1
|
Hinojosa CA, van Rooij SJH, Fani N, Ellis RA, Harnett NG, Lebois LAM, Ely TD, Jovanovic T, Murty VP, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Hudak LA, Pascual JL, Seamon MJ, Harris E, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Bruce SE, Pizzagalli DA, Sheridan JF, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS. Reward Neurocircuitry Predicts Longitudinal Changes in Alcohol Use Following Trauma Exposure. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00283-0. [PMID: 39389310 DOI: 10.1016/j.bpsc.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Trauma is a risk factor for developing maladaptive alcohol use. Preclinical research has shown that stress alters the processing of midbrain and striatal reward and incentive signals. However, little research has been conducted on alterations in reward-related neurocircuitry posttrauma in humans. Neuroimaging markers may be particularly useful because they can provide insight into the mechanisms that may make an individual vulnerable to developing trauma-related psychopathologies. In this study, we aimed to identify reward-related neural correlates associated with changes in alcohol use after trauma exposure. METHODS Participants were recruited from U.S. emergency departments for the AURORA study (n = 286; 178 female). Trauma-related change in alcohol use at 8 weeks posttrauma relative to pretrauma was quantified as a change in 30-day total drinking per the PhenX Toolkit Alcohol 30-Day Quantity and Frequency measure. Reward-related neurocircuitry activation and functional connectivity were assessed 2 weeks posttrauma using functional magnetic resonance imaging during a monetary reward task using region of interest and whole-brain voxelwise analyses. RESULTS Greater increase in alcohol use from pretrauma to 8 weeks posttrauma was predicted by 1) greater ventral tegmental area, 2) greater cerebellum activation during gain > loss trials measured 2 weeks posttrauma, and 3) greater seed-based functional connectivity between the ventral tegmental area and lateral occipital cortex and precuneus. CONCLUSIONS Altered ventral tegmental area activation and functional connectivity early posttrauma may be associated with reward seeking and processing, thereby contributing to greater alcohol use posttrauma. These data provide novel evidence of neural correlates that underlie increased alcohol use early posttrauma that may be targeted via early interventions to prevent the development of maladaptive alcohol use.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Robyn A Ellis
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Nathaniel G Harnett
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca L Beaudoin
- Department of Health Services, Policy, and Practice, The Alpert Medical School of Brown University, Providence, Rhode Island; Department of Emergency Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; The Many Brains Project, Belmont, Massachusetts
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University College of Nursing, Columbus, Ohio
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jose L Pascual
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica Harris
- Department of Emergency Medicine, Einstein Medical Center, Philadelphia, Pennsylvania
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St John Hospital, Detroit, Michigan
| | - David A Peak
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health, Ann Arbor, Ypsilanti, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, Michigan
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, Texas
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, Missouri
| | | | - John F Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, Ohio; Institute for Behavioral Medicine Research, Oregon State University Wexner Medical Center, Columbus, Ohio
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
2
|
Turfe A, Westbrook SR, Lopez SA, Chang SE, Flagel SB. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior in rats is dependent on sex and vendor. Horm Behav 2024; 164:105609. [PMID: 39083878 DOI: 10.1016/j.yhbeh.2024.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Treatment naïve male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior.
Collapse
Affiliation(s)
- Alexandra Turfe
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Sara R Westbrook
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Sofia A Lopez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor 48109, United States of America
| | - Stephen E Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America; Department of Psychiatry, University of Michigan, Ann Arbor 48109, United States of America.
| |
Collapse
|
3
|
Turfe A, Westbrook SR, Lopez SA, Chang SE, Flagel SB. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior is dependent on sex and vendor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586009. [PMID: 38562896 PMCID: PMC10983933 DOI: 10.1101/2024.03.20.586009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior. Highlights Male and female rats from Charles River exhibit more sign-tracking relative to those from Taconic.Corticosterone increases the acquisition of sign-tracking in male rats from Charles River.Corticosterone increases the acquisition of sign-tracking in female rats, regardless of vendor.There is no effect of corticosterone on the expression of sign-tracking behavior in either male or female rats.
Collapse
|
4
|
Yi W, Chen Y, Yan L, Kohn N, Wu J. Acute stress selectively blunts reward anticipation but not consumption: An ERP study. Neurobiol Stress 2023; 27:100583. [PMID: 38025282 PMCID: PMC10660484 DOI: 10.1016/j.ynstr.2023.100583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Stress-induced dysfunction of reward processing is documented to be a critical factor associated with mental illness. Although many studies have attempted to clarify the relationship between stress and reward, few studies have investigated the effect of acute stress on the temporal dynamics of reward processing. The present study applied event-related potentials (ERP) to examine how acute stress differently influences reward anticipation and consumption. In this study, seventy-eight undergraduates completed a two-door reward task following a Trier Social Stress Task (TSST) or a placebo task. The TSST group showed higher cortisol levels, perceived stress, anxiety, and negative affect than the control group. For the control group, a higher magnitude of reward elicited a reduced cue-N2 but increased stimulus-preceding negativity (SPN), suggesting that controls were sensitive to reward magnitude. In contrast, these effects were absent in the stress group, suggesting that acute stress reduces sensitivity to reward magnitude during the anticipatory phase. However, the reward positivity (RewP) and P3 of both groups showed similar patterns, which suggests that acute stress has no impact on reward responsiveness during the consummatory phase. These findings suggest that acute stress selectively blunts sensitivity to reward magnitude during the anticipatory rather than the consummatory phase.
Collapse
Affiliation(s)
- Wei Yi
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yantao Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Linlin Yan
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jianhui Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Li SJ, Lo YC, Tseng HY, Lin SH, Kuo CH, Chen TC, Chang CW, Liang YW, Lin YC, Wang CY, Cho TY, Wang MH, Chen CT, Chen YY. Nucleus accumbens deep brain stimulation improves depressive-like behaviors through BDNF-mediated alterations in brain functional connectivity of dopaminergic pathway. Neurobiol Stress 2023; 26:100566. [PMID: 37664874 PMCID: PMC10474237 DOI: 10.1016/j.ynstr.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD), a common psychiatric condition, adversely affects patients' moods and quality of life. Despite the development of various treatments, many patients with MDD remain vulnerable and inadequately controlled. Since anhedonia is a feature of depression and there is evidence of leading to metabolic disorder, deep brain stimulation (DBS) to the nucleus accumbens (NAc) might be promising in modulating the dopaminergic pathway. To determine whether NAc-DBS alters glucose metabolism via mitochondrial alteration and neurogenesis and whether these changes increase neural plasticity that improves behavioral functions in a chronic social defeat stress (CSDS) mouse model. The Lab-designed MR-compatible neural probes were implanted in the bilateral NAc of C57BL/6 mice with and without CSDS, followed by DBS or sham stimulation. All animals underwent open-field and sucrose preference testing, and brain resting-state functional MRI analysis. Meanwhile, we checked the placement of neural probes in each mouse by T2 images. By confirming the placement location, mice with incorrect probe placement (the negative control group) showed no significant therapeutic effects in behavioral performance and functional connectivity (FC) after receiving electrical stimulation and were excluded from further analysis. Western blotting, seahorse metabolic analysis, and electron microscopy were further applied for the investigation of NAc-DBS. We found NAc-DBS restored emotional deficits in CSDS-subjected mice. Concurrent with behavioral amelioration, the CSDS DBS-on group exhibited enhanced FC in the dopaminergic pathway with increased expression of BDNF- and NeuN-positive cells increased dopamine D1 receptor, dopamine D2 receptors, and TH in the medial prefrontal cortex, NAc, ventral hippocampus, ventral tegmental area, and amygdala. Increased pAMPK/total AMPK and PGC-1α levels, functions of oxidative phosphorylation, and mitochondrial biogenesis were also observed after NAc-DBS treatment. Our findings demonstrate that NAc-DBS can promote BDNF expression, which alters FC and metabolic profile in the dopaminergic pathway, suggesting a potential strategy for ameliorating emotional processes in individuals with MDD.
Collapse
Affiliation(s)
- Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan, ROC
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, 97002, Taiwan, ROC
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan, ROC
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei, 11217, Taiwan, ROC
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 115024, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Chih-Yu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Tsai-Yu Cho
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Mu-Hua Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Te Chen
- Abbott Medical Taiwan Co, 5/F No. 407, Ruei-Guang Rd., Taipei, 11492, Taiwan, ROC
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| |
Collapse
|
6
|
Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022; 13:985713. [PMID: 36506457 PMCID: PMC9732262 DOI: 10.3389/fpsyt.2022.985713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular autism research is evolving toward a biopsychosocial framework that is more informed by autistic experiences. In this context, research aims are moving away from correcting external autistic behaviors and toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are associated with high rates of depression, suicidality and other comorbid psychopathologies, but this relationship is poorly understood. Here, we integrate emerging characterizations of internal autistic experiences within a molecular framework to yield insight into the prevalence of psychopathology in ASC. We demonstrate that descriptions of social camouflaging and autistic burnout resonate closely with the accepted definitions for early life stress (ELS) and chronic adolescent stress (CAS). We propose that social camouflaging could be considered a distinct form of CAS that contributes to allostatic overload, culminating in a pathophysiological state that is experienced as autistic burnout. Autistic burnout is thought to contribute to psychopathology via psychological and physiological mechanisms, but these remain largely unexplored by molecular researchers. Building on converging fields in molecular neuroscience, we discuss the substantial evidence implicating mitochondrial dysfunction in ASC to propose a novel role for mitochondrial allostatic load in the relationship between autism and psychopathology. An interplay between mitochondrial, neuroimmune and neuroendocrine signaling is increasingly implicated in stress-related psychopathologies, and these molecular players are also associated with neurodevelopmental, neurophysiological and neurochemical aspects of ASC. Together, this suggests an increased exposure and underlying molecular susceptibility to ELS that increases the risk of psychopathology in ASC. This article describes an integrative framework shaped by autistic experiences that highlights novel avenues for molecular research into mechanisms that directly affect the quality of life and wellbeing of autistic individuals. Moreover, this framework emphasizes the need for increased access to diagnoses, accommodations, and resources to improve mental health outcomes in autism.
Collapse
Affiliation(s)
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
8
|
Male Goal-Tracker and Sign-Tracker Rats Do Not Differ in Neuroendocrine or Behavioral Measures of Stress Reactivity. eNeuro 2021; 8:ENEURO.0384-20.2021. [PMID: 33731330 PMCID: PMC8116112 DOI: 10.1523/eneuro.0384-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022] Open
Abstract
Environmental cues attain the ability to guide behavior via learned associations. As predictors, cues can elicit adaptive behavior and lead to valuable resources (e.g., food). For some individuals, however, cues are transformed into incentive stimuli and elicit motivational states that can be maladaptive. The goal-tracker (GT)/sign-tracker (ST) animal model captures individual differences in cue-motivated behaviors, with reward-associated cues serving as predictors of reward for both phenotypes but becoming incentive stimuli to a greater degree for STs. While these distinct phenotypes are characterized based on Pavlovian conditioned approach (PavCA) behavior, they exhibit differences on a number of behaviors relevant to psychopathology. To further characterize the neurobehavioral endophenotype associated with individual differences in cue-reward learning, neuroendocrine and behavioral profiles associated with stress and anxiety were investigated in male GT, ST, and intermediate responder (IR) rats. It was revealed that baseline corticosterone (CORT) increases with Pavlovian learning, but to the same degree, regardless of phenotype. No significant differences in behavior were observed between GTs and STs during an elevated plus maze (EPM) or open field test (OFT), nor were there differences in CORT response to the OFT or physiological restraint. Upon examination of central markers associated with stress reactivity, we found that STs have greater glucocorticoid receptor (GR) mRNA expression in the ventral hippocampus, with no phenotypic differences in the dorsal hippocampus or prelimbic cortex (PrL). These findings demonstrate that GTs and STs do not differ on stress-related and anxiety-related behaviors, and suggest that differences in neuroendocrine measures between these phenotypes can be attributed to distinct cue-reward learning styles.
Collapse
|
9
|
Affiliation(s)
- Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Rodriguez G, Moore SJ, Neff RC, Glass ED, Stevenson TK, Stinnett GS, Seasholtz AF, Murphy GG, Cazares VA. Deficits across multiple behavioral domains align with susceptibility to stress in 129S1/SvImJ mice. Neurobiol Stress 2020; 13:100262. [PMID: 33344715 PMCID: PMC7739066 DOI: 10.1016/j.ynstr.2020.100262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
Acute physical or psychological stress can elicit adaptive behaviors that allow an organism maintain homeostasis. However, intense and/or prolonged stressors often have the opposite effect, resulting in maladaptive behaviors and curbing goal-directed action; in the extreme, this may contribute to the development of psychiatric conditions like generalized anxiety disorder, major depressive disorder, or post-traumatic stress disorder. While treatment of these disorders generally focuses on reducing reactivity to potentially threatening stimuli, there are in fact impairments across multiple domains including valence, arousal, and cognition. Here, we use the genetically stress-susceptible 129S1 mouse strain to explore the effects of stress across multiple domains. We find that 129S1 mice exhibit a potentiated neuroendocrine response across many environments and paradigms, and that this is associated with reduced exploration, neophobia, decreased novelty- and reward-seeking, and spatial learning and memory impairments. Taken together, our results suggest that the 129S1 strain may provide a useful model for elucidating mechanisms underlying myriad aspects of stress-linked psychiatric disorders as well as potential treatments that may ameliorate symptoms.
Collapse
Affiliation(s)
- G Rodriguez
- Michigan Neuroscience Institute, USA.,Neuroscience Graduate Program, USA
| | - S J Moore
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA
| | - R C Neff
- Department of Molecular and Integrative Physiology, USA
| | - E D Glass
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA
| | | | | | - A F Seasholtz
- Michigan Neuroscience Institute, USA.,Neuroscience Graduate Program, USA.,Department of Biological Chemistry University of Michigan, Ann Arbor, MI, USA
| | - G G Murphy
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA.,Neuroscience Graduate Program, USA
| | - V A Cazares
- Department of Molecular and Integrative Physiology, USA.,Michigan Neuroscience Institute, USA.,Department of Psychology, Williams College, MA, USA
| |
Collapse
|