1
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
2
|
Research progress on maintaining chloroplast homeostasis under stress conditions: a review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:173-182. [PMID: 36840466 PMCID: PMC10157539 DOI: 10.3724/abbs.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
On a global scale, drought, salinity, extreme temperature, and other abiotic stressors severely limit the quality and yield of crops. Therefore, it is crucial to clarify the adaptation strategies of plants to harsh environments. Chloroplasts are important environmental sensors in plant cells. For plants to thrive in different habitats, chloroplast homeostasis must be strictly regulated, which is necessary to maintain efficient plant photosynthesis and other metabolic reactions under stressful environments. To maintain normal chloroplast physiology, two important biological processes are needed: the import and degradation of chloroplast proteins. The orderly import of chloroplast proteins and the timely degradation of damaged chloroplast components play a key role in adapting plants to their environment. In this review, we briefly described the mechanism of chloroplast TOC-TIC protein transport. The importance and recent progress of chloroplast protein turnover, retrograde signaling, and chloroplast protein degradation under stress are summarized. Furthermore, the potential of targeted regulation of chloroplast homeostasis is emphasized to improve plant adaptation to environmental stresses.
Collapse
|
3
|
Bhattacharya D, Etten JV, Benites LF, Stephens TG. Endosymbiotic ratchet accelerates divergence after organelle origin: The Paulinella model for plastid evolution: The Paulinella model for plastid evolution. Bioessays 2023; 45:e2200165. [PMID: 36328783 DOI: 10.1002/bies.202200165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne ) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce Ne , leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Barth MA, Soll J, Akbaş Ş. Prokaryotic and eukaryotic traits support the biological role of the chloroplast outer envelope. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119224. [PMID: 35120999 DOI: 10.1016/j.bbamcr.2022.119224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The plastid outer envelope (OE) is a mixture of components inherited from their prokaryotic ancestor like galactolipids, carotenoids and porin type ion channels supplemented with eukaryotic inventions to make the endosymbiotic process successful as well as to control plastid biogenesis and differentiation. In this review we wanted to highlight the importance of the OE proteins and its evolutionary origin. For a long time, the OE was thought to be a diffusion barrier only, but with the recent discoveries of all kinds of different proteins in the OE it has been shown that the OE can modulate various functions within the cell. The phenotypic changes show that channels like the outer envelope proteins OEP40, OEP16 or JASSY have a pronounced ion selectivity that cannot be replaced by other ion channels present in the OE. Eukaryotic additions, like the GTPase receptors Toc33 and Toc159 or the ubiquitin proteasome system for chloroplast protein quality control, round up the profile of the OE.
Collapse
Affiliation(s)
- Melanie Anette Barth
- Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Şebnem Akbaş
- Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Liu XJ, Sun J, Huang Y, Li C, Zheng P, Yuan Y, Chen H, Jan M, Zheng H, Du H, Tu J. Osj10gBTF3-Mediated Import of Chloroplast Protein Is Essential for Pollen Development in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:713544. [PMID: 34421965 PMCID: PMC8377413 DOI: 10.3389/fpls.2021.713544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Chloroplasts are crucial organelles for the generation of fatty acids and starch required for plant development. Nascent polypeptide-associated complex (NAC) proteins have been implicated in development as transcription factors. However, their chaperone roles in chloroplasts and their relationship with pollen development in plants remain to be elucidated. Here, we demonstrated that Osj10gBTF3, a NAC protein, regulates pollen and chloroplast development in rice by coordinating with a Hsp90 family chaperone OsHSP82 to mediate chloroplast import. Knockout of Osj10gBTF3 affects pollen and chloroplast development and significantly reduces the accumulation of fertility-related chloroplast protein OsPPR676. Both Osj10gBTF3 and OsHSP82 interact with OsPPR676. Interestingly, the interaction between OsHSP82 and OsPPR676 is only found in the cytoplasm, while the interaction between Osj10gBTF3 and OsPPR676 also occurs inside the chloroplast. The chloroplast stroma chaperone OsCpn60 can also be co-precipitated with Osj10gBTF3, but not with OsHSP82. Further investigation indicates that Osj10gBTF3 enters the chloroplast stroma possibly through the inner chloroplast membrane channel protein Tic110 and then recruits OsCpn60 for the folding or assembly of OsPPR676. Our results reveal a chaperone role of Osj10gBTF3 in chloroplast import different from Hsp90 and provide a link between chloroplast transport and pollen development in rice.
Collapse
Affiliation(s)
- Xue-jiao Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jiaqi Sun
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Yuqing Huang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Chao Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Peng Zheng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yue Yuan
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Hao Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehmood Jan
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Hao Du
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jumin Tu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T, Eliáš M. Olisthodiscus represents a new class of Ochrophyta. JOURNAL OF PHYCOLOGY 2021; 57:1094-1118. [PMID: 33655496 DOI: 10.1111/jpy.13155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The phylogenetic diversity of Ochrophyta, a diverse and ecologically important radiation of algae, is still incompletely understood even at the level of the principal lineages. One taxon that has eluded simple classification is the marine flagellate genus Olisthodiscus. We investigated Olisthodiscus luteus K-0444 and documented its morphological and genetic differences from the NIES-15 strain, which we described as Olisthodiscus tomasii sp. nov. Phylogenetic analyses of combined 18S and 28S rRNA sequences confirmed that Olisthodiscus constitutes a separate, deep, ochrophyte lineage, but its position could not be resolved. To overcome this problem, we sequenced the plastid genome of O. luteus K-0444 and used the new data in multigene phylogenetic analyses, which suggested that Olisthodiscus is a sister lineage of the class Pinguiophyceae within a broader clade additionally including Chrysophyceae, Synchromophyceae, and Eustigmatophyceae. Surprisingly, the Olisthodiscus plastid genome contained three genes, ycf80, cysT, and cysW, inherited from the rhodophyte ancestor of the ochrophyte plastid yet lost from all other ochrophyte groups studied so far. Combined with nuclear genes for CysA and Sbp proteins, Olisthodiscus is the only known ochrophyte possessing a plastidial sulfate transporter SulT. In addition, the finding of a cemA gene in the Olisthodiscus plastid genome and an updated phylogenetic analysis ruled out the previously proposed hypothesis invoking horizontal cemA transfer from a green algal plastid into Synurales. Altogether, Olisthodiscus clearly represents a novel phylogenetically distinct ochrophyte lineage, which we have proposed as a new class, Olisthodiscophyceae.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Wenche Eikrem
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Natural history Museum, University of Oslo, P.O. Box 1172 Blindern, 0318, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Anette Engesmo
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Aleš Horák
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| |
Collapse
|
7
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
8
|
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells 2020; 9:cells9081795. [PMID: 32731621 PMCID: PMC7463930 DOI: 10.3390/cells9081795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes.
Collapse
|
9
|
Richardson LGL, Schnell DJ. Origins, function, and regulation of the TOC-TIC general protein import machinery of plastids. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1226-1238. [PMID: 31730153 PMCID: PMC7031061 DOI: 10.1093/jxb/erz517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/14/2019] [Indexed: 05/11/2023]
Abstract
The evolution of chloroplasts from the original endosymbiont involved the transfer of thousands of genes from the ancestral bacterial genome to the host nucleus, thereby combining the two genetic systems to facilitate coordination of gene expression and achieve integration of host and organelle functions. A key element of successful endosymbiosis was the evolution of a unique protein import system to selectively and efficiently target nuclear-encoded proteins to their site of function within the chloroplast after synthesis in the cytoplasm. The chloroplast TOC-TIC (translocon at the outer chloroplast envelope-translocon at the inner chloroplast envelope) general protein import system is conserved across the plant kingdom, and is a system of hybrid origin, with core membrane transport components adapted from bacterial protein targeting systems, and additional components adapted from host genes to confer the specificity and directionality of import. In vascular plants, the TOC-TIC system has diversified to mediate the import of specific, functionally related classes of plastid proteins. This functional diversification occurred as the plastid family expanded to fulfill cell- and tissue-specific functions in terrestrial plants. In addition, there is growing evidence that direct regulation of TOC-TIC activities plays an essential role in the dynamic remodeling of the organelle proteome that is required to coordinate plastid biogenesis with developmental and physiological events.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Zhang Z, Fan Y, Xiong J, Guo X, Hu K, Wang Z, Gao J, Wen J, Yi B, Shen J, Ma C, Fu T, Xia S, Tu J. Two young genes reshape a novel interaction network in Brassica napus. THE NEW PHYTOLOGIST 2020; 225:530-545. [PMID: 31407340 DOI: 10.1111/nph.16113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
New genes often drive the evolution of gene interaction networks. In Brassica napus, the widely used genic male sterile breeding system 7365ABC is controlled by two young genes, Bnams4b and BnaMs3. However, the interaction mechanism of these two young genes remains unclear. Here, we confirmed that Bnams4b interacts with the nuclear localised E3 ligase BRUTUS (BTS). Ectopic expression of AtBRUTUS (AtBTS) and comparison between Bnams4b -transgenic Arabidopsis and bts mutants suggested that Bnams4b may drive translocation of BTS to cause various toxic defects. BnaMs3 gained an exclusive interaction with the plastid outer-membrane translocon Toc33 compared with Bnams3 and AtTic40, and specifically compensated for the toxic effects of Bnams4b . Heat shock treatment also rescued the sterile phenotype, and high temperature suppressed the interaction between Bnams4b and BTS in yeast. Furthermore, the ubiquitin system and TOC (translocon at the outer envelope membrane of chloroplasts) component accumulation were affected in Bnams4b -transgenic Arabidopsis plants. Taken together, these results indicate that new chimeric Bnams4b carries BTS from nucleus to chloroplast, which may disrupt the normal ubiquitin-proteasome system to cause toxic effects, and these defects can be compensated by BnaMs3-Toc33 interaction or environmental heat shock. It reveals a scenario in which two population-specific coevolved young genes reshape a novel interaction network in plants.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Fan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Rath P, Sharpe T, Hiller S. The electrostatic core of the outer membrane protein X from E. coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183031. [PMID: 31374213 DOI: 10.1016/j.bbamem.2019.183031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 07/25/2019] [Indexed: 11/29/2022]
Abstract
Electrostatic side chain contacts can contribute substantial interaction energy terms to the stability of proteins. The impact of electrostatic interactions on the structure and architecture of outer membrane proteins is however not well studied compared to soluble proteins. Here, we report the results of a systematic study of all charged side chains of the E. coli outer membrane protein X (OmpX). The data identify three distinct salt-bridge clusters in the core of OmpX that contribute significantly to protein stability in dodecylphosphocholine detergent micelles. The three clusters form an "electrostatic core" of the membrane protein OmpX, corresponding in its architectural role to the hydrophobic core of soluble proteins. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Parthasarathi Rath
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
12
|
Rath P, Sharpe T, Kohl B, Hiller S. Two‐State Folding of the Outer Membrane Protein X into a Lipid Bilayer Membrane. Angew Chem Int Ed Engl 2019; 58:2665-2669. [DOI: 10.1002/anie.201812321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Parthasarathi Rath
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| | - Timothy Sharpe
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| | - Bastian Kohl
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| | - Sebastian Hiller
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
13
|
Rath P, Sharpe T, Kohl B, Hiller S. Two‐State Folding of the Outer Membrane Protein X into a Lipid Bilayer Membrane. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Parthasarathi Rath
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| | - Timothy Sharpe
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| | - Bastian Kohl
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| | - Sebastian Hiller
- BiozentrumUniversity of Basel Klingenbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
14
|
Day PM, Theg SM. Evolution of protein transport to the chloroplast envelope membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:315-326. [PMID: 30291507 DOI: 10.1007/s11120-018-0540-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/20/2018] [Indexed: 05/11/2023]
Abstract
Chloroplasts are descendants of an ancient endosymbiotic cyanobacterium that lived inside a eukaryotic cell. They inherited the prokaryotic double membrane envelope from cyanobacteria. This envelope contains prokaryotic protein sorting machineries including a Sec translocase and relatives of the central component of the bacterial outer membrane β-barrel assembly module. As the endosymbiont was integrated with the rest of the cell, the synthesis of most of its proteins shifted from the stroma to the host cytosol. This included nearly all the envelope proteins identified so far. Consequently, the overall biogenesis of the chloroplast envelope must be distinct from cyanobacteria. Envelope proteins initially approach their functional locations from the exterior rather than the interior. In many cases, they have been shown to use components of the general import pathway that also serves the stroma and thylakoids. If the ancient prokaryotic protein sorting machineries are still used for chloroplast envelope proteins, their activities must have been modified or combined with the general import pathway. In this review, we analyze the current knowledge pertaining to chloroplast envelope biogenesis and compare this to bacteria.
Collapse
Affiliation(s)
- Philip M Day
- Department of Plant Biology, University of California at Davis, 1 Shields Avenue, Davis, CA, USA
| | - Steven M Theg
- Department of Plant Biology, University of California at Davis, 1 Shields Avenue, Davis, CA, USA.
| |
Collapse
|
15
|
Zhou K, Xia J, Wang Y, Ma T, Li Z. A Young Seedling Stripe2 phenotype in rice is caused by mutation of a chloroplast-localized nucleoside diphosphate kinase 2 required for chloroplast biogenesis. Genet Mol Biol 2017; 40:630-642. [PMID: 28863212 PMCID: PMC5596372 DOI: 10.1590/1678-4685-gmb-2016-0267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
Chloroplast development and chlorophyll (Chl) biosynthesis in plants are regulated by many genes, but the underlying molecular mechanisms remain largely elusive. We isolated a rice mutant named yss2 (young seedling stripe2) with a striated seedling phenotype beginning from leaf 2 of delayed plant growth. The mutant developed normal green leaves from leaf 5, but reduced tillering and chlorotic leaves and panicles appeared later. Chlorotic yss2 seedlings have decreased pigment contents and impaired chloroplast development. Genetic analysis showed that the mutant phenotype was due to a single recessive gene. Positional cloning and sequence analysis identified a single nucleotide substitution in YSS2 gene causing an amino acid change from Gly to Asp. The YSS2 allele encodes a NDPK2 (nucleoside diphosphate kinase 2) protein showing high similarity to other types of NDPKs. Real-time RT-PCR analysis demonstrated that YSS2 transcripts accumulated highly in L4 sections at the early leaf development stage. Expression levels of genes associated with Chl biosynthesis and photosynthesis in yss2 were mostly decreased, but genes involved in chloroplast biogenesis were up-regulated compared to the wild type. The YSS2 protein was associated with punctate structures in the chloroplasts of rice protoplasts. Our overall data suggest that YSS2 has important roles in chloroplast biogenesis.
Collapse
Affiliation(s)
- Kunneng Zhou
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Jiafa Xia
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Yuanlei Wang
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Tingchen Ma
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Zefu Li
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| |
Collapse
|
16
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
17
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
18
|
Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. PLANTA 2017; 245:45-60. [PMID: 27578095 DOI: 10.1007/s00425-016-2590-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling stage. Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although a few regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. Here, we report the characterization of a temperature-sensitive young seedling stripe1 (yss1) rice mutant, which develops striated leaves at the seedling stage, particularly in leaf 3, but produces wild-type leaves in leaf 5 and onwards. The chlorotic leaves have decreased chlorophyll (Chls) accumulation and impaired chloroplast structure. Positional cloning combined with sequencing demonstrated that aberrant splicing of the 8th intron in YSS1 gene, due to a single nucleotide deletion around splicing donor site, leads to decreased expression of YSS1 and accumulation of an 8th intron-retained yss1 transcript. Furthermore, complementation test revealed that downregulation of YSS1 but not accumulation of yss1 transcript confers yss1 mutant phenotype. YSS1 encodes a chloroplast nucleoid-localized protein belonging to the DUF3727 superfamily. Expression analysis showed that YSS1 gene is more expressed in newly expanded leaves, and distinctly up-regulated as temperatures increase and by light stimulus. PEP- and nuclear-encoded phage-type RNA polymerase (NEP)-dependent genes are separately down-regulated and up-regulated in yss1 mutant, indicating that PEP activity may be impaired. Furthermore, levels of chloroplast proteins are mostly reduced in yss1 seedlings. Together, our findings identify YSS1 as a novel regulator of PEP activity essential for chloroplast development at rice seedling stage.
Collapse
Affiliation(s)
- Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Feng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Long Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jia Lyu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaolu Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiupin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
19
|
|
20
|
Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B. Toxoplasma gondii Toc75 Functions in Import of Stromal but not Peripheral Apicoplast Proteins. Traffic 2015; 16:1254-69. [PMID: 26381927 DOI: 10.1111/tra.12333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 01/09/2023]
Abstract
Apicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist. As a result the apicoplast is surrounded by four membranes. This complex structure necessitates a system of transport signals and translocons allowing nuclear encoded proteins to find their way to specific apicoplast sub-compartments. Previous studies identified translocons traversing two of the four apicoplast membranes. Here we provide functional support for the role of an apicomplexan Toc75 homolog in apicoplast protein transport. We identify two apicomplexan genes encoding Toc75 and Sam50, both members of the Omp85 protein family. We localize the respective proteins to the apicoplast and the mitochondrion of Toxoplasma and Plasmodium. We show that the Toxoplasma Toc75 is essential for parasite growth and that its depletion results in a rapid defect in the import of apicoplast stromal proteins while the import of proteins of the outer compartments is affected only as the secondary consequence of organelle loss. These observations along with the homology to Toc75 suggest a potential role in transport through the second innermost membrane.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA.,Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Justin D Fellows
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jana Ovciarikova
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Swati Agrawal
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Zachary C Holmes
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Irine Bietz
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Nadine Flinner
- Molecular Cell Biology of Plants, Biocenter N200, 3. OG, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Sabrina Heiny
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Biocenter N200, 3. OG, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jude M Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| |
Collapse
|
21
|
Abstract
The endosymbiotic origin of plastids from cyanobacteria was a landmark event in the history of eukaryotic life. Subsequent to the evolution of primary plastids, photosynthesis spread from red and green algae to unrelated eukaryotes by secondary and tertiary endosymbiosis. Although the movement of cyanobacterial genes from endosymbiont to host is well studied, less is known about the migration of eukaryotic genes from one nucleus to the other in the context of serial endosymbiosis. Here I explore the magnitude and potential impact of nucleus-to-nucleus endosymbiotic gene transfer in the evolution of complex algae, and the extent to which such transfers compromise our ability to infer the deep structure of the eukaryotic tree of life. In addition to endosymbiotic gene transfer, horizontal gene transfer events occurring before, during, and after endosymbioses further confound our efforts to reconstruct the ancient mergers that forged multiple lines of photosynthetic microbial eukaryotes.
Collapse
|
22
|
Campbell JH, Hoang T, Jelokhani-Niaraki M, Smith MD. Folding and self-association of atTic20 in lipid membranes: implications for understanding protein transport across the inner envelope membrane of chloroplasts. BMC BIOCHEMISTRY 2014; 15:29. [PMID: 25551276 PMCID: PMC4307631 DOI: 10.1186/s12858-014-0029-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
Abstract
Background The Arabidopsis thaliana protein atTic20 is a key component of the protein import machinery at the inner envelope membrane of chloroplasts. As a component of the TIC complex, it is believed to form a preprotein-conducting channel across the inner membrane. Results We report a method for producing large amounts of recombinant atTic20 using a codon-optimized strain of E. coli coupled with an autoinduction method of protein expression. This method resulted in the recombinant protein being directed to the bacterial membrane without the addition of a bacterial targeting sequence. Using biochemical and biophysical approaches, we were able to demonstrate that atTic20 homo-oligomerizes in vitro when solubilized in detergents or reconstituted into liposomes. Furthermore, we present evidence that the extramembranous N-terminus of the mature protein displays characteristics that are consistent with it being an intrinsically disordered protein domain. Conclusion Our work strengthens the hypothesis that atTic20 functions similarly to other small α-helical integral membrane proteins, such as Tim23, that are involved in protein transport across membranes. Electronic supplementary material The online version of this article (doi:10.1186/s12858-014-0029-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James H Campbell
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada. .,Current address: Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Tuan Hoang
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada. .,Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| | - Masoud Jelokhani-Niaraki
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada. .,Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada. .,Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
23
|
Simmerman RF, Dave AM, Bruce BD. Structure and function of POTRA domains of Omp85/TPS superfamily. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:1-34. [PMID: 24411168 DOI: 10.1016/b978-0-12-800097-7.00001-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored.
Collapse
Affiliation(s)
- Richard F Simmerman
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Ashita M Dave
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, Tennessee, USA; Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
24
|
Rockwell NC, Lagarias JC, Bhattacharya D. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Front Ecol Evol 2014; 2. [PMID: 25729749 DOI: 10.3389/fevo.2014.00066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources; Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|
25
|
Demarsy E, Lakshmanan AM, Kessler F. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. FRONTIERS IN PLANT SCIENCE 2014; 5:483. [PMID: 25278954 PMCID: PMC4166117 DOI: 10.3389/fpls.2014.00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/01/2014] [Indexed: 05/25/2023]
Abstract
Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.
Collapse
Affiliation(s)
| | | | - Felix Kessler
- *Correspondence: Felix Kessler, Laboratory of Plant Physiology, Université de Neuchâtel, UniMail, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland e-mail:
| |
Collapse
|
26
|
Paila YD, Richardson LGL, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 2014; 427:1038-1060. [PMID: 25174336 DOI: 10.1016/j.jmb.2014.08.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 01/04/2023]
Abstract
The translocons at the outer (TOC) and the inner (TIC) envelope membranes of chloroplasts mediate the targeting and import of several thousand nucleus-encoded preproteins that are required for organelle biogenesis and homeostasis. The cytosolic events in preprotein targeting remain largely unknown, although cytoplasmic chaperones have been proposed to facilitate delivery to the TOC complex. Preprotein recognition is mediated by the TOC GTPase receptors Toc159 and Toc34. The receptors constitute a GTP-regulated switch, which initiates membrane translocation via Toc75, a member of the Omp85 (outer membrane protein 85)/TpsB (two-partner secretion system B) family of bacterial, plastid and mitochondrial β-barrel outer membrane proteins. The TOC receptor systems have diversified to recognize distinct sets of preproteins, thereby maximizing the efficiency of targeting in response to changes in gene expression during developmental and physiological events that impact organelle function. The TOC complex interacts with the TIC translocon to allow simultaneous translocation of preproteins across the envelope. Both the two inner membrane complexes, the Tic110 and 1 MDa complexes, have been implicated as constituents of the TIC translocon, and it remains to be determined how they interact to form the TIC channel and assemble the import-associated chaperone network in the stroma that drives import across the envelope membranes. This review will focus on recent developments in our understanding of the mechanisms and diversity of the TOC-TIC systems. Our goal is to incorporate these recent studies with previous work and present updated or revised models for the function of TOC-TIC in protein import.
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Lynn G L Richardson
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Danny J Schnell
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| |
Collapse
|
27
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
28
|
Richardson LGL, Paila YD, Siman SR, Chen Y, Smith MD, Schnell DJ. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:269. [PMID: 24966864 PMCID: PMC4052903 DOI: 10.3389/fpls.2014.00269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/24/2014] [Indexed: 05/20/2023]
Abstract
The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.
Collapse
Affiliation(s)
- Lynn G. L. Richardson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, AmherstMA, USA
| | - Yamuna D. Paila
- Department of Biochemistry and Molecular Biology, University of Massachusetts, AmherstMA, USA
| | - Steven R. Siman
- Department of Biology, Wilfrid Laurier University, WaterlooON, Canada
| | - Yi Chen
- Department of Biology, Wilfrid Laurier University, WaterlooON, Canada
| | - Matthew D. Smith
- Department of Biology, Wilfrid Laurier University, WaterlooON, Canada
| | - Danny J. Schnell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, AmherstMA, USA
- *Correspondence: Danny J. Schnell, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Life Sciences Laboratories, Room N431, 240 Thatcher Way, Amherst, MA 01003-9364, USA e-mail:
| |
Collapse
|
29
|
Arabidopsis thaliana Tic110, involved in chloroplast protein translocation, contains at least fourteen highly divergent heat-like repeated motifs. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0310-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Abstract
Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.
Collapse
|
31
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
32
|
Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Loffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D. Cyanophora paradoxa Genome Elucidates Origin of Photosynthesis in Algae and Plants. Science 2012; 335:843-7. [DOI: 10.1126/science.1213561] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Töpel M, Ling Q, Jarvis P. Neofunctionalization within the Omp85 protein superfamily during chloroplast evolution. PLANT SIGNALING & BEHAVIOR 2012; 7:161-4. [PMID: 22307047 PMCID: PMC3405695 DOI: 10.4161/psb.18677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Toc75 and OEP80 proteins reside in the chloroplast outer envelope membrane. Both are members of the Omp85 superfamily of β-barrel proteins, and both are essential in Arabidopsis plants with important roles throughout development. Toc75 forms the translocation channel of the TOC complex, which is responsible for importing nucleus-encoded proteins into chloroplasts, while the function of OEP80 remains uncertain. Deficiency of Toc75 in plants that have artificially reduced OEP80 levels suggests that the latter may be involved in the biogenesis of β-barrel proteins, in similar fashion to Omp85-related proteins in other systems. To elucidate the evolutionary relationship between the two proteins, we conducted a phylogenetic analysis using 48 sequences from diverse species. This indicated that Toc75 and OEP80 belong to sister groups in the Omp85 superfamily, and originate from a gene duplication in an ancient eukaryotic organism > 1.2 billion years ago. Our analysis also supports the notion that the Toc75 family has undergone a phase of neofunctionalization to accommodate the organelle's newly acquired need to import proteins.
Collapse
Affiliation(s)
- Mats Töpel
- Department of Plant and Environmental Sciences; Göteborg University; Göteborg, Sweden
| | - Qihua Ling
- Department of Biology; University of Leicester; Leicester, UK
| | - Paul Jarvis
- Department of Biology; University of Leicester; Leicester, UK
- Correspondence to: Paul Jarvis,
| |
Collapse
|
34
|
Hsu SC, Nafati M, Inoue K. OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75, exists as a 70-kD protein in the Arabidopsis thaliana chloroplast outer envelope. PLANT MOLECULAR BIOLOGY 2012; 78:147-58. [PMID: 22094888 DOI: 10.1007/s11103-011-9853-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/04/2011] [Indexed: 05/08/2023]
Abstract
Toc75 and OEP80 are paralogous proteins found in the Viridiplantae lineages, and appear to have evolved from a protein in the outer membrane of an ancient cyanobacterium. Toc75 is known to act as a protein translocation channel at the outer membrane of the chloroplast envelope, whereas the exact function of OEP80 is not understood. In Arabidopsis thaliana, each protein is encoded by a single gene, and both are essential for plant viability from embryonic stages onward. Sequence annotation and immunoblotting data with an antibody against its internal sequence (αOEP80(325-337)) indicated that the molecular weight of OEP80 is ca. 80 kD. Here we present multiple data to show that the size of A. thaliana OEP80 is smaller than previously estimated. First, we prepared the antibody against a recombinant protein consisting of annotated full-length A. thaliana OEP80 with an N-terminal hexahistidine tag (αOEP80(1-732)). This antibody recognized a 70-kD protein in the A. thaliana chloroplast membrane fraction which migrated faster than the His-tagged antigen and the protein recognized by the αOEP80(325-337) antibody on SDS-PAGE. Immunoprecipitation followed by LC-MS/MS analysis confirmed that the 70-kD protein was encoded by the OEP80 cDNA. Next, we performed a genetic complementation assay using embryo-lethal oep80-null plants and constructs encoding OEP80 and its variants. The results revealed that the nucleotide sequence encoding the 52 N-terminal amino acids was not required for functional expression of OEP80 and accumulation of the 70-kD protein. The data also indicated that an additional C-terminal T7 tag remained intact without disrupting the functionality of OEP80, and was not exposed to the cytoplasmic surface of the chloroplast envelope. Finally, OEP80-T7 and Toc75 showed distinct migration patterns on blue native-PAGE. This study provides molecular tools to investigate the function of OEP80, and also calls for caution in using an anti-peptide antibody.
Collapse
Affiliation(s)
- Shih-Chi Hsu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Inoue K. Emerging roles of the chloroplast outer envelope membrane. TRENDS IN PLANT SCIENCE 2011; 16:550-7. [PMID: 21775189 DOI: 10.1016/j.tplants.2011.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/11/2011] [Accepted: 06/15/2011] [Indexed: 05/25/2023]
Abstract
The chloroplast is essential for the viability of plants. It is enclosed by a double-membrane envelope that originated from the outer and plasma membranes of a cyanobacterial endosymbiont. Chloroplast biogenesis depends on binary fission and import of nuclear-encoded proteins. Our understanding of the mechanisms and evolutionary origins of these processes has been greatly advanced by recent genetic and biochemical studies on envelope-localized multiprotein machines. Furthermore, the latest studies on outer envelope proteins have provided molecular insights into organelle movement and membrane lipid remodeling, activities that are vital for plant survival under diverse environmental conditions. Ongoing and future research on the chloroplast outer envelope should add to our knowledge of organelle biology and the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
36
|
Kovács-Bogdán E, Benz JP, Soll J, Bölter B. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC PLANT BIOLOGY 2011; 11:133. [PMID: 21961525 PMCID: PMC3203047 DOI: 10.1186/1471-2229-11-133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/30/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. RESULTS We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. CONCLUSIONS The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins.
Collapse
Affiliation(s)
- Erika Kovács-Bogdán
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - J Philipp Benz
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jürgen Soll
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Bettina Bölter
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
37
|
Töpel M, Jarvis P. The Tic20 gene family: phylogenetic analysis and evolutionary considerations. PLANT SIGNALING & BEHAVIOR 2011; 6:1046-8. [PMID: 21633193 PMCID: PMC3257792 DOI: 10.4161/psb.6.7.15631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/27/2011] [Indexed: 05/04/2023]
Abstract
Tic20 is a polytopic protein of the inner envelope membrane of chloroplasts, and it is proposed to act as a translocation channel during chloroplast protein import. By analysing 29 sequences from diverse organisms, it was evident that Tic20-related proteins form two distinct clades, termed Group 1 and Group 2. The former group includes canonical Tic20 proteins that are essential for chloroplast development, while members of the latter are of unknown function. An increased evolutionary rate, in connection with adaptation to terrestrial life, was detected in Group 1. Interestingly, the sub-cellular (genomic) localization of genes coding for Group 1 proteins differs between evolutionary lineages.
Collapse
Affiliation(s)
- Mats Töpel
- Department of Plant and Environmental Sciences; Göteborg University; Göteborg, Sweden
| | - Paul Jarvis
- Department of Biology; University of Leicester; Leicester, UK
| |
Collapse
|
38
|
Tirichine L, Bowler C. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:45-57. [PMID: 21443622 DOI: 10.1111/j.1365-313x.2011.04540.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The last decade has witnessed outstanding progress in sequencing the genomes of photosynthetic eukaryotes, from major cereal crops to single celled marine phytoplankton. For the algae, we now have whole genome sequences from green, red, and brown representatives, and multiple efforts based on comparative and functional genomics approaches have provided information about the unicellular origins of higher plants, and about the evolution of photosynthetic life in general. Here we present some of the highlights from such studies, including the endosymbiotic origins of photosynthetic protists and their positioning with respect to plants and animals, the evolution of multicellularity in photosynthetic lineages, the role of sex in unicellular algae, and the potential relevance of epigenetic processes in contributing to the adaptation of algae to their environment.
Collapse
Affiliation(s)
- Leïla Tirichine
- Environmental and Evolutionary Genomics, CNRS UMR8197 INSERM U1024, Institut de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris Cedex 05, France
| | | |
Collapse
|
39
|
Gross J, Bhattacharya D. Endosymbiont or host: who drove mitochondrial and plastid evolution? Biol Direct 2011; 6:12. [PMID: 21333023 PMCID: PMC3050876 DOI: 10.1186/1745-6150-6-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/19/2011] [Indexed: 12/18/2022] Open
Abstract
The recognition that mitochondria and plastids are derived from alphaproteobacterial and cyanobacterial endosymbionts, respectively, was one of the greatest advances in modern evolutionary biology. Researchers have yet however to provide detailed cell biological descriptions of how these once free-living prokaryotes were transformed into intracellular organelles. A key area of study in this realm is elucidating the evolution of the molecular machines that control organelle protein topogenesis. Alcock et al. (Science 2010, 327 [5966]:649-650) suggest that evolutionary innovations that established the mitochondrial protein sorting system were driven by the alphaproteobacterial endosymbiont (an "insiders' perspective"). In contrast, here we argue that evolution of mitochondrial and plastid topogenesis may better be understood as an outcome of selective pressures acting on host cell chromosomes (the "outsiders' view").
Collapse
Affiliation(s)
- Jeferson Gross
- Department of Ecology, Evolution and Natural Resources, and Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, Foran Hall 102, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
40
|
Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H. Two novel types of hexokinases in the moss Physcomitrella patens. BMC PLANT BIOLOGY 2011; 11:32. [PMID: 21320325 PMCID: PMC3045890 DOI: 10.1186/1471-2229-11-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/14/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Hexokinase catalyzes the phosphorylation of glucose and fructose, but it is also involved in sugar sensing in both fungi and plants. We have previously described two types of hexokinases in the moss Physcomitrella. Type A, exemplified by PpHxk1, the major hexokinase in Physcomitrella, is a soluble protein that localizes to the chloroplast stroma. Type B, exemplified by PpHxk2, has an N-terminal membrane anchor. Both types are found also in vascular plants, and localize to the chloroplast stroma and mitochondrial membranes, respectively. RESULTS We have now characterized all 11 hexokinase encoding genes in Physcomitrella. Based on their N-terminal sequences and intracellular localizations, three of the encoded proteins are type A hexokinases and four are type B hexokinases. One of the type B hexokinases has a splice variant without a membrane anchor, that localizes to the cytosol and the nucleus. However, we also found two new types of hexokinases with no obvious orthologs in vascular plants. Type C, encoded by a single gene, has neither transit peptide nor membrane anchor, and is found in the cytosol and in the nucleus. Type D hexokinases, encoded by three genes, have membrane anchors and localize to mitochondrial membranes, but their sequences differ from those of the type B hexokinases. Interestingly, all moss hexokinases are more similar to each other in overall sequence than to hexokinases from other plants, even though characteristic sequence motifs such as the membrane anchor of the type B hexokinases are highly conserved between moss and vascular plants, indicating a common origin for hexokinases of the same type. CONCLUSIONS We conclude that the hexokinase gene family is more diverse in Physcomitrella, encoding two additional types of hexokinases that are absent in vascular plants. In particular, the presence of a cytosolic and nuclear hexokinase (type C) sets Physcomitrella apart from vascular plants, and instead resembles yeast, where all hexokinases localize to the cytosol. The fact that all moss hexokinases are more similar to each other than to hexokinases from vascular plants, even though both type A and type B hexokinases are present in all plants, further suggests that the hexokinase gene family in Physcomitrella has undergone concerted evolution.
Collapse
Affiliation(s)
- Anders Nilsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - Tina Olsson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Mikael Ulfstedt
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | - Mattias Thelander
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Hans Ronne
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| |
Collapse
|
41
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
42
|
Bohnsack MT, Schleiff E. The evolution of protein targeting and translocation systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1115-30. [DOI: 10.1016/j.bbamcr.2010.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/26/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
|
43
|
Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 2010; 1. [PMID: 20824102 PMCID: PMC2932507 DOI: 10.1128/mbio.00131-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/29/2010] [Indexed: 11/20/2022] Open
Abstract
Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism’s proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell. Microbes secrete proteins to perform essential interactions with their environment, such as motility, pathogenesis, biofilm formation, and resource acquisition. However, because microbes generally lack protein import systems, secretion is often a one-way street. Consequently, secreted proteins are less likely to be recycled by the cell due to environmental loss. We demonstrate that evolution has in turn selected these extracellular proteins for increased economy at the level of their amino acid composition. Compared to their cellular counterparts, extracellular proteins have fewer synthetically expensive amino acids and more inexpensive amino acids. The resulting bias lessens the loss of cellular resources due to secretion. Furthermore, this economical bias was observed regardless of the abundance, length, structure, or function of extracellular proteins. Thus, it appears that economy may address the compositional bias seen in many extracellular proteins and deliver further insight into the forces driving their evolution.
Collapse
|
44
|
Bodył A, Mackiewicz P, Stiller JW. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:639-649. [PMID: 20636907 DOI: 10.1111/j.1438-8677.2009.00264.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastids evolved from free-living cyanobacteria through a process of primary endosymbiosis. The most widely accepted hypothesis derives three ancient lineages of primary plastids, i.e. those of glaucophytes, red algae and green plants, from a single cyanobacterial endosymbiosis. This hypothesis was originally predicated on the assumption that transformations of endosymbionts into organelles must be exceptionally rare because of the difficulty in establishing efficient protein trafficking between a host cell and incipient organelle. It turns out, however, that highly integrated endosymbiotic associations are more common than once thought. Among them is the amoeba Paulinella chromatophora, which harbours independently acquired cyanobacterial endosymbionts functioning as plastids. Sequencing of the Paulinella endosymbiont genome revealed an absence of essential genes for protein trafficking, suggesting their residence in the host nucleus and import of protein products back into the endosymbiont. To investigate this hypothesis, we searched the Paulinella endosymbiont genome for homologues of higher plant translocon proteins that form the import apparatus in two-membrane envelopes of primary plastids. We found homologues of Toc12, Tic21 and Tic32, but genes for other key translocon proteins (e.g. Omp85/Toc75 and Tic20) were missing. We propose that these missing genes were transferred to the Paulinella nucleus and their products are imported and integrated into the endosymbiont envelope membranes, thereby creating an effective protein import apparatus. We further suggest that other bacterial/cyanobacterial endosymbionts found in protists, plants and animals could have evolved efficient protein import systems independently and, therefore, reached the status of true cellular organelles.
Collapse
Affiliation(s)
- A Bodył
- Department of Biodiversity and Evolutionary Taxonomy, Zoological Institute, University of Wrocław, Wrocław, Poland.
| | | | | |
Collapse
|
45
|
Arnold T, Zeth K, Linke D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 2010; 285:18003-15. [PMID: 20351097 PMCID: PMC2878562 DOI: 10.1074/jbc.m110.112516] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Indexed: 12/03/2022] Open
Abstract
Omp85 proteins are essential proteins located in the bacterial outer membrane. They are involved in outer membrane biogenesis and assist outer membrane protein insertion and folding by an unknown mechanism. Homologous proteins exist in eukaryotes, where they mediate outer membrane assembly in organelles of endosymbiotic origin, the mitochondria and chloroplasts. We set out to explore the homologous relationship between cyanobacteria and chloroplasts, studying the Omp85 protein from the thermophilic cyanobacterium Thermosynechococcus elongatus. Using state-of-the art sequence analysis and clustering methods, we show how this protein is more closely related to its chloroplast homologue Toc75 than to proteobacterial Omp85, a finding supported by single channel conductance measurements. We have solved the structure of the periplasmic part of the protein to 1.97 A resolution, and we demonstrate that in contrast to Omp85 from Escherichia coli the protein has only three, not five, polypeptide transport-associated (POTRA) domains, which recognize substrates and generally interact with other proteins in bigger complexes. We model how these POTRA domains are attached to the outer membrane, based on the relationship of Omp85 to two-partner secretion system proteins, which we show and analyze. Finally, we discuss how Omp85 proteins with different numbers of POTRA domains evolved, and evolve to this day, to accomplish an increasing number of interactions with substrates and helper proteins.
Collapse
Affiliation(s)
- Thomas Arnold
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Kornelius Zeth
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Dirk Linke
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
46
|
Andrès C, Agne B, Kessler F. The TOC complex: preprotein gateway to the chloroplast. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:715-23. [PMID: 20226817 DOI: 10.1016/j.bbamcr.2010.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 01/22/2023]
Abstract
Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.
Collapse
Affiliation(s)
- Charles Andrès
- Institut de Biologie, Université de Neuchâtel, CH-2009 Neuchâtel, Switzerland
| | | | | |
Collapse
|
47
|
New Insights into the Types and Function of Proteases in Plastids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:185-218. [DOI: 10.1016/s1937-6448(10)80004-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Evolutionary History and Taxonomy of Red Algae. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
|
50
|
Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays 2009; 31:1219-32. [DOI: 10.1002/bies.200900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|