiny ES, Christensen LE, Jensen MH, Halasa T, Petersen TC. Spatial heterogeneity affects predictions from early-curve fitting of pandemic outbreaks: a case study using population data from Denmark. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220018. [PMID: 36117868 PMCID: PMC9470254 DOI: 10.1098/rsos.220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The modelling of pandemics has become a critical aspect in modern society. Even though artificial intelligence can help the forecast, the implementation of ordinary differential equations which estimate the time development in the number of susceptible, (exposed), infected and recovered (SIR/SEIR) individuals is still important in order to understand the stage of the pandemic. These models are based on simplified assumptions which constitute approximations, but to what extent this are erroneous is not understood since many factors can affect the development. In this paper, we introduce an agent-based model including spatial clustering and heterogeneities in connectivity and infection strength. Based on Danish population data, we estimate how this impacts the early prediction of a pandemic and compare this to the long-term development. Our results show that early phase SEIR model predictions overestimate the peak number of infected and the equilibrium level by at least a factor of two. These results are robust to variations of parameters influencing connection distances and independent of the distribution of infection rates.
Collapse
Affiliation(s)
- Mathias L. Heltberg
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen E 2100, Denmark
- Laboratoire de Physique, Ecole Normale Superieure, Rue Lhomond 15, Paris 07505, France
- Infektionsberedskab, Statens Serum Institute, Artillerivej, Copenhagen S 2300, Denmark
| | - Christian Michelsen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen E 2100, Denmark
| | - Emil S. Martiny
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen E 2100, Denmark
| | - Lasse Engbo Christensen
- DTU Compute, Section for Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Anker Engelunds Vej 101A, Kongens Lyngby 2800, Denmark
| | - Mogens H. Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen E 2100, Denmark
| | - Tariq Halasa
- Animal Welfare and Disease Control, University of Copenhagen, Gronnegårdsvej 8, Frederiksberg C 1870, Denmark
| | - Troels C. Petersen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen E 2100, Denmark
| |
Collapse
|
9
|
Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2228008. [PMID: 35994285 PMCID: PMC9396366 DOI: 10.1001/jamanetworkopen.2022.28008] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPORTANCE Several studies were conducted to estimate the average incubation period of COVID-19; however, the incubation period of COVID-19 caused by different SARS-CoV-2 variants is not well described. OBJECTIVE To systematically assess the incubation period of COVID-19 and the incubation periods of COVID-19 caused by different SARS-CoV-2 variants in published studies. DATA SOURCES PubMed, EMBASE, and ScienceDirect were searched between December 1, 2019, and February 10, 2022. STUDY SELECTION Original studies of the incubation period of COVID-19, defined as the time from infection to the onset of signs and symptoms. DATA EXTRACTION AND SYNTHESIS Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline, 3 reviewers independently extracted the data from the eligible studies in March 2022. The parameters, or sufficient information to facilitate calculation of those values, were derived from random-effects meta-analysis. MAIN OUTCOMES AND MEASURES The mean estimate of the incubation period and different SARS-CoV-2 strains. RESULTS A total of 142 studies with 8112 patients were included. The pooled incubation period was 6.57 days (95% CI, 6.26-6.88) and ranged from 1.80 to 18.87 days. The incubation period of COVID-19 caused by the Alpha, Beta, Delta, and Omicron variants were reported in 1 study (with 6374 patients), 1 study (10 patients), 6 studies (2368 patients) and 5 studies (829 patients), respectively. The mean incubation period of COVID-19 was 5.00 days (95% CI, 4.94-5.06 days) for cases caused by the Alpha variant, 4.50 days (95% CI, 1.83-7.17 days) for the Beta variant, 4.41 days (95% CI, 3.76-5.05 days) for the Delta variant, and 3.42 days (95% CI, 2.88-3.96 days) for the Omicron variant. The mean incubation was 7.43 days (95% CI, 5.75-9.11 days) among older patients (ie, aged over 60 years old), 8.82 days (95% CI, 8.19-9.45 days) among infected children (ages 18 years or younger), 6.99 days (95% CI, 6.07-7.92 days) among patients with nonsevere illness, and 6.69 days (95% CI, 4.53-8.85 days) among patients with severe illness. CONCLUSIONS AND RELEVANCE The findings of this study suggest that SARS-CoV-2 has evolved and mutated continuously throughout the COVID-19 pandemic, producing variants with different enhanced transmission and virulence. Identifying the incubation period of different variants is a key factor in determining the isolation period.
Collapse
Affiliation(s)
- Yu Wu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Liangyu Kang
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Zirui Guo
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, Beijing, China
| | - Wannian Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Peng H, Hu C, Deng W, Huang L, Zhang Y, Luo B, Wang X, Long X, Huang X. Incubation period, clinical and lung CT features for early prediction of COVID-19 deterioration: development and internal verification of a risk model. BMC Pulm Med 2022; 22:188. [PMID: 35549897 PMCID: PMC9095818 DOI: 10.1186/s12890-022-01986-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Most severe, critical, or mortal COVID-19 cases often had a relatively stable period before their status worsened. We developed a deterioration risk model of COVID-19 (DRM-COVID-19) to predict exacerbation risk and optimize disease management on admission. Method We conducted a multicenter retrospective cohort study with 239 confirmed symptomatic COVID-19 patients. A combination of the least absolute shrinkage and selection operator (LASSO), change-in-estimate (CIE) screened out independent risk factors for the multivariate logistic regression model (DRM-COVID-19) from 44 variables, including epidemiological, demographic, clinical, and lung CT features. The compound study endpoint was progression to severe, critical, or mortal status. Additionally, the model's performance was evaluated for discrimination, accuracy, calibration, and clinical utility, through internal validation using bootstrap resampling (1000 times). We used a nomogram and a network platform for model visualization. Results In the cohort study, 62 cases reached the compound endpoint, including 42 severe, 18 critical, and two mortal cases. DRM-COVID-19 included six factors: dyspnea [odds ratio (OR) 4.89;confidence interval (95% CI) 1.53–15.80], incubation period (OR 0.83; 95% CI 0.68–0.99), number of comorbidities (OR 1.76; 95% CI 1.03–3.05), D-dimer (OR 7.05; 95% CI, 1.35–45.7), C-reactive protein (OR 1.06; 95% CI 1.02–1.1), and semi-quantitative CT score (OR 1.50; 95% CI 1.27–1.82). The model showed good fitting (Hosmer–Lemeshow goodness, X2(8) = 7.0194, P = 0.53), high discrimination (the area under the receiver operating characteristic curve, AUROC, 0.971; 95% CI, 0.949–0.992), precision (Brier score = 0.051) as well as excellent calibration and clinical benefits. The precision-recall (PR) curve showed excellent classification performance of the model (AUCPR = 0.934). We prepared a nomogram and a freely available online prediction platform (https://deterioration-risk-model-of-covid-19.shinyapps.io/DRMapp/). Conclusion We developed a predictive model, which includes the including incubation period along with clinical and lung CT features. The model presented satisfactory prediction and discrimination performance for COVID-19 patients who might progress from mild or moderate to severe or critical on admission, improving the clinical prognosis and optimizing the medical resources. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01986-0.
Collapse
Affiliation(s)
- Hongbing Peng
- Department of Pulmonary and Critical Care Medicine, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People's Republic of China. .,Department of Pulmonary and Critical Care Medicine, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People's Republic of China.
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, No. 120, Road Heping, Distract Yuhu, Xiangtan, 411100, People's Republic of China
| | - Wusheng Deng
- Department of Pulmonary and Critical Care Medicine, Shaoyang Central Hospital, No. 36 Hongqi Road, Shaoyang, 422000, People's Republic of China
| | - Lingmei Huang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of YueYang, No. 39 Dongmaoling Road, Yueyang, 414000, People's Republic of China
| | - Yushan Zhang
- Department of Pulmonary and Critical Care Medicine, Huaihua First People's Hospital, No. 144, Jinxi South Road, Huaihua, 418000, People's Republic of China
| | - Baowei Luo
- Department of Respiratory Medicine, Shuangfeng County People's Hospital, 238 Shuyuan Road, Shuangfeng County, 417007, People's Republic of China
| | - Xingxing Wang
- Department of Infection, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People's Republic of China
| | - Xiaodan Long
- Department of Urology Surgery, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People's Republic of China
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People's Republic of China
| |
Collapse
|
11
|
Liu X, Wang L, Ma X, Wang J, Wu L. Modeling the effect of age on quantiles of the incubation period distribution of COVID-19. BMC Public Health 2021; 21:1762. [PMID: 34579681 PMCID: PMC8474900 DOI: 10.1186/s12889-021-11761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The novel coronavirus SARS-CoV-2 (coronavirus disease 2019, COVID-19) has caused serious consequences on many aspects of social life throughout the world since the first case of pneumonia with unknown etiology was identified in Wuhan, Hubei province in China in December 2019. Note that the incubation period distribution is key to the prevention and control efforts of COVID-19. This study aimed to investigate the conditional distribution of the incubation period of COVID-19 given the age of infected cases and estimate its corresponding quantiles from the information of 2172 confirmed cases from 29 provinces outside Hubei in China. METHODS We collected data on the infection dates, onset dates, and ages of the confirmed cases through February 16th, 2020. All the data were downloaded from the official websites of the health commission. As the epidemic was still ongoing at the time we collected data, the observations subject to biased sampling. To address this issue, we developed a new maximum likelihood method, which enables us to comprehensively study the effect of age on the incubation period. RESULTS Based on the collected data, we found that the conditional quantiles of the incubation period distribution of COVID-19 vary by age. In detail, the high conditional quantiles of people in the middle age group are shorter than those of others while the low quantiles did not show the same differences. We estimated that the 0.95-th quantile related to people in the age group 23 ∼55 is less than 15 days. CONCLUSIONS Observing that the conditional quantiles vary across age, we may take more precise measures for people of different ages. For example, we may consider carrying out an age-dependent quarantine duration in practice, rather than a uniform 14-days quarantine period. Remarkably, we may need to extend the current quarantine duration for people aged 0 ∼22 and over 55 because the related 0.95-th quantiles are much greater than 14 days.
Collapse
Affiliation(s)
- Xiaohui Liu
- School of Statistics, Jiangxi University of Finance and Economics, No.169, East Shuanggang Road, Nanchang, Jiangxi Province, 330013 China
- Research Center of Applied Statistics, Jiangxi University of Finance and Economics, No.169, East Shuanggang Road, Nanchang, Jiangxi Province, 330013 China
| | - Lei Wang
- National Engineering Laboratory for Educational Big Data, Central China Normal University, NO.152 Luoyu Road, Wuhan, Hubei Province, 430079 China
| | - Xiansi Ma
- School of Statistics, Jiangxi University of Finance and Economics, No.169, East Shuanggang Road, Nanchang, Jiangxi Province, 330013 China
- Research Center of Applied Statistics, Jiangxi University of Finance and Economics, No.169, East Shuanggang Road, Nanchang, Jiangxi Province, 330013 China
| | - Jiewen Wang
- School of Statistics, Jiangxi University of Finance and Economics, No.169, East Shuanggang Road, Nanchang, Jiangxi Province, 330013 China
- Research Center of Applied Statistics, Jiangxi University of Finance and Economics, No.169, East Shuanggang Road, Nanchang, Jiangxi Province, 330013 China
| | - Liwen Wu
- Department of Neurology, Hunan children’s Hospital, No.86 Ziyuan Road, Changsha, Hunan Province, 410000 China
| |
Collapse
|
12
|
Cheng C, Zhang D, Dang D, Geng J, Zhu P, Yuan M, Liang R, Yang H, Jin Y, Xie J, Chen S, Duan G. The incubation period of COVID-19: a global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients. Infect Dis Poverty 2021; 10:119. [PMID: 34535192 PMCID: PMC8446477 DOI: 10.1186/s40249-021-00901-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The incubation period is a crucial index of epidemiology in understanding the spread of the emerging Coronavirus disease 2019 (COVID-19). In this study, we aimed to describe the incubation period of COVID-19 globally and in the mainland of China. METHODS The searched studies were published from December 1, 2019 to May 26, 2021 in CNKI, Wanfang, PubMed, and Embase databases. A random-effect model was used to pool the mean incubation period. Meta-regression was used to explore the sources of heterogeneity. Meanwhile, we collected 11 545 patients in the mainland of China outside Hubei from January 19, 2020 to September 21, 2020. The incubation period fitted with the Log-normal model by the coarseDataTools package. RESULTS A total of 3235 articles were searched, 53 of which were included in the meta-analysis. The pooled mean incubation period of COVID-19 was 6.0 days (95% confidence interval [CI] 5.6-6.5) globally, 6.5 days (95% CI 6.1-6.9) in the mainland of China, and 4.6 days (95% CI 4.1-5.1) outside the mainland of China (P = 0.006). The incubation period varied with age (P = 0.005). Meanwhile, in 11 545 patients, the mean incubation period was 7.1 days (95% CI 7.0-7.2), which was similar to the finding in our meta-analysis. CONCLUSIONS For COVID-19, the mean incubation period was 6.0 days globally but near 7.0 days in the mainland of China, which will help identify the time of infection and make disease control decisions. Furthermore, attention should also be paid to the region- or age-specific incubation period.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - DongDong Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dejian Dang
- Infection Prevention and Control Department, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Zhengzhou, 450052, Henan, People's Republic of China
| | - Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Peiyu Zhu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Mingzhu Yuan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruonan Liang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jing Xie
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
- Centre for Biostatistics and Clinical Trials (BaCT), Peter MacCallum Cancer Centre, No. 305 Grattan Street, Melbourne, 3000, Victoria, Australia
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|