1
|
Brown KH, Tessema M, McDonald CM, Agbemafle I, Woldeyohannes M, Fereja M, Nane D, Arnold CD, Waka FC, Tesfaye B, Arabi M, Martinez H. Protocol for a community-based, household-randomised, dose-response trial to assess the acceptability, nutritional effects and safety of double-fortified salt containing iodine and folic acid compared with iodised salt among non-pregnant Ethiopian women of reproductive age (DFS-IoFA). BMJ Open 2024; 14:e084494. [PMID: 39477275 PMCID: PMC11529693 DOI: 10.1136/bmjopen-2024-084494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION The prevalence of neural tube defects (NTDs) is higher in Ethiopia than most other countries, and ~84% of Ethiopian women of reproductive age (WRA) have folate insufficiency, a major risk factor for NTDs. Salt fortification with folic acid is a potential strategy to improve women's folate status, but data are needed on the acceptability, nutritional impact and safety of folic acid fortification of iodised salt. METHODS AND ANALYSIS The study is designed as a community-based, household-randomised, dose-response trial. A total of 360 non-pregnant WRA 18-49 years of age will be randomly assigned to one of three intervention arms: (1) iodised salt fortified with 30 ppm folic acid to provide ~200 µg folic acid/day; (2) iodised salt fortified with 90 ppm folic acid to provide ~600 µg folic acid/day; or (3) iodised salt (comparator). The preweighed salts will be delivered to participants' homes biweekly for 26 weeks; unused salt will be collected and weighed. Fasting, venous blood samples will be collected at baseline, end line and a randomly assigned intermediate time point for assessment of folate, iodine, vitamin B12 and other micronutrient status biomarkers. Women's dietary intakes, including discretionary salt consumption, will be measured using weighed food records; 24-hour urine specimens will be analysed for sodium and iodine excretion. Primary outcomes are women's consumption of study salts, change in biomarkers of folate and iodine status and prevalence of adverse events. Results will be analysed using analysis of covariance models to estimate group mean differences for continuous outcomes, controlling for baseline measurements, and log-binomial or modified Poisson regressions for categorical outcomes. Prespecified effect modifications will be explored. ETHICS AND DISSEMINATION The study has been approved by the Ethiopian Public Health Institute's Institutional Review Board, and the protocol has been registered with ClinicalTrials.gov (registration number NCT06223854). Study results will be published in open access scientific journals and disseminated nationally in Ethiopia. TRIAL REGISTRATION NUMBER NCT06223854.
Collapse
Affiliation(s)
- Kenneth H Brown
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, California, USA
| | - Masresha Tessema
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Christine M McDonald
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Isaac Agbemafle
- Department of Nutrition, University of Rhode Island, Kingston, Rhode Island, USA
- University of Health and Allied Sciences, Hohoe, Ghana
| | - Meseret Woldeyohannes
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mengistu Fereja
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Debritu Nane
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, California, USA
| | - Charles D Arnold
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, California, USA
| | - Feyissa Challa Waka
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Biniyam Tesfaye
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, California, USA
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mandana Arabi
- Global Technical Services, Nutrition International, Ottawa, Ontario, Canada
| | - Homero Martinez
- Global Technical Services, Nutrition International, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Gulzar B, Wani NA, Banday AZ, Qureshi UA, Bhat JI, Bukhari STA. A nutritionally compromised infant with severe lactic acidosis and basal ganglia hyperintensities. J Paediatr Child Health 2024; 60:468-469. [PMID: 39699017 DOI: 10.1111/jpc.1_16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Babar Gulzar
- Department of Pediatrics, Government Medical College (GMC), Srinagar, India
| | | | | | - Umar Amin Qureshi
- Department of Pediatrics, Government Medical College (GMC), Srinagar, India
| | - Javeed Iqbal Bhat
- Department of Pediatrics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | | |
Collapse
|
3
|
Gulzar B, Wani NA, Banday AZ, Qureshi UA, Bhat JI, Bukhari STA. A nutritionally compromised infant with severe lactic acidosis and basal ganglia hyperintensities. J Paediatr Child Health 2024; 60:466-467. [PMID: 38873727 DOI: 10.1111/jpc.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Babar Gulzar
- Department of Pediatrics, Government Medical College (GMC), Srinagar, India
| | | | | | - Umar Amin Qureshi
- Department of Pediatrics, Government Medical College (GMC), Srinagar, India
| | - Javeed Iqbal Bhat
- Department of Pediatrics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | | |
Collapse
|
4
|
Shi B, Wang H, Nawaz A, Khan IA, Wang Q, Zhao D, Cheng KW. Dual functional roles of nutritional additives in nutritional fortification and safety of thermally processed food: Potential, limitations, and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13268. [PMID: 38284588 DOI: 10.1111/1541-4337.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/30/2024]
Abstract
The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.
Collapse
Affiliation(s)
- Baoping Shi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Iftikhar Ali Khan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Fatemi SF, Irankhah K, Kruger J, Bruins MJ, Sobhani SR. Implementing micronutrient fortification programs as a potential practical contribution to achieving sustainable diets. NUTR BULL 2023; 48:411-424. [PMID: 37503811 DOI: 10.1111/nbu.12630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Due to sustainability concerns related to current diets and environmental challenges, it is crucial to have sound policies to protect human and planetary health. It is proposed that sustainable diets will improve public health and food security and decrease the food system's effect on the environment. Micronutrient deficiencies are a well-known major public health concern. One-third to half of the world's population suffers from nutrient deficiencies, which have a negative impact on society in terms of unrealised potential and lost economic productivity. Large-scale fortification with different micronutrients has been found to be a useful strategy to improve public health. As a cost-effective strategy to improve micronutrient deficiency, this review explores the role of micronutrient fortification programmes in ensuring the nutritional quality (and affordability) of diets that are adjusted to help ensure environmental sustainability in the face of climate change, for example by replacing some animal-sourced foods with nutrient-dense, plant-sourced foods fortified with the micronutrients commonly supplied by animal-sourced foods. Additionally, micronutrient fortification considers food preferences based on the dimensions of a culturally sustainable diet. Thus, we conclude that investing in micronutrient fortification could play a significant role in preventing and controlling micronutrient deficiencies, improving diets and being environmentally, culturally and economically sustainable.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Fatemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiyavash Irankhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | | - Seyyed Reza Sobhani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Kesik S, Çatak J, Ada K, Yaman M. Cooking Losses and Bioaccessibility of Thiamine by In Vitro Gastrointestinal System in Selected Legumes. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2148593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sultan Kesik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Jale Çatak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Kübra Ada
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Mustafa Yaman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| |
Collapse
|
7
|
Ghosh S, Bollinedi H, Gopala Krishnan S, Kundu A, Singh A, Bhowmick PK, Singh A, Nagarajan M, Vinod KK, Ellur RK, Singh AK. From farm to plate: Spatio-temporal characterization revealed compositional changes and reduced retention of γ-oryzanol upon processing in rice. Front Nutr 2022; 9:1040362. [DOI: 10.3389/fnut.2022.1040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundAntioxidants detain the development and proliferation of various non-communicable diseases (NCDs). γ-oryzanol, a group of steryl ferulates and caffeates, is a major antioxidant present in rice grain with proven health benefits. The present study evaluated the distribution and dynamics of γ-oryzanol and its components in spatial and temporal scales and also delineated the effect of processing and cooking on its retention.MethodsSix rice varieties (four Basmati and two non-Basmati) belonging to indica group were analyzed at spatial scale in four different tissues (leaf blades, leaf sheaths, peduncle and spikelets) and temporal scale at three developmental stages (booting, milky and dough). Additionally, the matured grains were fractioned into husk, embryo, bran, and endosperm to assess differential accumulation in these tissues. Further, milling and cooking of the samples was done to assess the retention upon processing. After extraction of γ-oryzanol by solvent extraction method, individual components were identified by UPLC-QToF-ESI-MS and quantified by RP-HPLC.ResultsThe non-seed tissues were significantly different from the seed tissues for composition and quantitative variation of γ-oryzanol. Cycloartenyl caffeate was predominant in all the non-seed tissues during the three developmental stages while it showed significant reduction during the growth progression toward maturity and was totally absent in the matured grains. In contrary, the 24-methylenecycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate showed significant increment toward the growth progression to maturity. Milling caused significant reduction, retaining only an average of 58.77% γ-oryzanol. Cooking of brown rice in excess water showed relatively lower average retention (43.31%) to samples cooked in minimal water (54.42%). Cooked milled rice showed least mean retention of 21.66%.ConclusionThe results demonstrate prominent compositional variation of γ-oryzanol during different growth stages. For the first time, the study demonstrated that ferulate esters of γ-oryzanol were predominant in the seed tissues while caffeate esters were dominant in non-seed tissues. Basmati cultivars show differential expression of γ-oryzanol and its components compared to non-Basmati cultivars. Cooking in excess water causes maximum degradation of γ-oryzanol. Post-harvest losses due to milling and cooking indicate the necessity of biofortification for γ-oryzanol content in rice grain.
Collapse
|
8
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
9
|
Pyo E, Tsang BL, Parker ME. Rice as a vehicle for micronutrient fortification: a systematic review of micronutrient retention, organoleptic properties, and consumer acceptability. Nutr Rev 2022; 80:1062-1085. [PMID: 35146517 DOI: 10.1093/nutrit/nuab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Previous reviews have focused on evaluating the efficacy and effectiveness of rice fortification, despite the need to also understand the outcomes of micronutrient retention, organoleptic properties, and acceptability to inform nutrition programs. OBJECTIVE This systematic review aims to consolidate existing evidence on micronutrient retention, organoleptic properties, and acceptability of fortified rice. DATA SOURCES Eligible articles were identified from 22 electronic databases and personal referrals and reviews. STUDY SELECTION Studies on rice fortified via extrusion or coating technologies were included in the review if they reported outcomes in at least 1 of 3 domains: micronutrient retention, organoleptic or physicochemical properties, and acceptability (evaluated by sensory tests and consumer surveys). Any years of publication and study populations were considered for inclusion. A total of 15 391 articles were screened, yielding 49 for inclusion. DATA EXTRACTION Study results were summarized descriptively through discussions by intervention conditions, study population, measurement methods, and key findings. The included studies were independently reviewed by 2 of the 3 authors, and all 3 authors reached consensus on the quality and major findings from the included articles. RESULTS Extrusion and coating fortification technologies were found to be comparable across studies that assessed retention, organoleptic properties, and acceptability. Cooking fortified rice in excess water increased micronutrient loss for both technologies. Fortified kernels containing ferric pyrophosphate, zinc oxide, or zinc sulfate showed the most positive results for all outcomes reviewed, while retention rates of vitamin A in multiple-micronutrient-fortified rice were variable. CONCLUSIONS The current practice of fortifying rice with ferric pyrophosphate provides high micronutrient stability and results in rice with organoleptic properties and consumer acceptance levels comparable to those of unfortified milled rice, although it presents challenges regarding the effect of vitamin A-fortified rice on vitamin A status.
Collapse
Affiliation(s)
- Euisun Pyo
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Becky L Tsang
- Food Fortification Initiative, Atlanta, Georgia, USA
| | - Megan E Parker
- Maternal, Newborn, Child Health and Nutrition, PATH, Seattle, Washington, USA
| |
Collapse
|
10
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
11
|
The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Whitfield KC, Smith TJ, Rohner F, Wieringa FT, Green TJ. Thiamine fortification strategies in low- and middle-income settings: a review. Ann N Y Acad Sci 2021; 1498:29-45. [PMID: 33496051 PMCID: PMC8451796 DOI: 10.1111/nyas.14565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Thiamine (vitamin B1 ) is an essential micronutrient in energy metabolism and cognitive and neurological health. Thiamine deficiency disorders (TDDs) have a range of clinical presentations that result in various morbidities and can be fatal if not promptly recognized and treated, especially in infants. To intervene, thiamine intakes by breastfeeding mothers and others at risk of thiamine deficiency should be increased to ensure adequate thiamine intake. Although thiamine fortification programs have a long history in high-income countries, there are few mandatory fortification programs to address TDDs in low- and middle-income countries (LMICs), particularly in the regions of greatest concern, South and Southeast Asia. This review highlights essential aspects for consideration in the development of a mandatory fortification program in LMICs, including an overview of the data required to model fortification dosing schemes, available thiamine fortificants, and potential fortification vehicles, as well as identifies current knowledge gaps.
Collapse
Affiliation(s)
- Kyly C. Whitfield
- Department of Applied Human NutritionMount Saint Vincent UniversityHalifaxNova ScotiaCanada
| | - Taryn J. Smith
- Institute for Global NutritionUniversity of California DavisDavisCalifornia
| | | | - Frank T. Wieringa
- UMR‐95 QualiSud, French National Research Institute for Sustainable Development (IRD)CIRAD/IRD/University of Montpellier/SupAgro/University of Avignon/University of RéunionAvignonFrance
| | - Tim J. Green
- SAHMRI Women and KidsSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
13
|
Health-Promoting Constituents and Selected Quality Parameters of Different Types of Kimchi: Fermented Plant Products. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9925344. [PMID: 34336996 PMCID: PMC8321756 DOI: 10.1155/2021/9925344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the quality and health-promoting constituents of several variants of kimchi obtained from Chinese cabbage, kohlrabi, white radish, and cucumbers. The level of dry matter, total soluble solids, ash, total acidity, pH, dietary fiber, and vitamins C, B1, and B2, as well as total polyphenols (TP) and antioxidant activity AA (ABTS, DPPH) in kimchi, were determined. In addition, color parameters were determined (L∗, a∗, b∗, C∗, and ho). Kimchi with the highest proportion of Chinese cabbage (63%) had the highest levels of dry matter (11.01 g), ash (2.57 g), and vitamins: C, B1, and B2 (51 mg, 52 μg, and 242 μg, respectively), expressed per 100 g of fresh weight. In addition, this product showed the highest total AA of 132.3 μmol Tx/g (ABTS) and 49.7 μmol Tx/g (DPPH) due to its high level of TP (194 mg/100 g). Cucumber-derived kimchi (85%) also had a high content of TP (147 mg/100 g) and high AA of 88.7 μmol Tx/g (ABTS) and 36.3 μmol Tx/g (DPPH). Additionally, stuffed kimchi from kohlrabi (88%) had the highest amounts of total dietary fiber, 3.65 g/100 g fresh weight. In all products, red (a∗) and yellow (b∗) were the dominant colors, with values of L∗ ranging between 32.63 and 53.16. In general, our studies have shown that depending on the raw materials used, kimchi is a good source of dietary fiber but also vitamins and polyphenols.
Collapse
|
14
|
Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V, Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front Nutr 2021; 8:586815. [PMID: 34222296 PMCID: PMC8241910 DOI: 10.3389/fnut.2021.586815] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Around the world, cereals are stapled foods and good sources of vitamins A, B, and E. As cereals are inexpensive and consumed in large quantities, attempts are being made to enrich cereals using fortification and biofortification in order to address vitamin deficiency disorders in a vulnerable population. The processing and cooking of cereals significantly affect vitamin content. Depending on grain structure, milling can substantially reduce vitamin content, while cooking methods can significantly impact vitamin retention and bioaccessibility. Pressure cooking has been reported to result in large vitamin losses, whereas minimal vitamin loss was observed following boiling. The fortification of cereal flour with vitamins B1, B2, B3, and B9, which are commonly deficient, has been recommended; and in addition, region-specific fortification using either synthetic or biological vitamins has been suggested. Biofortification is a relatively new concept and has been explored as a method to generate vitamin-rich crops. Once developed, biofortified crops can be utilized for several years. A recent cereal biofortification success story is the enrichment of maize with provitamin A carotenoids.
Collapse
Affiliation(s)
- Monika Garg
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anjali Sharma
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shreya Vats
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vandita Tiwari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anita Kumari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vibhu Mishra
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Meena Krishania
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| |
Collapse
|
15
|
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing health benefits of milled rice: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:8099-8119. [PMID: 34036858 DOI: 10.1080/10408398.2021.1925629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| | - Nese Sreenivasulu
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Cecilia Acuin
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| |
Collapse
|
16
|
Rodd BG, Tas AA, Taylor KDA. Dysphagia, texture modification, the elderly and micronutrient deficiency: a review. Crit Rev Food Sci Nutr 2021; 62:7354-7369. [PMID: 33905267 DOI: 10.1080/10408398.2021.1913571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysphagia is an underlying symptom of many health issues affecting a person's ability to swallow. Being unable to swallow correctly may limit food intake and subsequently micronutrient status. The elderly may be the most at risk group of suffering dysphagia as well as most likely to be deficient in micronutrients. The use of texture-modified meals is a common approach to increasing dysphagia sufferer's food intake. The modification of food may affect the micronutrient content and currently there is a limited number of studies focusing on micronutrient content of texture-modified meals. This review considers the prevalence of dysphagia within the elderly UK community whilst assessing selected micronutrients. Vitamin B12, C, D, folate, zinc and iron, which are suggested to be most likely deficient in the general elderly UK population, were reviewed. Each micronutrient is considered in terms of prevalence of deficiency, metabolic function, food source and processing stability to provide an overview with respect to elderly dysphagia sufferers.
Collapse
Affiliation(s)
- B G Rodd
- National Centre for Food Manufacturing, College of Science, University of Lincoln, Lincoln, UK
| | - A A Tas
- National Centre for Food Manufacturing, College of Science, University of Lincoln, Lincoln, UK
| | - K D A Taylor
- National Centre for Food Manufacturing, College of Science, University of Lincoln, Lincoln, UK
| |
Collapse
|
17
|
Minimisation of vitamin losses in fortified cookies by response surface methodology and validation of the determination methods. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Pumpkin, Cauliflower and Broccoli as New Carriers of Thiamine Compounds for Food Fortification. Foods 2021; 10:foods10030578. [PMID: 33801931 PMCID: PMC7999783 DOI: 10.3390/foods10030578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of the study is to explore the possibility of vegetables being used as carriers of thiamine. The influence of carrier type (thiamine hydrochloride—TCh and thiamine pyrophosphate—TP) for the thiamine stability were investigated. Two varieties of pumpkin, Muscat and Hokkaido, as well as Cauliflower and Broccoli, were used as a matrix for the thiamine applied. The impregnated and freeze-dried vegetables were stored (230 days) with changing access to light (access to and restriction of light) and temperature (21 °C and 40 °C). The analyzed carriers were also used in the production of gnocchi dumplings. The content of thiamine was analyzed using the thiochromium method. In the study, consumer tests (n = 199) and sensory profiling were used to assess the impact of thiamine carriers on the sensory quality of gnocchi dumplings. It was found that the introduction of dried vegetables at the level of 30% allows for high sensory desirability of analyzed products, as well as suggesting the possibility of their frequent consumption. Such a product could potentially become an alternative to pork meat as a good source of thiamine. However, it should be noted that the thiamine losses may occur during the storage of dried vegetables and their culinary preparation.
Collapse
|
19
|
Tiozon RJN, Fernie AR, Sreenivasulu N. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Jyrwa YW, Palika R, Boddula S, Boiroju NK, Madhari R, Pullakhandam R, Thingnganing L. Retention, stability, iron bioavailability and sensory evaluation of extruded rice fortified with iron, folic acid and vitamin B 12. MATERNAL & CHILD NUTRITION 2020; 16 Suppl 3:e12932. [PMID: 33347722 PMCID: PMC7752130 DOI: 10.1111/mcn.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Fortification of rice with micronutrients using extrusion technology is considered a sustainable strategy to prevent nutritional deficiencies in general population. The objective of the present study is to assess the retention, stability and iron bioavailability from indigenously developed triple fortified rice (iron, folic acid and vitamin B12 ) during rinsing and different cooking methods. Further, we also assessed the acceptability of fortified rice in adult human volunteers. The retention of iron during rinsing with excess water was ≥90%, whereas folic acid and vitamin B12 levels were reduced by ~25% during rinsing. Watertight cooking of rice (in electric cooker or on flame) had no additional effect on the nutrient levels as compared with rinsed rice, implying their stability during cooking. However, cooking with excess water followed by decanting led to loss of 45% iron and ≥70% folic acid and vitamin B12 . The dialyzable iron and ferritin synthesis in Caco-2 cells was significantly (P < .01) higher from fortified rice compared with unfortified rice. In addition, inclusion of ascorbic acid significantly (P < .01) increased the iron bioavailability from the fortified rice. Triangle tests in adult human subjects revealed that there are no significant sensory differences among fortified and unfortified rice. Further, fortified rice consumption appears to bridge the gaps in dietary iron intake deficits in children and women of reproductive age. These results suggest that the iron-, folic acid- and vitamin B12 -fortified rice has higher retention and stability of fortified nutrients and is acceptable for consumption in adult human volunteers.
Collapse
Affiliation(s)
- Yvette Wilda Jyrwa
- Micronutrient Research Group, Biochemistry DivisionNational Institute of NutritionHyderabadIndia
| | - Ravindranadh Palika
- Micronutrient Research Group, Biochemistry DivisionNational Institute of NutritionHyderabadIndia
| | - Swetha Boddula
- Clinical DivisionNational Institute of NutritionHyderabadIndia
| | | | - Radhika Madhari
- Clinical DivisionNational Institute of NutritionHyderabadIndia
| | - Raghu Pullakhandam
- Micronutrient Research Group, Biochemistry DivisionNational Institute of NutritionHyderabadIndia
| | - Longvah Thingnganing
- Food Chemistry DivisionNational Institute of Nutrition, Indian Council of Medical ResearchHyderabadIndia
| |
Collapse
|
21
|
Folic acid retention evaluation in preparations with wheat flour and corn submitted to different cooking methods by HPLC/DAD. PLoS One 2020; 15:e0230583. [PMID: 32267871 PMCID: PMC7141679 DOI: 10.1371/journal.pone.0230583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/04/2020] [Indexed: 12/04/2022] Open
Abstract
Folic acid content was evaluated in food preparations containing wheat and corn flour submitted to baking, deep-frying, and steaming. Commercially fortified flours showed the absence of folic acid. Flours with laboratory folic acid fortification showed 487 and 474 μg of folic acid in 100 g of wheat and corn flours, respectively. In the corn flour preparations, the cake had the highest retention (99%) when compared to couscous (97%). Besides, the cake showed higher retention when compared to the wheat flour preparations due to the interactions of the folic acid with the hydrophobic amino acids of the Zein, a protein found in corn. In wheat flour preparations, vitamin retention was 87%, 80% and 57% in bread, cake, and White sauce respectively. These findings relate to the change of the physicochemical properties of food components that occurs during mixing and cooking of the ingredients.
Collapse
|
22
|
Liu K, Zheng J, Wang X, Chen F. Effects of household cooking processes on mineral, vitamin B, and phytic acid contents and mineral bioaccessibility in rice. Food Chem 2019; 280:59-64. [DOI: 10.1016/j.foodchem.2018.12.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023]
|
23
|
Zaghi AN, Barbalho SM, Guiguer EL, Otoboni AM. Frying Process: From Conventional to Air Frying Technology. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1600541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Aline Nalon Zaghi
- Department of Food Technology, Food Technology School, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Food Technology, Food Technology School, São Paulo, Brazil
- Medical School of Marília, UNIMAR, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Food Technology, Food Technology School, São Paulo, Brazil
- Medical School of Marília, UNIMAR, São Paulo, Brazil
| | - Alda Maria Otoboni
- Department of Food Technology, Food Technology School, São Paulo, Brazil
| |
Collapse
|
24
|
Food Bioactive Compounds and Their Interference in Drug Pharmacokinetic/Pharmacodynamic Profiles. Pharmaceutics 2018; 10:pharmaceutics10040277. [PMID: 30558213 PMCID: PMC6321138 DOI: 10.3390/pharmaceutics10040277] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Preclinical and clinical studies suggest that many food molecules could interact with drug transporters and metabolizing enzymes through different mechanisms, which are predictive of what would be observed clinically. Given the recent incorporation of dietary modifications or supplements in traditional medicine, an increase in potential food-drug interactions has also appeared. The objective of this article is to review data regarding the influence of food on drug efficacy. Data from Google Scholar, PubMed, and Scopus databases was reviewed for publications on pharmaceutical, pharmacokinetic, and pharmacodynamic mechanisms. The following online resources were used to integrate functional and bioinformatic results: FooDB, Phenol-Explorer, Dr. Duke's Phytochemical and Ethnobotanical Databases, DrugBank, UniProt, and IUPHAR/BPS Guide to Pharmacology. A wide range of food compounds were shown to interact with proteins involved in drug pharmacokinetic/pharmacodynamic profiles, starting from drug oral bioavailability to enteric/hepatic transport and metabolism, blood transport, and systemic transport/metabolism. Knowledge of any food components that may interfere with drug efficacy is essential, and would provide a link for obtaining a holistic view for cancer, cardiovascular, musculoskeletal, or neurological therapies. However, preclinical interaction may be irrelevant to clinical interaction, and health professionals should be aware of the limitations if they intend to optimize the therapeutic effects of drugs.
Collapse
|
25
|
Nouri E, Abbasi H, Rahimi E. Effects of processing on stability of water- and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2018. [DOI: 10.3920/qas2018.1304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E. Nouri
- Department of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - H. Abbasi
- Department of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - E. Rahimi
- Department of Food Hygiene and Public Health, College of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|