1
|
Nutt DJ. Drug development in psychiatry: 50 years of failure and how to resuscitate it. Lancet Psychiatry 2025; 12:228-238. [PMID: 39952266 DOI: 10.1016/s2215-0366(24)00370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 02/17/2025]
Abstract
The past 50 years have seen remarkable advances in the science of medicine. The pharmacological treatments of disorders such as hypertension, immune disorders, and cancer are fundamentally different from those used in the 1970s, and are now more often based on disorder-specific pathologies. The same cannot be said for psychiatric medicines: despite remarkable advances in neuroscience, very few innovative treatments have been developed in this field since the 1970s. For depression, schizophrenia, anxiety disorders, and ADHD, pharmacological classes of medicines discovered through serendipity in the 1950s are still used despite hundreds of billions of US dollars being spent on drug discovery attempts based on new neuroscience targets. This Personal View presents my opinion on the reasons innovation in psychiatric treatment has not progressed as well as in other disorders. As a researcher in the field, I offer suggestions as to how this situation must be rectified soon, as by most analyses mental illness is becoming a major health burden globally. Most of my evidence is referenced, but where I have unpublished knowledge gained from consulting with pharmaceutical companies, it is presented as an opinion.
Collapse
Affiliation(s)
- David J Nutt
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
3
|
Zhang S, Wang T, Feng Y, Li F, Qu A, Guan X, Wang H, Xu D. Pregnenolone 16α-carbonitrile negatively regulates hippocampal cytochrome P450 enzymes and ameliorates phenytoin-induced hippocampal neurotoxicity. J Pharm Anal 2023; 13:1510-1525. [PMID: 38223454 PMCID: PMC10785155 DOI: 10.1016/j.jpha.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 01/16/2024] Open
Abstract
The central nervous system is susceptible to the modulation of various neurophysiological processes by the cytochrome P450 enzyme (CYP), which plays a crucial role in the metabolism of neurosteroids. The antiepileptic drug phenytoin (PHT) has been observed to induce neuronal side effects in patients, which could be attributed to its induction of CYP expression and testosterone (TES) metabolism in the hippocampus. While pregnane X receptor (PXR) is widely known for its regulatory function of CYPs in the liver, we have discovered that the treatment of mice with pregnenolone 16α-carbonitrile (PCN), a PXR agonist, has differential effects on CYP expression in the liver and hippocampus. Specifically, the PCN treatment resulted in the induction of cytochrome P450, family 3, subfamily a, polypeptide 11 (CYP3A11), and CYP2B10 expression in the liver, while suppressing their expression in the hippocampus. Functionally, the PCN treatment protected mice from PHT-induced hippocampal nerve injury, which was accompanied by the inhibition of TES metabolism in the hippocampus. Mechanistically, we found that the inhibition of hippocampal CYP expression and attenuation of PHT-induced neurotoxicity by PCN were glucocorticoid receptor dependent, rather than PXR independent, as demonstrated by genetic and pharmacological models. In conclusion, our study provides evidence that PCN can negatively regulate hippocampal CYP expression and attenuate PHT-induced hippocampal neurotoxicity independently of PXR. Our findings suggest that glucocorticoids may be a potential therapeutic strategy for managing the neuronal side effects of PHT.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fei Li
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100069, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Hoadley ME, Galea J, Singh N, Hulme S, Ajao DO, Rothwell N, King A, Tyrrell P, Hopkins SJ. The role of cortisol in immunosuppression in subarachnoid haemorrhage. Eur J Med Res 2023; 28:303. [PMID: 37644600 PMCID: PMC10466816 DOI: 10.1186/s40001-023-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND We sought to determine the extent to which cortisol suppressed innate and T cell-mediated cytokine production and whether it could be involved in reducing peripheral cytokine production following subarachnoid haemorrhage (SAH). METHODS Whole blood from healthy controls, patients with SAH and healthy volunteers was stimulated with lipopolysaccharide (LPS), to stimulate innate immunity, or phytohaemagglutinin (PHA), to stimulate T cell-mediated immunity. Varying concentrations of cortisol were included, with or without the cortisol antagonist RU486. Concentration of interleukin-6 (IL-6), IL-1β and tumour necrosis factor-alpha) TNFα were determined as a measure of innate immunity. IL-6, IL-17 (interferon gamma) IFNƔ and IL-17 were determined as an indicator of T cell-mediated immunity. RESULTS Suppression of innate responses to LPS was apparent in whole blood from SAH patients, relative to healthy controls, and TNFα production was inversely correlated with plasma cortisol concentration. Cytokine production in whole blood from healthy volunteers was inhibited by cortisol concentrations from 0.33 µM, or 1 µM and above, and these responses were effectively reversed by the cortisol antagonist RU-486. In SAH patients, RU-486 reversed suppression of innate TNF-α and IL-6 responses, but not IL-1ß or T cell-mediated responses. CONCLUSION These data suggest that cortisol may play a role in reducing innate, but not T cell-mediated immune responses in patients with injuries such as SAH and that cortisol antagonists could be effective in boosting early innate responses.
Collapse
Affiliation(s)
- Margaret E Hoadley
- Northern Care Alliance Research and Innovation, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK.
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK.
| | - James Galea
- Ninewells Hospital and Medical School, University of Dundee, Ninewells, Dundee, DD1 9SY, UK
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK
| | - Navneet Singh
- Atkinson Morley, Dept of Neurosurgery, St Georges Hospital, Blackshaw Rd, London, Sw17 0QT, UK
| | - Sharon Hulme
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK
| | - David O Ajao
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK
- Stockport NHS Foundation Trust, Stepping Hill Hospital, Poplar Grove, Hazel Grove, Stockport, SK2 7JE, UK
| | - Nancy Rothwell
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew King
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK
| | - Pippa Tyrrell
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK
| | - Stephen J Hopkins
- Northern Care Alliance Research and Innovation, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
- Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Stott Lane, Salford, M13 9PT, UK
| |
Collapse
|
5
|
Thorne A, Bansal A, Necker-Brown A, Mostafa MM, Gao A, Georgescu A, Kooi C, Leigh R, Newton R. Differential regulation of BIRC2 and BIRC3 expression by inflammatory cytokines and glucocorticoids in pulmonary epithelial cells. PLoS One 2023; 18:e0286783. [PMID: 37289679 PMCID: PMC10249814 DOI: 10.1371/journal.pone.0286783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Roles for the baculoviral inhibitor of apoptosis repeat-containing (BIRC) genes, BIRC2 and BIRC3, may include signaling to the inflammatory transcription factor, nuclear factor-κB (NF-κB) and protection from cell death. However, distinct functions for each BIRC are not well-delineated. Given roles for the epithelium in barrier function and host defence, BIRC2 and BIRC3 expression was characterized in pulmonary epithelial cell lines and primary human bronchial epithelial cells (pHBECs) grown as undifferentiated cells in submersion culture (SC) or as highly differentiated cells at air-liquid interface (ALI). In A549 cells, interleukin-1β (IL1B) and tumor necrosis factor α (TNF) induced BIRC3 mRNA (~20-50-fold), with maximal protein expression from 6-24 h. Similar effects occurred in BEAS-2B and Calu-3 cells, as well as SC and ALI pHBECs. BIRC2 protein was readily detected in unstimulated cells, but was not markedly modulated by IL1B or TNF. Glucocorticoids (dexamethasone, budesonide) modestly increased BIRC3 mRNA and protein, but showed little effect on BIRC2 expression. In A549 cells, BIRC3 mRNA induced by IL1B was unchanged by glucocorticoids and showed supra-additivity with TNF-plus-glucocorticoid. Supra-additivity was also evident for IL1B-plus-budesonide induced-BIRC3 in SC and ALI pHBECs. Using A549 cells, IL1B- and TNF-induced BIRC3 expression, and to a lesser extent, BIRC2, was prevented by NF-κB inhibition. Glucocorticoid-induced BIRC3 expression was prevented by silencing and antagonism of the glucocorticoid receptor. Whereas TNF, but not IL1B, induced degradation of basal BIRC2 and BIRC3 protein, IL1B- and TNF-induced BIRC3 protein remained stable. Differential regulation by cytokines and glucocorticoids shows BIRC2 protein expression to be consistent with roles in rapid signaling events, whereas cytokine-induced BIRC3 may be more important in later effects. While TNF-induced degradation of both BIRCs may restrict their activity, cytokine-enhanced BIRC3 expression could prime for its function. Finally, shielding from glucocorticoid repression, or further enhancement by glucocorticoid, may indicate a key protective role for BIRC3.
Collapse
Affiliation(s)
- Andrew Thorne
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M. Mostafa
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Gao
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrei Georgescu
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Radevski ME, Prendergast MA, Bardo MT, Akins CK. PT150 blocks the rewarding properties of ethanol and attenuates ethanol-induced reduction of egg laying in Coturnix quail. Psychopharmacology (Berl) 2023; 240:295-301. [PMID: 36607385 DOI: 10.1007/s00213-022-06299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
RATIONALE Alcohol use disorder (AUD) has been shown to be associated with a dysregulated stress system. Reducing the stress hormone corticosterone (CORT), that binds to glucocorticoid receptors, may attenuate the rewarding properties of drugs of abuse. However, the effect of blocking corticosterone receptors on ethanol reward has yet to be investigated. OBJECTIVES The current study investigated whether the stress hormone receptor antagonist, PT150, would block the rewarding properties of ethanol via the glucocorticoid receptor system and attenuate other ethanol-induced effects. METHODS A conditioned place preference (CPP) procedure was used to examine the rewarding properties of ethanol in an avian preclinical model. Ethanol was paired with the least preferred chamber. On alternate days, water was paired with the preferred chamber. After eight pairings, a place preference test was given that allowed subjects to have access to both chambers. Half of the subjects received PT150 prior to ethanol administration. The other half received vehicle. Time spent in each chamber during the preference tests, locomotor activity during the pairings, and egg production in female birds was recorded. RESULTS Ethanol treatment resulted in a CPP and pretreatment of PT150 blocked the acquisition of the ethanol-induced place preference. Neither ethanol nor PT150 altered locomotor activity. Pretreatment of PT150 also increased egg production in female quail treated with ethanol. CONCLUSIONS These findings suggest repeated ethanol pairings with visual cues can produce a CPP. Furthermore, pretreatment of PT150 may be a potential pharmacotherapy for blocking the rewarding properties of ethanol and may enhance egg production in female quail treated with ethanol.
Collapse
Affiliation(s)
- Mia E Radevski
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - Chana K Akins
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
7
|
Rocha SM, Fagre AC, Latham AS, Cummings JE, Aboellail TA, Reigan P, Aldaz DA, McDermott CP, Popichak KA, Kading RC, Schountz T, Theise ND, Slayden RA, Tjalkens RB. A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection. Front Immunol 2022; 13:811430. [PMID: 35250984 PMCID: PMC8889105 DOI: 10.3389/fimmu.2022.811430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Savannah M. Rocha
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna C. Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Amanda S. Latham
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jason E. Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tawfik A. Aboellail
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, CO, United States
| | - Devin A. Aldaz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Casey P. McDermott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Katriana A. Popichak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Neil D. Theise
- Depatment of Pathology, New York University (NYU)-Grossman School of Medicine, New York, NY, United States
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Hammerslag LR, Denehy ED, Carper B, Nolen TL, Prendergast MA, Bardo MT. Effects of the glucocorticoid receptor antagonist PT150 on stress-induced fentanyl seeking in male and female rats. Psychopharmacology (Berl) 2021; 238:2439-2447. [PMID: 34008048 DOI: 10.1007/s00213-021-05865-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Opioid use disorder (OUD) is highly comorbid with stress-related disorders, and stress can serve as a trigger for reinstatement of drug seeking. Glucocorticoid receptor (GR) antagonists such as mifepristone (RU-486) may be effective against stress-induced drug seeking. In the current study, PT150 (formerly ORG-34517), a more selective GR antagonist, was tested using two models of stress-induced drug seeking, namely footshock and yohimbine. METHODS Adult male and female Sprague-Dawley rats were trained to self-administer fentanyl (2.5 μg/kg/infusion, i.v.) in a model of escalation. Rats then received 7 days of abstinence, followed by extinction; PT150 (0, 50 or 100 mg/kg in Nutella®; p.o.) treatment started on the first day of extinction training and continued daily until the end of the study. Following 14 days of extinction, rats were tested for reinstatement following footshock and yohimbine (0, 1, or 2 mg/kg; i.p.), tested in counterbalanced order; PT150 or placebo treatment occurred prior to each extinction and reinstatement session. RESULTS Prior to initiation of PT150 treatment, females self-administered greater levels of fentanyl during 1-h sessions compared to males; however, when switched to 6-h sessions, males and females self-administered similar levels of fentanyl and showed a similar escalation of intake over time. PT150 had no effect on extinction of self-administration. While both footshock and yohimbine reinstated fentanyl seeking, only footshock-induced reinstatement was decreased by PT150 (50 and 100 mg/kg). The effect of PT150 on footshock-induced reinstatement was driven primarily by males. CONCLUSION The glucocorticoid antagonist PT150 reduces shock-induced fentanyl seeking, suggesting it may be effective against stress-induced relapse, although the sex difference in response may need further exploration.
Collapse
Affiliation(s)
- Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, BBSRB Room 447, Lexington, KY, 40536-0509, USA
| | - Emily D Denehy
- Department of Psychology, University of Kentucky, BBSRB Room 447, Lexington, KY, 40536-0509, USA
| | - Benjamin Carper
- Research Triangle Institute, Research Triangle Park, Durham, NC, USA
| | - Tracy L Nolen
- Research Triangle Institute, Research Triangle Park, Durham, NC, USA
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, BBSRB Room 447, Lexington, KY, 40536-0509, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB Room 447, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
9
|
Theise ND, Arment AR, Chakravarty D, Gregg JMH, Jacobson IM, Jung KH, Nair SS, Tewari AK, Thurston AW, Van Drie J, Westover JB. Clinical stage molecule PT150 is a modulator of glucocorticoid and androgen receptors with antiviral activity against SARS-CoV-2. Cell Cycle 2020; 19:3632-3638. [PMID: 33305659 PMCID: PMC7738205 DOI: 10.1080/15384101.2020.1859752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
PT150 is a clinical-stage molecule, taken orally, with a strong safety profile having completed Phase 1 and Phase 2 clinical trials for its original use as an antidepressant. It has an active IND for COVID-19. Antiviral activities have been found for PT150 and other members of its class in a variety of virus families; thus, it was now tested against SARS-CoV-2 in human bronchial epithelial lining cells and showed effective 90% inhibitory antiviral concentration (EC90) of 5.55 µM. PT150 is a member of an extended platform of novel glucocorticoid receptor (GR) and androgen receptor (AR) modulating molecules. In vivo, their predominant net effect is one of systemic glucocorticoid antagonism, but they also show direct downregulation of AR and minor GR agonism at the cellular level. We hypothesize that anti-SARS-CoV-2 activity depends in part on this AR downregulation through diminished TMPRSS2 expression and modulation of ACE2 activity. Given that hypercortisolemia is now suggested to be a significant co-factor for COVID-19 progression, we also postulate an additive role for its potent immunomodulatory effects through systemic antagonism of cortisol.
Collapse
Affiliation(s)
- Neil D. Theise
- Department of Pathology, New York University-Grossman School of Medicine, New York, NY, USA
- Palisades Therapeutics/Pop Test Oncology LLC, Cliffside Park, NJ, USA
| | - Anthony R. Arment
- Department of Biology, Central State University, Wilberforce, OH, USA
| | - Dimple Chakravarty
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M. H. Gregg
- Palisades Therapeutics/Pop Test Oncology LLC, Cliffside Park, NJ, USA
| | - Ira M. Jacobson
- Department of Medicine, New York University-Grossman School of Medicine, New York, NY, USA
| | - Kie Hoon Jung
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Sujit S. Nair
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh K. Tewari
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jonna B. Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|
10
|
Silva ON, Franco OL, Neves BJ, Morais ÁCB, De Oliveira Neto JR, da Cunha LC, Naves LM, Pedrino GR, Costa EA, Fajemiroye JO. Involvement of the gabaergic, serotonergic and glucocorticoid mechanism in the anxiolytic-like effect of mastoparan-L. Neuropeptides 2020; 81:102027. [PMID: 32059939 DOI: 10.1016/j.npep.2020.102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Mastoparan-L (mast-L) is a cell-penetrating tetradecapeptide and stimulator of monoamine exocytosis. In the present study, we evaluated the anxiolytic-like effect of mast-L. Preliminary pharmacological tests were conducted to determine the most appropriate route of administration, extrapolate dose and detect potential toxic effects of this peptide. Oral and intracerebroventricular administration of mast-L (0.1, 0.3 or 0.9 mg.kg-1), diazepam (1 or 5 mg.kg-1), buspirone (10 mg.kg-1) or vehicle 10 mL.kg-1 was carried out prior to the exposure of mice to the anxiety models: open field, light-dark box and elevated plus-maze. To characterize the mechanism underlying the antianxiety-like effect of mast-L, pharmacological antagonism, blood plasma analysis, molecular docking, and receptor binding assays were performed. The absence of a neurotoxic sign, animal's death as well as lack of significant changes in the relative organ weight, hematological and biochemical parameters suggest that mast-L is relatively safe. The anxiolytic-like effect of mast-L was attenuated by flumazenil (antagonist of benzodiazepine binding site) and WAY100635 (selective antagonist of 5-HT1A receptors) pretreatments. Mast-L reduced plasma corticosterone and lowered the scoring function at GABAA -18.48 kcal/mol (Ki = 155 nM), 5-HT1A -22.39 kcal/mol (Ki = 130 nM), corticotropin-releasing factor receptor subtype 1 (CRF1) -11.95 kcal/mol (Ki = 299 nM) and glucocorticoid receptors (GR) -14.69 kcal/mol (Ki = 3552 nM). These data fit the binding affinity (Ki) and demonstrate the involvement of gabaergic, serotonergic and glucocorticoid mechanisms in the anxiolytic-like property of mast-L.
Collapse
Affiliation(s)
- Osmar N Silva
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Bruno J Neves
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Álice Cristina B Morais
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Jeronimo R De Oliveira Neto
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Lara M Naves
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Gustavo R Pedrino
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Elson A Costa
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - James O Fajemiroye
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
11
|
Rice BA, Saunders MA, Jagielo-Miller JE, Prendergast MA, Akins CK. Repeated subcutaneous administration of PT150 has dose-dependent effects on sign tracking in male Japanese quail. Exp Clin Psychopharmacol 2019; 27:515-521. [PMID: 30896239 PMCID: PMC6776696 DOI: 10.1037/pha0000275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A devastating feature of drug dependence is the susceptibility of relapse (40-60%) after stretches of abstinence. In both animal and human research, it has been demonstrated that cues (e.g., levers, paraphernalia) associated with drug reward can instigate renewed drug taking. Research has shown animals that attend to a cue that predicts reward more than the location of reward delivery when the cue is present (sign trackers) have an increase in corticosterone (CORT), a primary stress hormone when compared with animals that do not sign track. This interaction of sign tracking and CORT implicate CORT's effects as a possible pharmacological target for cue-induced relapse behaviors. PT150 is a novel glucocorticoid receptor antagonist that reduces the effects of CORT. Previous research has shown that oral administration of 40 mg/kg PT150 reduced sign tracking. To better understand dose-dependent effects and to control for more accurate doses, the current experiment hypothesized that PT150 (20/40/60 mg/kg) given by subcutaneous (SC) injection to male quail would reduce sign tracking to a keylight conditional stimulus that predicts a grain unconditioned stimulus dose dependently. Results showed that SC injection of 20 mg/kg PT150 reduced sign tracking, but 40 or 60 mg/kg did not. The main findings from the current study are that the glucocorticoid receptor antagonist PT150 reduces sign tracking behavior dose dependently, and SC administration may provide better bioavailability compared with our previous study that used an oral route of administration. The current findings support previous literature by suggesting that the glucocorticoid receptor may be a potential pharmacological target for reducing relapse-like behaviors. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Beth Ann Rice
- Department of Psychology, Slippery Rock University,Correspondence concerning this article should be addressed to Beth Ann Rice, Department of Psychology, Slippery Rock University at, OR
| | | | | | | | | |
Collapse
|
12
|
Logrip ML, Gainey SC. Sex differences in the long-term effects of past stress on alcohol self-administration, glucocorticoid sensitivity and phosphodiesterase 10A expression. Neuropharmacology 2019; 164:107857. [PMID: 31756338 DOI: 10.1016/j.neuropharm.2019.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Stress responses differ by sex, and females are more susceptible to developing mental illnesses because of past stress, including alcohol use disorder. Investigation of neuroadaptations governing the interaction between past stress and future alcohol intake remains understudied in females. A history of footshock stress previously was shown to increase alcohol self-administration under relapse-like conditions in male rats, associated with elevated phosphodiesterase 10A (PDE10A) mRNA expression in the dorsomedial prefrontal cortex and basolateral amygdala. To identify sex differences in long-term stress effects, male and female Wistar rats were exposed to light-cued footshock stress prior to alcohol self-administration training. While past stress did not alter acquisition or extinction, reacquisition self-administration was oppositely impacted by past stress. Stress history slightly increased reacquisition self-administration in males, but reduced alcohol self-administration in females, relative to same-sex controls. Control females self-administered less alcohol following glucocorticoid receptor inhibition by mifepristone, which did not significantly alter alcohol consumption in the other groups. PDE10A expression in synaptically enriched fractions also differed by sex and stress history in a brain region-specific manner. Females expressed more synaptic PDE10A than males in basolateral amygdala and dorsolateral striatum, regardless of stress history, whereas dorsomedial prefrontal cortex PDE10A protein levels matched group differences in reacquisition drinking, but also were expressed at much lower levels than all other regions examined. Together, these data show stress history differentially impacts alcohol self-administration and PDE10A expression by sex, with control females consuming alcohol in a glucocorticoid receptor-sensitive fashion that may relate to sex differences in PDE10A expression.
Collapse
Affiliation(s)
- Marian L Logrip
- Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Sean C Gainey
- Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| |
Collapse
|
13
|
Nguyen ET, Streicher J, Berman S, Caldwell JL, Ghisays V, Estrada CM, Wulsin AC, Solomon MB. A mixed glucocorticoid/mineralocorticoid receptor modulator dampens endocrine and hippocampal stress responsivity in male rats. Physiol Behav 2017; 178:82-92. [PMID: 28093219 PMCID: PMC5511095 DOI: 10.1016/j.physbeh.2017.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Aberrant glucocorticoid secretion is implicated in the pathophysiology of stress-related disorders (i.e., depression, anxiety). Glucocorticoids exert biological effects via mineralocorticoid (MR) and glucocorticoid (GR) receptors. Previous data from our laboratory indicate that GR antagonism/modulation (i.e., mifepristone, CORT 108297) regulate endocrine, behavioral, and central stress responses. Because of the dynamic interplay between MR and GR on HPA axis regulation and emotionality, compounds targeting both receptors are of interest for stress-related pathology. We investigated the effects of CORT 118335 (a dual selective GR modulator/MR antagonist) on endocrine, behavioral, and central (c-Fos) stress responses in male rats. Rats were treated for five days with CORT 118335, imipramine (positive control), or vehicle and exposed to restraint or forced swim stress (FST). CORT 118335 dampened corticosterone responses to both stressors, without a concomitant antidepressant-like effect in the FST. Imipramine decreased corticosterone responses to restraint stress; however, the antidepressant-like effect of imipramine in the FST was independent of circulating glucocorticoids. These findings indicate dissociation between endocrine and behavioral stress responses in the FST. CORT 118335 decreased c-Fos expression only in the CA1 division of the hippocampus. Imipramine decreased c-Fos expression in the basolateral amygdala and CA1 and CA3 divisions of the hippocampus. Overall, the data indicate differential effects of CORT 118335 and imipramine on stress-induced neuronal activity in various brain regions. The data also highlight a complex relationship between neuronal activation in stress and mood regulatory brain regions and the ensuing impact on endocrine and behavioral stress responses.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States.
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Sarah Berman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States
| | - Valentina Ghisays
- Experimental Psychology Graduate Program, University of Cincinnati, United States
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, United States
| | - Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati College of Medicine, United States
| |
Collapse
|
14
|
Wulsin AC, Herman JP, Danzer SC. RU486 Mitigates Hippocampal Pathology Following Status Epilepticus. Front Neurol 2016; 7:214. [PMID: 27965624 PMCID: PMC5124765 DOI: 10.3389/fneur.2016.00214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
Status epilepticus (SE) induces rapid hyper-activation of the hypothalamo-pituitary-adrenocortical (HPA) axis. HPA axis hyperactivity results in excess exposure to high levels of circulating glucocorticoids, which are associated with neurotoxicity and depression-like behavior. These observations have led to the hypothesis that HPA axis dysfunction may exacerbate SE-induced brain injury. To test this hypothesis, we used the mouse pilocarpine model of epilepsy to determine whether use of the glucocorticoid receptor antagonist RU486 can attenuate hippocampal pathology following SE. Excess glucocorticoid secretion was evident 1 day after SE in the mice, preceding the development of spontaneous seizures (which can take weeks to develop). RU486 treatment blocked the SE-associated elevation of glucocorticoid levels in pilocarpine-treated mice. RU486 treatment also mitigated the development of hippocampal pathologies induced by SE, reducing loss of hilar mossy cells and limiting pathological cell proliferation in the dentate hilus. Mossy cell loss and accumulation of ectopic hilar cells are positively correlated with epilepsy severity, suggesting that early treatment with glucocorticoid antagonists could have anti-epileptogenic effects.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Steve C Danzer
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
15
|
Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol 2016; 54:1953-1966. [PMID: 26910812 DOI: 10.1007/s12035-016-9766-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/01/2016] [Indexed: 01/12/2023]
Abstract
Stress and glucocorticoids suppress adult neurogenesis in the hippocampus. However, the molecular mechanisms underlying stress-induced impairment of adult neurogenesis are poorly understood. We previously suggested that cyclooxygenase (COX)-2 is a common mediator of stresses in the brain. Here, using a lipopolysaccharide (LPS)-induced acute infectious stress model, we evaluated the roles of COX-2 and its major downstream product prostaglandin E2 (PGE2) in adult neurogenesis and the influence of glucocorticoids on COX-2-related signaling. Treatment of rats with LPS significantly decreased neurogenesis in the dentate gyrus (DG) of the hippocampus, and this inhibitory effect of LPS on neurogenesis was reversed by the glucocorticoid receptor antagonist RU486. Moreover, RU486 significantly enhanced the increase in messenger RNA (mRNA) levels of COX-2 and microsomal prostaglandin E synthase (mPGES)-1 in the hippocampus following LPS stimulation. Administration of AH6809, a selective antagonist of the PGE2 EP2 receptor, as well as NS398, a COX-2 selective inhibitor, exacerbated the suppression of proliferation of neural progenitor cells (NPCs) in the DG. Gene expression of EP1, EP2, and EP3, but not EP4, receptors was also increased following LPS stimulation. Immunohistochemical studies indicated that NPCs expressed EP2 receptor, whereas the majority of cells expressing COX-2 and mPGES-1 were mature neurons in the DG. These results suggest that acute infectious stress upregulates COX-2-related signaling in neurons in the DG, which plays a protective role in neurogenesis through EP2 receptor at least partially. In addition, LPS-induced glucocorticoids suppress this COX-2-related signaling, resulting in decreased neurogenesis.
Collapse
|
16
|
Reynolds AR, Saunders MA, Brewton HW, Winchester SR, Elgumati IS, Prendergast MA. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic-pituitary-adrenal axis activation. Drug Alcohol Depend 2015; 154:100-4. [PMID: 26143299 PMCID: PMC4536150 DOI: 10.1016/j.drugalcdep.2015.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. METHODS Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 11:00hours on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60mg/kg/i.g.) or a placebo and withdrawal was monitored. RESULTS Peak BELs of 225.52mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g., aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. CONCLUSIONS The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence.
Collapse
Affiliation(s)
- Anna R. Reynolds
- University of Kentucky, Department of Psychology,Universities of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Meredith A. Saunders
- University of Kentucky, Department of Psychology,Universities of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Honoree’ W. Brewton
- University of Kentucky, Department of Psychology,Universities of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Sydney R. Winchester
- University of Kentucky, Department of Psychology,Universities of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Ibrahim S. Elgumati
- University of Kentucky, Department of Psychology,Universities of Kentucky, Spinal Cord and Brain Injury Research Center
| | - Mark A. Prendergast
- University of Kentucky, Department of Psychology,Universities of Kentucky, Spinal Cord and Brain Injury Research Center
| |
Collapse
|
17
|
Craddock TJA, Del Rosario RR, Rice M, Zysman JP, Fletcher MA, Klimas NG, Broderick G. Achieving Remission in Gulf War Illness: A Simulation-Based Approach to Treatment Design. PLoS One 2015; 10:e0132774. [PMID: 26192591 PMCID: PMC4508058 DOI: 10.1371/journal.pone.0132774] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting up to one-third of the 700,000 returning veterans of the 1991 Persian Gulf War and for which there is no known cure. GWI symptoms span several of the body’s principal regulatory systems and include debilitating fatigue, severe musculoskeletal pain, cognitive and neurological problems. Using computational models, our group reported previously that GWI might be perpetuated at least in part by natural homeostatic regulation of the neuroendocrine-immune network. In this work, we attempt to harness these regulatory dynamics to identify treatment courses that might produce lasting remission. Towards this we apply a combinatorial optimization scheme to the Monte Carlo simulation of a discrete ternary logic model that represents combined hypothalamic-pituitary-adrenal (HPA), gonadal (HPG), and immune system regulation in males. In this work we found that no single intervention target allowed a robust return to normal homeostatic control. All combined interventions leading to a predicted remission involved an initial inhibition of Th1 inflammatory cytokines (Th1Cyt) followed by a subsequent inhibition of glucocorticoid receptor function (GR). These first two intervention events alone ended in stable and lasting return to the normal regulatory control in 40% of the simulated cases. Applying a second cycle of this combined treatment improved this predicted remission rate to 2 out of 3 simulated subjects (63%). These results suggest that in a complex illness such as GWI, a multi-tiered intervention strategy that formally accounts for regulatory dynamics may be required to reset neuroendocrine-immune homeostasis and support extended remission.
Collapse
Affiliation(s)
- Travis J. A. Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- Center for Psychological Studies, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- Graduate School for Computer and Information Sciences, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- * E-mail:
| | - Ryan R. Del Rosario
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
| | - Mark Rice
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
| | - Joel P. Zysman
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
| | - Nancy G. Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- Veterans Affairs Medical Center, Miami, FL, United States of America
| | - Gordon Broderick
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- Center for Psychological Studies, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
- College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, United States of America
| |
Collapse
|
18
|
Joshi T, Johnson M, Newton R, Giembycz MA. The long-acting β2 -adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner. Br J Pharmacol 2015; 172:2634-53. [PMID: 25598440 DOI: 10.1111/bph.13087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/11/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhaled glucocorticoid (ICS)/long-acting β2 -adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. EXPERIMENTAL APPROACH BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. KEY RESULTS Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. CONCLUSIONS AND IMPLICATIONS These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues.
Collapse
Affiliation(s)
- T Joshi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Joshi T, Johnson M, Newton R, Giembycz M. An analysis of glucocorticoid receptor-mediated gene expression in BEAS-2B human airway epithelial cells identifies distinct, ligand-directed, transcription profiles with implications for asthma therapeutics. Br J Pharmacol 2015; 172:1360-78. [PMID: 25393397 PMCID: PMC4337707 DOI: 10.1111/bph.13014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 11/05/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE International asthma guidelines recommend that inhaled glucocorticoids be used as a monotherapy in all patients with mild to moderate disease because of their ability to suppress airways inflammation. Current evidence suggests that the therapeutic benefit of glucocorticoids is due to the transactivation and transrepression of anti-inflammatory and pro-inflammatory genes respectively. However, the extent to which clinically relevant glucocorticoids are equivalent in their ability to modulate gene expression is unclear. EXPERIMENTAL APPROACH A pharmacodynamics investigation of glucocorticoid receptor (GR)-mediated gene transactivation in BEAS-2B human airway epithelial cells was performed using a glucocorticoid response element luciferase reporter coupled with an analysis of glucocorticoid-inducible genes encoding proteins with anti-inflammatory and adverse-effect potential. KEY RESULTS Using transactivation as a functionally relevant output, a given glucocorticoid displayed a unique, gene expression 'fingerprint' where intrinsic efficacy and GR density were essential determinants. We showed that depending on the gene selected for analysis, a given glucocorticoid can behave as an antagonist, partial agonist, full agonist or even 'super agonist'. In the likely event that different, tissue-dependent gene expression profiles are reproduced in vivo, then the anti-inflammatory and adverse-effect potential of many glucocorticoids currently available as asthma therapeutics may not be equivalent. CONCLUSIONS AND IMPLICATIONS The generation of gene expression 'fingerprints' in target and off-target human tissues could assist the rational design of GR agonists with improved therapeutic ratios. This approach could identify compounds that are useful in the management of severe asthma and other inflammatory disorders where systemic exposure is desirable.
Collapse
Affiliation(s)
- T Joshi
- Airways Inflammation Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - M Johnson
- GlaxoSmithKline Research and DevelopmentUxbridge, Middlesex, UK
| | - R Newton
- Department of Cell Biology and Anatomy, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - M Giembycz
- Airways Inflammation Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
20
|
Ritter HD, Mueller CR. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells. BMC Cancer 2014; 14:275. [PMID: 24755251 PMCID: PMC4021255 DOI: 10.1186/1471-2407-14-275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/14/2014] [Indexed: 12/25/2022] Open
Abstract
Background While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. Methods An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Results Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. Conclusion This work presents the first identification of targets of unliganded GR. We propose that the balance between targets of liganded and unliganded GR signaling is responsible for controlling differentiation and apoptosis, respectively, and suggest that gene regulation by unliganded GR may represent a mechanism for reducing the risk of breast tumourigenesis by the elimination of abnormal cells.
Collapse
Affiliation(s)
| | - Christopher R Mueller
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
21
|
Reul JMHM. Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways. Front Psychiatry 2014; 5:5. [PMID: 24478733 PMCID: PMC3897878 DOI: 10.3389/fpsyt.2014.00005] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/09/2014] [Indexed: 01/19/2023] Open
Abstract
Strong psychologically stressful events are known to have a long-lasting impact on behavior. The consolidation of such, largely adaptive, behavioral responses to stressful events involves changes in gene expression in limbic brain regions such as the hippocampus and amygdala. However, the underlying molecular mechanisms were until recently unresolved. More than a decade ago, we started to investigate the role of these hormones in signaling and epigenetic mechanisms participating in the effects of stress on gene transcription in hippocampal neurons. We discovered a novel, rapid non-genomic mechanism in which glucocorticoids via glucocorticoid receptors facilitate signaling of the ERK-MAPK signaling pathway to the downstream nuclear kinases MSK1 and Elk-1 in dentate gyrus granule neurons. Activation of this signaling pathway results in serine10 (S10) phosphorylation and lysine14 (K14) acetylation at histone H3 (H3S10p-K14ac), leading to the induction of the immediate-early genes c-Fos and Egr-1. In addition, we found a role of the DNA methylation status of gene promoters. A series of studies showed that these molecular mechanisms play a critical role in the long-lasting consolidation of behavioral responses in the forced swim test and Morris water maze. Furthermore, an important role of GABA was found in controlling the epigenetic and gene transcriptional responses to psychological stress. Thus, psychologically stressful events evoke a long-term impact on behavior through changes in hippocampal function brought about by distinct glutamatergic and glucocorticoid-driven changes in epigenetic regulation of gene transcription, which are modulated by (local) GABAergic interneurons and limbic afferent inputs. These epigenetic processes may play an important role in the etiology of stress-related mental disorders such as major depressive and anxiety disorders like post-traumatic stress disorder.
Collapse
Affiliation(s)
- Johannes M. H. M. Reul
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Navarro-Zaragoza J, Hidalgo JM, Laorden ML, Milanés MV. Glucocorticoid receptors participate in the opiate withdrawal-induced stimulation of rats NTS noradrenergic activity and in the somatic signs of morphine withdrawal. Br J Pharmacol 2012; 166:2136-47. [PMID: 22364199 DOI: 10.1111/j.1476-5381.2012.01918.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence suggests that glucocorticoid receptor (GR) is a major molecular substrate of addictive properties of drugs of abuse. Hence, we performed a series of experiments to further characterize the role of GR signalling in opiate withdrawal-induced physical signs of dependence, enhanced noradrenaline (NA) turnover in the hypothalamic paraventricular nucleus (PVN) and tyrosine hydroxylase (TH) phosphorylation (activation) as well as GR expression in the nucleus of the solitary tract noradrenergic cell group (NTS-A₂). EXPERIMENTAL APPROACH The role of GR signalling was assessed by i.p. pretreatment of the selective GR antagonist, mifepristone. Rats were implanted with two morphine (or placebo) pellets. Six days later, rats were pretreated with mifepristone or vehicle 30 min before naloxone and physical signs of abstinence, NA turnover, TH activation, GR expression and the hypothalamus-pituitary-adrenocortical axis activity were measured using HPLC, immunoblotting and RIA. KEY RESULTS Mifepristone alleviated the somatic signs of naloxone-induced opiate withdrawal. Mifepristone attenuated the increase in the NA metabolite, 3-methoxy-4-hydroxyphenylethylen glycol (MHPG), in the PVN, and the enhanced NA turnover observed in morphine-withdrawn rats. Mifepristone antagonized the TH phosphorylation at Ser³¹ and the expression of c-Fos expression induced by morphine withdrawal. Finally, naloxone-precipitated morphine withdrawal induced up-regulation of GR in the NTS. CONCLUSIONS AND IMPLICATIONS These results suggest that the physical signs of opiate withdrawal, TH activation and stimulation of noradrenergic pathways innervating the PVN are modulated by GR signalling. Overall, the present data suggest that drugs targeting the GR may ameliorate stress and aversive effects associated with opiate withdrawal.
Collapse
|
23
|
Abstract
Alcoholism is characterized by a compulsion to seek and ingest alcohol, loss of control over intake, and the emergence of a negative emotional state during abstinence. We hypothesized that sustained activation of neuroendocrine stress systems (e.g., corticosteroid release via the hypothalamic-pituitary-adrenal axis) by alcohol intoxication and withdrawal and consequent alterations in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation drive compulsive alcohol drinking. Our results showed that rats exposed to alcohol vapor to the point of dependence displayed increased alcohol intake, compulsive drinking measured by progressive-ratio responding, and persistent alcohol consumption despite punishment, assessed by adding quinine to the alcohol solution, compared with control rats that were not exposed to alcohol vapor. No group differences were observed in the self-administration of saccharin-sweetened water. Acute alcohol withdrawal was accompanied by downregulated GR mRNA in various stress/reward-related brain regions [i.e., prefrontal cortex, nucleus accumbens (NAc), and bed nucleus of the stria terminalis (BNST)], whereas protracted alcohol abstinence was accompanied by upregulated GR mRNA in the NAc core, ventral BNST, and central nucleus of the amygdala. No significant alterations in MR mRNA levels were found. Chronic GR antagonism with mifepristone (RU38486) prevented the escalation of alcohol intake and compulsive responding induced by chronic, intermittent alcohol vapor exposure. Chronic treatment with mifepristone also blocked escalated alcohol drinking and compulsive responding during protracted abstinence. Thus, the GR system appears to be involved in the development of alcohol dependence and may represent a potential pharmacological target for the treatment of alcoholism.
Collapse
|
24
|
Braun S, Kottwitz D, Nuber UA. Pharmacological interference with the glucocorticoid system influences symptoms and lifespan in a mouse model of Rett syndrome. Hum Mol Genet 2011; 21:1673-80. [DOI: 10.1093/hmg/ddr602] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Spiga F, Knight DM, Droste SK, Conway-Campbell B, Kershaw Y, MacSweeney CP, Thomson FJ, Craighead M, Peeters BWMM, Lightman SL. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding. J Psychopharmacol 2011; 25:211-21. [PMID: 20093322 PMCID: PMC4984974 DOI: 10.1177/0269881109348175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3-300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3-300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic-pituitary-adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | - David M Knight
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Susanne K Droste
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Becky Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Yvonne Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | - Fiona J Thomson
- Department of Molecular Pharmacology, Schering-Plough Corporation, Newhouse, UK
| | - Mark Craighead
- Department of Molecular Pharmacology, Schering-Plough Corporation, Newhouse, UK
| | - Bernard WMM Peeters
- Global Project Management Europe, Schering-Plough Corporation, Oss, The Netherlands
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
|
27
|
CRF-1 antagonist and CRF-2 agonist decrease binge-like ethanol drinking in C57BL/6J mice independent of the HPA axis. Neuropsychopharmacology 2010; 35:1241-52. [PMID: 20130533 PMCID: PMC2927867 DOI: 10.1038/npp.2009.209] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that corticotropin-releasing factor (CRF) receptor (CRFR) signaling is involved in modulating binge-like ethanol consumption in C57BL/6J mice. In this report, a series of experiments were performed to further characterize the role of CRFR signaling in binge-like ethanol consumption. The role of central CRFR signaling was assessed with intracerebroventricular (i.c.v.) infusion of the nonselective CRFR antagonist, alpha-helical CRF(9-41) (0, 1, 5, 10 microg/1 microl). The contribution of central CRF type 2 receptor (CRF(2)R) signaling was assessed with i.c.v. infusion of the selective CRF(2)R agonist, urocortin (Ucn) 3 (0, 0.05, 0.1, or 0.5 microg/1 microl). The role of the hypothalamic-pituitary-adrenal (HPA) axis was assessed by pretreating mice with intraperitoneal (i.p.) injection of (1) the corticosterone synthesis inhibitor, metyrapone (0, 50, 100, 150 mg/kg) or (2) the glucocorticoid receptor antagonist, mifepristone (0, 25, 50 mg/kg), and (3) by using radioimmunoassay to determine whether binge-like ethanol intake influenced plasma corticosterone levels. Finally, we determined whether the ability of the CRF(1)R antagonist, CP-154,526 (CP; 0, 10, 15 mg/kg, i.p.), to blunt binge-like drinking required normal HPA axis signaling by comparing the effectiveness of CP in adrenalectomized (ADX) and normal mice. Results showed that i.c.v. infusion of a 1 microg dose of alpha-helical CRF(9-41) significantly attenuated binge-like ethanol consumption relative to vehicle treatment, and i.c.v. infusion of Ucn 3 dose-dependently blunted binge-like drinking. On the other hand, metyrapone nonselectively reduced both ethanol and sucrose consumption, mifepristone did not alter ethanol drinking, and binge-like drinking did not correlate with plasma corticosterone levels. Finally, i.p. injection of CP significantly attenuated binge-like ethanol intake in both ADX and normal mice. Together, these results suggest that binge-like ethanol intake in C57BL/6J mice is modulated by CRF(1)R and CRF(2)R signaling, such that blockade of CRF(1)R or activation of CRF(2)R effectively reduces excessive ethanol intake. Furthermore, normal HPA axis signaling is not necessary to achieve binge-like drinking behavior.
Collapse
|
28
|
Peeters B, Ruigt G, Craighead M, Kitchener P. Differential Effects of the New Glucocorticoid Receptor Antagonist ORG 34517 and RU486 (Mifepristone) on Glucocorticoid Receptor Nuclear Translocation in the AtT20 Cell Line. Ann N Y Acad Sci 2008; 1148:536-41. [DOI: 10.1196/annals.1410.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Atkinson HC, Wood SA, Castrique ES, Kershaw YM, Wiles CCR, Lightman SL. Corticosteroids mediate fast feedback of the rat hypothalamic-pituitary-adrenal axis via the mineralocorticoid receptor. Am J Physiol Endocrinol Metab 2008; 294:E1011-22. [PMID: 18349112 DOI: 10.1152/ajpendo.00721.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this study was to investigate fast corticosteroid feedback of the hypothalamic-pituitary-adrenal (HPA) axis under basal conditions, in particular the role of the mineralocorticoid receptor. Blood samples were collected every 5 min from conscious rats at the diurnal peak, using an automated blood sampling system, and assayed for corticosterone. Feedback inhibition by rapidly increasing concentrations of ligand was achieved with an intravenous bolus of exogenous corticosteroid. This resulted in a significant reduction in plasma corticosterone concentrations within 23 min of the aldosterone bolus and 28 min of methylprednisolone. Evaluation of the pulsatile secretion of corticosterone revealed that the secretory event in progress at the time of administration of exogenous steroid was unaffected, whereas the next secretory event was inhibited by both aldosterone and methylprednisolone. The inhibitory effect of aldosterone was limited in duration (1 secretory event only), whereas that of methylprednisolone persisted for 4-5 h. Intravenous administration of canrenoate (a mineralocorticoid receptor antagonist) also had rapid effects on the HPA axis, with an elevation of ACTH within 10 min and corticosterone within 20 min. The inhibitory effect of aldosterone was unaffected by pretreatment with the glucocorticoid receptor antagonist RU-38486 but blocked by the canrenoate. These data imply an important role for the mineralocorticoid receptor in fast feedback of basal HPA activity and suggest that mineralocorticoids can dynamically regulate basal corticosterone concentrations during the diurnal peak, a time of day when there is already a high level of occupancy of the cytoplasmic mineralocorticoid receptor.
Collapse
Affiliation(s)
- Helen C Atkinson
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
30
|
De Bosscher K, Van Craenenbroeck K, Meijer OC, Haegeman G. Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. Eur J Pharmacol 2008; 583:290-302. [PMID: 18289525 DOI: 10.1016/j.ejphar.2007.11.076] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/28/2007] [Accepted: 11/12/2007] [Indexed: 12/14/2022]
Abstract
Glucocorticoids control immune homeostasis and regulate stress responses in the human body to a large extent via the glucocorticoid receptor. This transcription factor can modulate gene expression either through direct DNA binding (mainly resulting in transactivation) or independent of DNA binding (in the majority of cases resulting in transrepression). The aim of this review is to discuss the mechanistic basis and applicability of different glucocorticoid receptor modulators in various affections, ranging from immune disorders to mental dysfunctions.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Laboratory of Eukaryotic Gene Expression & Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | |
Collapse
|
31
|
Spiga F, Harrison LR, Wood SA, Atkinson HC, MacSweeney CP, Thomson F, Craighead M, Grassie M, Lightman SL. Effect of the glucocorticoid receptor antagonist Org 34850 on basal and stress-induced corticosterone secretion. J Neuroendocrinol 2007; 19:891-900. [PMID: 17927667 DOI: 10.1111/j.1365-2826.2007.01605.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised both by an ultradian pulsatile pattern of glucocorticoid secretion and an endogenous diurnal rhythm. Glucocorticoid feedback plays a major role in regulating HPA axis activity and this mechanism occurs via two different receptors: mineralocorticoid (MR) and glucocorticoid receptors (GR). In the present study, the effects of both acute and subchronic treatment with the GR antagonist Org 34850 on basal and stress-induced HPA axis activity in male rats were evaluated. To investigate the effect of Org 34850 on basal diurnal corticosterone rhythm over the 24-h cycle, an automated blood sampling system collected samples every 10 min. Acute injection of Org 34850 (10 mg/kg, s.c.) did not affect basal or stress-induced corticosterone secretion, but was able to antagonise the inhibitory effect of the glucocorticoid agonist methylprednisolone on stress-induced corticosterone secretion. However, 5 days of treatment with Org 34850 (10 mg/kg, s.c., two times a day), compared to rats treated with vehicle (5% mulgofen in 0.9% saline, 1 ml/kg, s.c.), increased corticosterone secretion over the 24-h cycle and resulted in changes in the pulsatile pattern of hormone release, but had no significant effect on adrenocorticotrophic hormone secretion or on stress-induced corticosterone secretion. Subchronic treatment with Org 34850 did not alter GR mRNA expression in the hippocampus, paraventricular nucleus of the hypothalamus or anterior-pituitary, or MR mRNA expression in the hippocampus. Our data suggest that a prolonged blockade of GRs is required to increase basal HPA axis activity. The changes observed here with ORG 34850 are consistent with inhibition of GR-mediated negative feedback of the HPA axis. In light of the evidence showing an involvement of dysfunctional HPA axis in the pathophysiology of depression, Org 34850 could be a potential treatment for mood disorders.
Collapse
Affiliation(s)
- F Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Prendergast MA, Little HJ. Adolescence, glucocorticoids and alcohol. Pharmacol Biochem Behav 2006; 86:234-45. [PMID: 16930684 DOI: 10.1016/j.pbb.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/05/2006] [Accepted: 07/06/2006] [Indexed: 11/22/2022]
Abstract
This review examines the evidence that glucocorticoids are involved, during both adolescence and adulthood, in the cognitive deficits caused by long-term alcohol consumption and in the mechanism(s) of alcohol dependence. During adolescence, the hypothalamopituitary-adrenal (HPA) axis undergoes well-characterized changes in basal activity and many of these are influenced by alcohol consumption. While the former have been fairly well studied, there is little information about whether alcohol effects on the HPA in adolescents differ from those in adults. The means by which glucocorticoids may influence alcohol-related neurotoxicity are presented, and potential differences between adolescence and adults in this regard noted. The substantial evidence for involvement of glucocorticoids in alcohol-induced cognitive deficits is described, with particular reference to the consequences of alcohol withdrawal. The use of immature organotypic cultures of rodent brain in the study of alcohol neurotoxicity is considered in detail, and the information obtained from this methodology concerning the role of glucocorticoid receptors and excitable membrane proteins in this neurotoxicity. The influence of glucocorticoids on alcohol consumption and possible contributions to alcohol dependence are then considered. In conclusion, more information concerning the effects of glucocorticoids on plasticity and alcohol neurotoxicity during the adolescent period is needed.
Collapse
Affiliation(s)
- Mark A Prendergast
- Department of Psychology, University of Kentucky, B363 BBSRB, 741 S. Limestone, University of Kentucky, Lexington, KY 40536-0509, USA
| | | |
Collapse
|
33
|
Rickardson L, Fryknäs M, Haglund C, Lövborg H, Nygren P, Gustafsson MG, Isaksson A, Larsson R. Screening of an annotated compound library for drug activity in a resistant myeloma cell line. Cancer Chemother Pharmacol 2006; 58:749-58. [PMID: 16528529 DOI: 10.1007/s00280-006-0216-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Resistance to anticancer drugs is a major problem in chemotherapy. In order to identify drugs with selective cytotoxic activity in drug-resistant cancer cells, the annotated compound library LOPAC1280, containing compounds from 56 pharmacological classes, was screened in the myeloma cell line RPMI 8226 and its doxorubicin-resistant subline 8226/Dox40. METHODS Cell survival was measured by the Fluorometric Microculture Cytotoxicity Assay. RESULTS Selective cytotoxic activity in 8226/Dox40 was obtained for 33 compounds, with the most pronounced difference observed for the glucocorticoids. A microarray analysis of the cells showed a difference in mRNA-expression for the glucocorticoid receptor suggesting potential mechanisms for the difference in glucocorticoid sensitivity. In the presence of the glucocorticoid-receptor antagonist RU486, the sensitivity to the glucocorticoids was reduced and a similar effect level in RPMI 8226 and 8226/Dox40 was achieved. CONCLUSION In conclusion, screening of mechanistically annotated compounds on drug-resistant cancer cells can identify compounds with selective activity and provide a basis for the development of novel treatments of drug-resistant malignancies.
Collapse
Affiliation(s)
- Linda Rickardson
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, 751 85, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|