1
|
Torres DB, Lopes A, Rodrigues AJ, Ventura-Silva AP, Sousa N, Gontijo JAR, Boer PA, Lopes MG. Early morphological and neurochemical changes of the bed nucleus of stria terminalis (BNST) in gestational protein-restricted male offspring. Nutr Neurosci 2024; 27:1250-1268. [PMID: 38576309 DOI: 10.1080/1028415x.2024.2320498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND The bed nucleus of the stria terminalis (BNST) is a structure with a peculiar neurochemical composition involved in modulating anxietylike behavior and fear. AIM The present study investigated the effects on the BNST neurochemical composition and neuronal structure in critical moments of the postnatal period in gestational protein-restricted male rats' offspring. METHODS Dams were maintained during the pregnancy on isocaloric rodent laboratory chow with standard protein content [NP, 17%] or low protein content [LP, 6%]. BNST from male NP and age-matched LP offspring was studied using the isotropic fractionator method, Neuronal 3D reconstruction, dendritic-tree analysis, blotting analysis, and high-performance liquid chromatography. RESULTS Serum corticosterone levels were higher in male LP offspring than NP rats in 14-day-old offspring, without any difference in 7-day-old progeny. The BNST total cell number and anterodorsal BNST division volume in LP progeny were significantly reduced on the 14th postnatal day compared with NP offspring. The BNST HPLC analysis from 7 days-old LP revealed increased norepinephrine levels compared to NP progeny. The BNST blot analysis from 7-day-old LP revealed reduced levels of GR and BDNF associated with enhanced CRF1 expression compared to NP offspring. 14-day-old LP offspring showed reduced expression of MR and 5HT1A associated with decreased DOPAC and DOPA turnover levels relative to NP rats. In Conclusion, the BNST cellular and neurochemical changes may represent adaptation during development in response to elevated fetal exposure to maternal corticosteroid levels. In this way, gestational malnutrition alters the BNST content and structure and contributes to already-known behavioral changes.
Collapse
Affiliation(s)
- D B Torres
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | - A Lopes
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | - A J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A P Ventura-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J A R Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | - P A Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
2
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Cheng J, Chen L, Zheng YN, Liu J, Zhang L, Zhang XM, Huang L, Yuan QL. Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice. Acta Pharmacol Sin 2024; 45:1393-1405. [PMID: 38528118 PMCID: PMC11192762 DOI: 10.1038/s41401-024-01252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ling Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Lei Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiao-Ming Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Gullino LS, Fuller C, Dunn P, Collins HM, El Mestikawy S, Sharp T. Evidence for a Role of 5-HT-glutamate Co-releasing Neurons in Acute Stress Mechanisms. ACS Chem Neurosci 2024; 15:1185-1196. [PMID: 38377469 PMCID: PMC10958520 DOI: 10.1021/acschemneuro.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.
Collapse
Affiliation(s)
- L. Sophie Gullino
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Cara Fuller
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Poppy Dunn
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Helen M. Collins
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Salah El Mestikawy
- Douglas
Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H
1R3, Canada
- Sorbonne
Université, INSERM, CNRS, Neuroscience Paris Seine –
Institut de Biologie Paris Seine (NPS – IBPS), 75005 Paris, France
| | - Trevor Sharp
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
5
|
Inserra A, Piot A, De Gregorio D, Gobbi G. Lysergic Acid Diethylamide (LSD) for the Treatment of Anxiety Disorders: Preclinical and Clinical Evidence. CNS Drugs 2023; 37:733-754. [PMID: 37603260 DOI: 10.1007/s40263-023-01008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 08/22/2023]
Abstract
Anxiety disorders (ADs) represent the sixth leading cause of disability worldwide, resulting in a significant global economic burden. Over 50% of individuals with ADs do not respond to standard therapies, making the identification of more effective anxiolytic drugs an ongoing research priority. In this work, we review the preclinical literature concerning the effects of lysergic acid diethylamide (LSD) on anxiety-like behaviors in preclinical models, and the clinical literature on anxiolytic effects of LSD in healthy volunteers and patients with ADs. Preclinical and clinical findings show that even if LSD may exacerbate anxiety acutely (both in "microdoses" and "full doses"), it induces long-lasting anxiolytic effects. Only two randomized controlled trials combining LSD and psychotherapy have been performed in patients with ADs with and without life-threatening conditions, showing a good safety profile and persisting decreases in anxiety outcomes. The effect of LSD on anxiety may be mediated by serotonin receptors (5-HT1A/1B, 5-HT2A/2C, and 5-HT7) and/or transporter in brain networks and circuits (default mode network, cortico-striato-thalamo-cortical circuit, and prefrontal cortex-amygdala circuit), involved in the modulation of anxiety. It remains unclear whether LSD can be an efficacious treatment alone or only when combined with psychotherapy, and if "microdosing" may elicit the same sustained anxiolytic effects as the "full doses". Further randomized controlled trials with larger sample size cohorts of patients with ADs are required to clearly define the effective regimens, safety profile, efficacy, and feasibility of LSD for the treatment of ADs.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada
| | - Alexandre Piot
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Avenue des Pins Ouest, Montreal, QC, H3A 1A1, Canada.
- McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
6
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
7
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
8
|
Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation 2023; 20:23. [PMID: 36737776 PMCID: PMC9896737 DOI: 10.1186/s12974-023-02693-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays an important role in the development of depression. The aim of this study was to investigate the effects of 5-HT on cognitive function, learning and memory induced by chronic unforeseeable mild stress stimulation (CUMS) in female mice. CUMS mice and TPH2 KO mice were used in the study. Lactococcus lactis E001-B-8 fungus powder was orally administered to mice with CUMS. METHODS We used the open field test, Morris water maze, tail suspension test and sucrose preference test to examine learning-related behaviours. In addition, AB-PAS staining, immunofluorescence, ELISA, qPCR, Western blotting and microbial sequencing were employed to address our hypotheses. RESULTS The effect of CUMS was more obvious in female mice than in male mice. Compared with female CUMS mice, extracellular serotonin levels in TPH2 KO CUMS mice were significantly reduced, and cognitive dysfunction was aggravated. Increased hippocampal autophagy levels, decreased neurotransmitter levels, reduced oxidative stress damage, increased neuroinflammatory responses and disrupted gut flora were observed. Moreover, L. lactis E001-B-8 significantly improved the cognitive behaviour of mice. CONCLUSIONS These results strongly suggest that L. lactis E001-B-8 but not FLX can alleviate rodent depressive and anxiety-like behaviours in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition.
Collapse
Affiliation(s)
- Junxing Ma
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Ran Wang
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Yaoxing Chen
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zixu Wang
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yulan Dong
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
9
|
Harkin EF, Lynn MB, Payeur A, Boucher JF, Caya-Bissonnette L, Cyr D, Stewart C, Longtin A, Naud R, Béïque JC. Temporal derivative computation in the dorsal raphe network revealed by an experimentally driven augmented integrate-and-fire modeling framework. eLife 2023; 12:72951. [PMID: 36655738 PMCID: PMC9977298 DOI: 10.7554/elife.72951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
By means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons. We next developed a single-neuron modeling framework that combines the realism of Hodgkin-Huxley models with the simplicity and predictive power of generalized integrate-and-fire models. We found that feedforward inhibition of 5-HT neurons by heterogeneous SOM neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. Our most striking finding was that the output of the DRN encodes a mixture of the intensity and temporal derivative of its input, and that the temporal derivative component dominates this mixture precisely when the input is increasing rapidly. This network computation primarily emerged from prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. By applying a bottom-up neural network modeling approach, our results suggest that the DRN is particularly apt to encode input changes over short timescales, reflecting one of the salient emerging computations that dominate its output to regulate behavior.
Collapse
Affiliation(s)
- Emerson F Harkin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Michael B Lynn
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Alexandre Payeur
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-François Boucher
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Léa Caya-Bissonnette
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Dominic Cyr
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Chloe Stewart
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - André Longtin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Richard Naud
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
10
|
Shen R, Liu L, Wu Z, Zhang Y, Yuan Z, Guo J, Yang F, Zhang C, Chen B, Feng W, Liu C, Guo J, Fan G, Zhang Y, Li Y, Xu X, Yao J. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding. Nat Commun 2022; 13:7640. [PMID: 36496406 PMCID: PMC9741613 DOI: 10.1038/s41467-022-35288-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Spatially resolved transcriptomics provides the opportunity to investigate the gene expression profiles and the spatial context of cells in naive state, but at low transcript detection sensitivity or with limited gene throughput. Comprehensive annotating of cell types in spatially resolved transcriptomics to understand biological processes at the single cell level remains challenging. Here we propose Spatial-ID, a supervision-based cell typing method, that combines the existing knowledge of reference single-cell RNA-seq data and the spatial information of spatially resolved transcriptomics data. We present a series of benchmarking analyses on publicly available spatially resolved transcriptomics datasets, that demonstrate the superiority of Spatial-ID compared with state-of-the-art methods. Besides, we apply Spatial-ID on a self-collected mouse brain hemisphere dataset measured by Stereo-seq, that shows the scalability of Spatial-ID to three-dimensional large field tissues with subcellular spatial resolution.
Collapse
Affiliation(s)
| | - Lin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen, 518057, China
| | | | - Zhiyuan Yuan
- Tencent AI Lab, Shenzhen, 518057, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Junfu Guo
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Fan Yang
- Tencent AI Lab, Shenzhen, 518057, China
| | | | | | - Wanwan Feng
- Tencent AI Lab, Shenzhen, 518057, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Guo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Yong Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, Shenzhen, 518083, China
| | - Yuxiang Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, Shenzhen, 518083, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China.
| | | |
Collapse
|
11
|
Süß ST, Olbricht LM, Herlitze S, Spoida K. Constitutive 5-HT2C receptor knock-out facilitates fear extinction through altered activity of a dorsal raphe-bed nucleus of the stria terminalis pathway. Transl Psychiatry 2022; 12:487. [PMID: 36402746 PMCID: PMC9675804 DOI: 10.1038/s41398-022-02252-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Serotonin 2C receptors (5-HT2CRs) are widely distributed throughout the brain and are strongly implicated in the pathophysiology of anxiety disorders such as post-traumatic stress disorder (PTSD). Although in recent years, a considerable amount of evidence supports 5-HT2CRs facilitating effect on anxiety behavior, the involvement in learned fear responses and fear extinction is rather unexplored. Here, we used a 5-HT2CR knock-out mouse line (2CKO) to gain new insights into the involvement of 5-HT2CRs in the neuronal fear circuitry. Using a cued fear conditioning paradigm, our results revealed that global loss of 5-HT2CRs exclusively accelerates fear extinction, without affecting fear acquisition and fear expression. To investigate the neuronal substrates underlying the extinction enhancing effect, we mapped the immediate-early gene product cFos, a marker for neuronal activity, in the dorsal raphe nucleus (DRN), amygdala and bed nucleus of the stria terminalis (BNST). Surprisingly, besides extinction-associated changes, our results revealed alterations in neuronal activity even under basal home cage conditions in specific subregions of the DRN and the BNST in 2CKO mice. Neuronal activity in the dorsal BNST was shifted in an extinction-supporting direction due to 5-HT2CR knock-out. Finally, the assessment of DRN-BNST connectivity using antero- and retrograde tracing techniques uncovered a discrete serotonergic pathway projecting from the most caudal subregion of the DRN (DRC) to the anterodorsal portion of the BNST (BNSTad). This serotonergic DRC-BNSTad pathway showed increased neuronal activity in 2CKO mice. Thus, our results provide new insights for the fear extinction network by revealing a specific serotonergic DRC-BNSTad pathway underlying a 5-HT2CR-sensitive mechanism with high significance in the treatment of PTSD.
Collapse
Affiliation(s)
- Sandra T Süß
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
| | - Linda M Olbricht
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
| |
Collapse
|
12
|
Legan TB, Lavoie B, Mawe GM. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterol Motil 2022; 34:e14346. [PMID: 35246905 PMCID: PMC9441471 DOI: 10.1111/nmo.14346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Mounting evidence highlights the pivotal role of enteric microbes as a dynamic interface with the host. Indeed, the gut microbiota, located in the lumen of the gastrointestinal (GI) tract, influence many essential physiological processes that are evident in both healthy and pathological states. A key signaling molecule throughout the body is serotonin (5-hydroxytryptamine; 5-HT), which acts in the GI tract to regulate numerous gut functions including intestinal motility and secretion. The gut microbiota can modulate host 5-HT systems both directly and indirectly. Direct actions of gut microbes, evidenced by studies using germ-free animals or antibiotic administration, alter the expression of key 5-HT-related genes to promote 5-HT biosynthesis. Indirectly, the gut microbiota produce numerous microbial metabolites, whose actions can influence host serotonergic systems in a variety of ways. This review summarizes the current knowledge regarding mechanisms by which gut bacteria act to regulate host 5-HT and 5-HT-mediated gut functions, as well as implications for 5-HT in the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Theresa B Legan
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Gary M Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
13
|
Paquelet GE, Carrion K, Lacefield CO, Zhou P, Hen R, Miller BR. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron 2022; 110:2664-2679.e8. [PMID: 35700737 PMCID: PMC9575686 DOI: 10.1016/j.neuron.2022.05.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
The serotonin system modulates a wide variety of emotional behaviors and states, including reward processing, anxiety, and social interaction. To reveal the underlying patterns of neural activity, we visualized serotonergic neurons in the dorsal raphe nucleus (DRN5-HT) of mice using miniaturized microscopy during diverse emotional behaviors. We discovered ensembles of cells with highly correlated activity and found that DRN5-HT neurons are preferentially recruited by emotionally salient stimuli as opposed to neutral stimuli. Individual DRN5-HT neurons responded to diverse combinations of salient stimuli, with some preference for valence and sensory modality. Anatomically defined subpopulations projecting to either a reward-related structure (the ventral tegmental area) or an anxiety-related structure (the bed nucleus of the stria terminalis) contained all response types but were enriched in reward- and anxiety-responsive cells, respectively. Our results suggest that the DRN serotonin system responds to emotional salience using ensembles with mixed selectivity and biases in downstream connectivity.
Collapse
Affiliation(s)
- Grace E Paquelet
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Kassandra Carrion
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Clay O Lacefield
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Pengcheng Zhou
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Statistics, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - René Hen
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Bradley R Miller
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cell Mol Neurobiol 2022; 43:1453-1468. [PMID: 35902460 DOI: 10.1007/s10571-022-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Serotonin 5-hydroxytryptamine (5-HT) is a key neurotransmitter for the modulation and/or regulation of numerous physiological processes and psychiatric disorders (e.g., behaviors related to anxiety, pain, aggressiveness, etc.). The periaqueductal gray matter (PAG) is considered an integrating center for active and passive defensive behaviors, and electrical stimulation of this area has been shown to evoke behavioral responses of panic, fight-flight, freezing, among others. The serotonergic activity in PAG is influenced by the activation of other brain areas such as the medial hypothalamus, paraventricular nucleus of the hypothalamus, amygdala, dorsal raphe nucleus, and ventrolateral orbital cortex. In addition, activation of other receptors within PAG (i.e., CB1, Oxytocin, µ-opioid receptor (MOR), and γ-aminobutyric acid (GABAA)) promotes serotonin release. Therefore, this review aims to document evidence suggesting that the PAG-evoked behavioral responses of anxiety, panic, fear, analgesia, and aggression are influenced by the activation of 5-HT1A and 5-HT2A/C receptors and their participation in the treatment of various mental disorders.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Wilfrido Massieu esq. Manuel Stampa S/N Col. Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City, CP:07738, Mexico
| | - Kenji Valencia-Flores
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico.
- Research Unit of Psychobiology and Neurosciences (UIPyN), Psychology School, UNAM, CDMX Mexico, CP 04510, Mexico.
| |
Collapse
|
15
|
Nishijo T, Suzuki E, Momiyama T. Serotonin 5‐HT
1A
and 5‐HT
1B
receptor‐mediated inhibition of glutamatergic transmission onto rat basal forebrain cholinergic neurones. J Physiol 2022; 600:3149-3167. [DOI: 10.1113/jp282509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Takuma Nishijo
- Department of Pharmacology Jikei University School of Medicine 3‐25‐8 Nishi‐Shimbashi, Minato‐ku Tokyo 105–8461 Japan
- Department of Molecular Neurobiology Institute for Developmental Research Aichi Developmental Disability Center, 713–8 Kamiya Kasugai Aichi 480‐0392 Japan
| | - Etsuko Suzuki
- Department of Pharmacology Jikei University School of Medicine 3‐25‐8 Nishi‐Shimbashi, Minato‐ku Tokyo 105–8461 Japan
| | - Toshihiko Momiyama
- Department of Pharmacology Jikei University School of Medicine 3‐25‐8 Nishi‐Shimbashi, Minato‐ku Tokyo 105–8461 Japan
| |
Collapse
|
16
|
Something new and something blue: Responses to novelty in a rodent model of depression and epilepsy comorbidity. Physiol Behav 2022; 249:113778. [PMID: 35278474 DOI: 10.1016/j.physbeh.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
A bidirectional comorbidity exists between depression and epilepsy such that patients with epilepsy are at higher risk for developing depression, and vice versa. Each of these conditions individually can be complicated by behavioral effects that worsen quality of life, but less is known about these interactions within the comorbidity of depression and epilepsy. The SwLo rat has been selectively bred for depression-relevant behaviors and exhibits enhanced limbic seizure susceptibility. This study sought to characterize the effects of novelty and stress on the SwLo rodent model of this comorbidity. It was hypothesized that SwLo rats would exhibit altered responses to novelty, reflected in hyperactivity-, anxiety-, sensation seeking-, and/or compulsive behaviors, and that this would be exacerbated with stress. Compared to the SwHi rat (their depression- and epilepsy-resistant counterparts), SwLo rats showed increased entries in all areas of the Open Field Test and spent significantly more time in the light compartment of the Light-Dark Box. SwLo rats also had a significantly higher number of rearing behaviors in the inner squares of the Open Field Test, the closed arms of the Elevated Plus Maze, and both areas of the Light-Dark Box. They demonstrated increased Nestlet shredding but showed no difference in a marble burying task or in latency to consume food in a novelty suppressed feeding task. Interestingly, restraint stress showed little effect on these behaviors, despite increasing corticosterone levels. Combined, these results suggest an increase in exploratory sensation seeking and hypervigilant information-gathering behaviors in the SwLo rat that are not dependent on corticosterone levels. This shows the utility of this model for studying behavioral effects of comorbid depression and epilepsy and allows for their use in identifying underlying mechanisms or screening treatment strategies for this complex comorbidity.
Collapse
|
17
|
De Silva PN. Neurobiological and epigenetic perspectives on hedonism, altruism and conscience. BJPSYCH ADVANCES 2022. [DOI: 10.1192/bja.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
This article examines notions of hedonism, altruism and conscience in relation to the activity of four neurotransmitter pathways: the dopamine reward, noradrenaline fight or flight, serotonin calming and glutamine learning pathways. Associated brain areas that modulate behaviour are highlighted: the prefrontal cortex (activity planning, risk mitigation), the hippocampus (memory retrieval) and the insular cortex (integration of information to decide on action). Putative epigenetic changes influencing adult behaviours after childhood privation are discussed. Pharmacological and psychological means of mitigating harmful behaviours are summarised, alongside the ethics of epigenetic screening to predict future addictive and violent tendencies.
Collapse
|
18
|
Qi Y, Ni S, Heng X, Qu S, Ge P, Zhao X, Yao Z, Guo R, Yang N, Zhang Q, Zhu H. Uncovering the Potential Mechanisms of Coptis chinensis Franch. for Serious Mental Illness by Network Pharmacology and Pharmacology-Based Analysis. Drug Des Devel Ther 2022; 16:325-342. [PMID: 35173416 PMCID: PMC8841750 DOI: 10.2147/dddt.s342028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Serious mental illness is a disease with complex etiological factors that requires multiple interventions within a holistic disease system. With heat-clearing and detoxifying effects, Coptis chinensis Franch. is mainly used to treat serious mental illness. Aim of the Study To explore the underlying mechanisms and therapeutic effect by which Coptis chinensis Franch. treats serious mental illnesses at a holistic level. Methods A viable network pharmacology approach was adopted to obtain the potential active ingredients of Coptis chinensis Franch., and serious mental illnesses-related targets and signaling pathways. The interactions between crucial target HTR2A and constituents were verified by molecular docking, and the dynamic behaviors of binding were studied by molecular dynamics simulation. In addition, the anti-anxiety effect of Rhizoma Coptidis (the roots of Coptis chinensis Franch.) extract on lipopolysaccharide-stimulated mice was verified. The anxiety-like behavior was measured through the elevated plus-maze test, light–dark box test, and open field test. Radioimmunoassays detected the levels of interleukin-1β, tumor necrosis factor-α, interleukin-10, interleukin-4, 5-hydroxytryptamine, and dopamine in the serum, hippocampus, medial prefrontal cortex, and amygdala. Meanwhile, immunohistochemistry protocols for the assessment of neuronal loss (neuron-specific nuclear protein) and synaptic alterations (Synapsin I) were performed in the hippocampus. Results Based on scientific analysis of the established networks, serious mental illnesses-related targets mostly participated in the calcium signaling pathway, cyclic adenosine monophosphate signaling pathway, mitogen-activated protein kinase signaling pathway, serotonergic and dopaminergic synapse. Molecular docking and molecular dynamics simulation studies illustrated that berberine, epiberberine, palmatine, and coptisine presented favorable binding patterns with HTR2A. The in vivo experiments confirmed that Rhizoma Coptidis extract ameliorated anxiety-like behaviors by improving the survival of neurons, regulating synaptic plasticity, and inhibiting neuroinflammation. Conclusion These findings in the present study led to potential preventative and therapeutic strategies for serious mental illnesses with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yiyu Qi
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Saijia Ni
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xia Heng
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Shuyue Qu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Pingyuan Ge
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xin Zhao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Zengying Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Rui Guo
- Department of Physiological, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Nianyun Yang
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Qichun Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Qichun Zhang; Huaxu Zhu, Email ;
| | - Huaxu Zhu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
19
|
Chun EK, Donovan M, Liu Y, Wang Z. Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. Neurobiol Stress 2022; 16:100427. [PMID: 35036478 PMCID: PMC8749234 DOI: 10.1016/j.ynstr.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023] Open
Abstract
Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.
Collapse
Affiliation(s)
- Eileen K. Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
20
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
21
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
22
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
23
|
Alexander C, Vasefi M. Cannabidiol and the corticoraphe circuit in post-traumatic stress disorder. IBRO Neurosci Rep 2021; 11:88-102. [PMID: 34485973 PMCID: PMC8408530 DOI: 10.1016/j.ibneur.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD), characterized by re-experiencing, avoidance, negative affect, and impaired memory processing, may develop after traumatic events. PTSD is complicated by impaired plasticity and medial prefrontal cortex (mPFC) activity, hyperactivity of the amygdala, and impaired fear extinction. Cannabidiol (CBD) is a promising candidate for treatment due to its multimodal action that enhances plasticity and calms hyperexcitability. CBD’s mechanism in the mPFC of PTSD patients has been explored extensively, but literature on the mechanism in the dorsal raphe nucleus (DRN) is lacking. Following the PRISMA guidelines, we examined current literature regarding CBD in PTSD and overlapping symptomologies to propose a mechanism by which CBD treats PTSD via corticoraphe circuit. Acute CBD inhibits excess 5-HT release from DRN to amygdala and releases anandamide (AEA) onto amygdala inputs. By first reducing amygdala and DRN hyperactivity, CBD begins to ameliorate activity disparity between mPFC and amygdala. Chronic CBD recruits the mPFC, creating harmonious corticoraphe signaling. DRN releases enough 5-HT to ameliorate mPFC hypoactivity, while the mPFC continuously excites DRN 5-HT neurons via glutamate. Meanwhile, AEA regulates corticoraphe activity to stabilize signaling. AEA prevents DRN GABAergic interneurons from inhibiting 5-HT release so the DRN can assist the mPFC in overcoming its hypoactivity. DRN-mediated restoration of mPFC activity underlies CBD’s mechanism on fear extinction and learning of stress coping. CBD reduces PTSD symptoms via the DRN and corticoraphe circuit. Acute effects of CBD reduce DRN-amygdala excitatory signaling to lessen the activity disparity between amygdala and mPFC. Chronic CBD officially resolves mPFC hypoactivity by facilitating 5-HT release from DRN to mPFC. CBD-facilitated endocannabinoid signaling stabilizes DRN activity and restores mPFC inhibitory control. Chronically administered CBD acts via the corticoraphe circuit to favor fear extinction over fear memory reconsolidation.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- 5-HT, Serotonin
- 5-HT1AR, 5-HT Receptor Type 1A
- 5-HT2AR, 5-HT Receptor Type 2 A
- AEA, Anandamide
- CB1R, Cannabinoid Receptor Type 1
- CB2R, Cannabinoid Receptor Type 2
- CBD, Cannabidiol
- COVID-19, SARS-CoV-2
- Cannabidiol
- DRN, Dorsal Raphe Nucleus
- ERK1/2, Extracellular Signal-Related Kinases Type 1 or Type 2
- FAAH, Fatty Acid Amide Hydrolase
- GABA, Gamma-Aminobutyric Acid
- GPCRs, G-Protein Coupled Receptors
- NMDAR, N-Methyl-D-aspartate Receptors
- PET, Positron Emission Tomography
- PFC, DRN and Raphe
- PFC, Prefrontal Cortex
- PTSD
- PTSD, Post-Traumatic Stress Disorder
- SSNRI, Selective Norepinephrine Reuptake Inhibitor
- SSRI, Selective Serotonin Reuptake Inhibitor
- Serotonin
- TRPV1, Transient Receptor Potential Vanilloid 1 Channels
- Traumatic Stress
- fMRI, Functional Magnetic Resonance Imaging
- mPFC, Medial Prefrontal Cortex
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
24
|
Bellot-Saez A, Stevenson R, Kékesi O, Samokhina E, Ben-Abu Y, Morley JW, Buskila Y. Neuromodulation of Astrocytic K + Clearance. Int J Mol Sci 2021; 22:ijms22052520. [PMID: 33802343 PMCID: PMC7959145 DOI: 10.3390/ijms22052520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.
Collapse
Affiliation(s)
- Alba Bellot-Saez
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Orsolya Kékesi
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Yuval Ben-Abu
- Projects and Physics Section, Sapir Academic College, D.N. Hof Ashkelon, Sderot 79165, Israel;
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203853
| |
Collapse
|
25
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
26
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021; 13:nu13010249. [PMID: 33467150 PMCID: PMC7830868 DOI: 10.3390/nu13010249] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Studies suggest that the bidirectional relationship existent between the gut microbiome (GM) and the central nervous system (CNS), or so-called the microbiome–gut–brain axis (MGBA), is involved in diverse neuropsychiatric diseases in children and adults. In pediatric age, most studies have focused on patients with autism. However, evidence of the role played by the MGBA in attention deficit/hyperactivity disorder (ADHD), the most common neurodevelopmental disorder in childhood, is still scanty and heterogeneous. This review aims to provide the current evidence on the functioning of the MGBA in pediatric patients with ADHD and the specific role of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in this interaction, as well as the potential of the GM as a therapeutic target for ADHD. We will explore: (1) the diverse communication pathways between the GM and the CNS; (2) changes in the GM composition in children and adolescents with ADHD and association with ADHD pathophysiology; (3) influence of the GM on the ω-3 PUFA imbalance characteristically found in ADHD; (4) interaction between the GM and circadian rhythm regulation, as sleep disorders are frequently comorbid with ADHD; (5) finally, we will evaluate the most recent studies on the use of probiotics in pediatric patients with ADHD.
Collapse
|
28
|
Foxx CL, Heinze JD, González A, Vargas F, Baratta MV, Elsayed AI, Stewart JR, Loupy KM, Arnold MR, Flux MC, Sago SA, Siebler PH, Milton LN, Lieb MW, Hassell JE, Smith DG, Lee KAK, Appiah SA, Schaefer EJ, Panitchpakdi M, Sikora NC, Weldon KC, Stamper CE, Schmidt D, Duggan DA, Mengesha YM, Ogbaselassie M, Nguyen KT, Gates CA, Schnabel K, Tran L, Jones JD, Vitaterna MH, Turek FW, Fleshner M, Dorrestein PC, Knight R, Wright KP, Lowry CA. Effects of Immunization With the Soil-Derived Bacterium Mycobacterium vaccae on Stress Coping Behaviors and Cognitive Performance in a "Two Hit" Stressor Model. Front Physiol 2021; 11:524833. [PMID: 33469429 PMCID: PMC7813891 DOI: 10.3389/fphys.2020.524833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.
Collapse
Affiliation(s)
- Christine L. Foxx
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Jared D. Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Fernando Vargas
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Ahmed I. Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Jessica R. Stewart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey M. Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Mathew R. Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - M. C. Flux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Saydie A. Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Philip H. Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Lauren N. Milton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Margaret W. Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - James E. Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - David G. Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kyo A. K. Lee
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Sandra A. Appiah
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Evan J. Schaefer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Morgan Panitchpakdi
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Nicole C. Sikora
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kelly C. Weldon
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - David A. Duggan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Yosan M. Mengesha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mikale Ogbaselassie
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kadi T. Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Chloe A. Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - K’loni Schnabel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Linh Tran
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Joslynn D. Jones
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Pieter C. Dorrestein
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- inVIVO Planetary Health, Worldwide Universities Network, West New York, NJ, United States
| |
Collapse
|
29
|
Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2020; 893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/24/2022]
Abstract
Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
30
|
Serotonin and Tryptophan Serum Concentrations in Shelter Dogs Showing Different Behavioural Responses to a Potentially Stressful Procedure. Vet Sci 2020; 8:vetsci8010001. [PMID: 33374183 PMCID: PMC7824451 DOI: 10.3390/vetsci8010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022] Open
Abstract
In mammals, serotonin (5-HT) levels depend on the availability of tryptophan (TRP). Low 5-HT concentrations have been linked to behavioural disorders in dogs. This study aimed at investigating possible differences in dogs’ serum TRP and 5-HT concentrations according to their behavioural response to a potentially stressful procedure. Thirty-nine physically healthy shelter dogs, 15 females and 24 males, mean age = 5.6 years, were categorized by a certified veterinary behaviourist according to their behavioural response to medical examination and blood collection, in: relaxation, stress signals, tension without growling, tension with growling, escape attempts, and aggression attempts. Extraction and quantification of 5-HT and TRP were performed using a HLPC method. Data were statistically analysed, applying Chi-square and Spearman tests. Results showed no significant difference in TRP (χ2 = 2.084, p = 0.555) nor 5-HT (χ2 = 0.972, p = 0.808) serum concentrations among different categories of dogs; however, some categories were underrepresented (relaxation = 20.5%, stress signals = 30.8%, tension without growling = 43.6%, tension with growling = 5.1%, escape attempts = 0%, aggression attempts = 0%). No correlation between serum TRP and 5-HT concentrations was found (ρ = 0.086, p = 0.602). Serum 5-HT levels do not seem to be associated with dogs’ behavioural response to a stressful situation nor with serum TRP concentrations. The relationship between serum TRP and 5-HT concentrations and behaviour needs further research.
Collapse
|
31
|
Paul A, Shakya A, Zaman MK. Assessment of acute and sub-chronic neurotoxicity of Morus alba L. fruits in rodents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00110-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Abstract
Background
Morus alba L. fruits are consumed since long for their nutritional and medicinal values. Although there were studies on the neuroprotective activity of the fruit extract, safety profile of the fruit extract is not yet explored as per the recommended standard guidelines over the central nervous system (CNS). The present work was aimed to assess the neurotoxicity profile of chemically characterized extract of M. alba L. fruits (MA) using validated OECD guidelines, i.e., 425 and 424 in rodents.
Results
Neurobehavioural parameters were examined for motor, sensory and behavioural responses using actophotometer, hot plate and light and dark box test, respectively as per OECD 424. Interestingly, no sign of mortality and/or adversity on mice treated per-orally with MA (2000 mg/kg) was observed during the limit test as per OECD 425. Further, rats treated with MA (1000, 300 and 100 mg/kg, p.o.) for 28 days, showed insignificant (p < 0.05) changes in body weight, food consumption, neurobehavioural responses, organ weights and biochemical, haematological and histopathological features when compared with vehicle-treated animals.
Conclusion
The outcome of findings suggests that MA is safe in acute oral as well as sub-chronic (28 days) administration in mice and rats respectively. MA (1000 mg/kg) did not pose any toxic sign and symptoms on neurobehavioural responses in rats even after 28 days repeated treatment in compliance with OECD 424.
Collapse
|
32
|
Hessel M, Pape HC, Seidenbecher T. Stimulation of 5-HT receptors in anterodorsal BNST guides fear to predictable and unpredictable threat. Eur Neuropsychopharmacol 2020; 39:56-69. [PMID: 32873441 DOI: 10.1016/j.euroneuro.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
Abstract
Through pharmacological manipulation of the serotonergic (5-Hydroxytryptamin, 5-HT) system, combined with behavioral analysis, we tested the hypothesis that fear responses to predictable and unpredictable threat are regulated through stimulation of 5-HT receptors (5-HT-R) in the anterodorsal section of the bed nucleus of the stria terminalis (adBNST). Local adBNST application of 5-HT1A-R antagonist WAY100635 and 5-HT1B-R antagonist NAS-181 before fear retrieval enhanced freezing, 24 h after predictable fear conditioning. In contrast, increased fear responses to unpredictable threat were blocked by 5-HT1A-R agonist Buspirone (given before conditioning or retrieval) and 5-HT1B-R agonist CP-94253 (applied before training). Prolonged fear responses were also blocked by local application of the 5-HT2A-R antagonist R-96544 before fear retrieval, and conversely, local application of the 5-HT2A-R agonist NBOH-2C-CN hydrochloride before fear retrieval enhanced freezing 24 h after predictable conditioning, indicating augmented fear responses. Activation of inhibitory 5-HT1A- or 5-HT1B-Rs and the blockade of the excitatory 5-HT2A-R before unpredictable fear conditioning significantly reduced freezing during retrieval. The results from this study suggest that modulation of inhibitory 5-HT1A/1B-R and/or excitatory 5-HT2A-R activity in the adBNST may represent potential targets for the development of new treatment strategies in anxiety disorders. In addition, this study supports the validity and reliability of the mouse model of modulated fear to predictable and unpredictable threats to study mechanisms of fear and anxiety in combination with pharmacological manipulations.
Collapse
Affiliation(s)
- Margarita Hessel
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Thomas Seidenbecher
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| |
Collapse
|
33
|
Singha HA, Sengupta M, Bawari M. Neurobehavioral responses in swiss albino mice induced by an aqueous leaf extract from a medicinal plant named Heliotropium incanum Ruiz & Pav. Bioinformation 2020; 16:679-687. [PMID: 34621113 PMCID: PMC8457018 DOI: 10.6026/97320630016679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
It is of interest to examine the adverse neuro-behavioural responses on mice treated with the aqueous crude extract of Heliotropium incanum (AEHI), which were evaluated using various behavioral paradigms. On the basis of median lethal dose value, doses of AEHI were chosen to be 150mg/kg and 440mg/kg for further experiment. Four groups comprising of five mice each were divided for the 14 days experiment. Group I, the control group, received distilled water; Group II and III received AEHI (150 mg/kg body weight and 440 mg/kg body weight) respectively; Group IV received standard drugs, Diazepam/Fluoxetine, administered orally. On administration of AEHI, it was revealed that dose 440 mg/kg showed less exploration activity in the hole board test; decrease in the number of squares crossed in locomotory test, time period in the open arm in the plus maze test was significantly reduced and the immobility time was significantly extended in comparison to control and standard drugs. The microscopic study of brain revealed damaged hippocampus along with nerve cells degeneration. Consequently, the results concluded that the outcome of the AEHI produced evidences for the anxiogenic activity in mice.
Collapse
|
34
|
Tafet GE, Nemeroff CB. Pharmacological Treatment of Anxiety Disorders: The Role of the HPA Axis. Front Psychiatry 2020; 11:443. [PMID: 32499732 PMCID: PMC7243209 DOI: 10.3389/fpsyt.2020.00443] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Stress in general, and early life stress in particular, has been associated with the development of anxiety and mood disorders. The molecular, biological and psychological links between stress exposure and the pathogenesis of anxiety and mood disorders have been extensively studied, resulting in the search of novel psychopharmacological strategies aimed at targets of the hypothalamic-pituitary-adrenal (HPA) axis. Hyperactivity of the HPA axis has been observed in certain subgroups of patients with anxiety and mood disorders. In addition, the effects of different anti-anxiety agents on various components of the HPA axis has been investigated, including benzodiazepines, tricyclic antidepressants (TCAs), and selective serotonin reuptake inhibitors (SSRIs). For example, benzodiazepines, including clonazepam and alprazolam, have been demonstrated to reduce the activity of corticotrophin releasing factor (CRF) neurons in the hypothalamus. TCAs and SSRIs are also effective anti-anxiety agents and these may act, in part, by modulating the HPA axis. In this regard, the SSRI escitalopram inhibits CRF release in the central nucleus of the amygdala, while increasing glucocorticoid receptor (GRs) density in the hippocampus and hypothalamus. The molecular effects of these anti-anxiety agents in the regulation of the HPA axis, taken together with their clinical efficacy, may provide further understanding about the role of the HPA axis in the pathophysiology of mood and anxiety disorders, paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo E. Tafet
- Department of Psychiatry and Neurosciences, Maimónides University, Buenos Aires, Argentina
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
35
|
Effect of cannabinoid-serotonin interactions in the regulation of neuropeptide Y1 receptors expression in rats: the role of CB1 and 5-HT2C receptor. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s00580-019-03081-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNeuropeptide Y (NPY) is involved in a diversity of critical functions such as circadian rhythms, energy homeostasis, and appetite regulation in the hypothalamus. It has identified as a crucial participant in adjusting energy intake and energy storage as fat via central neuropeptide Y1 receptor (NPY1R), leading to obesity and metabolic disorders. The present study was expected to investigate the interaction between 2-AG (CB1R agonist), m-CPP (5HT2CR agonist), SB-242084 (5HT2CR antagonist), and SR-141716A (CB1R antagonist) by mediating through the NPY1R for treating or preventing obesity, metabolic disorders, and other abnormalities. The expression level of NPY1R mRNA has studied on the rat brain by real-time quantitative PCR assay. Based on our findings, intracerebroventricular (ICV) injection of combined 2-AG (1 μg) + m-CPP (2.5 μg) has antagonistic interaction in the expression of the NPY1R gene (P < 0.001). Moreover, the ICV co-injection of SB-242084 (3 μg) + SR-141716A (1 μg) has antagonistic interaction in the NPY1R gene expression (P < 0.001). Co-administration of 2-AG (1 μg) + SB-242084 (3 μg) amplified NPY1R gene expression (P < 0.001), while the ICV co-injection of m-CPP (2.5 μg) + SR-141716A (1 μg) decreased NPY1R gene expression in the hypothalamus (P < 0.001). These results revealed the interference in cannabinoid and serotonergic systems via CB1 and 5HT2C receptors in the expression of NPY1R mRNA in the hypothalamic area of rats.
Collapse
|
36
|
Effects of plus-maze experience and chlordiazepoxide on anxiety-like behavior and serotonin neural activity in the dorsal raphe nucleus in rats. Behav Pharmacol 2020; 30:208-219. [PMID: 30169377 DOI: 10.1097/fbp.0000000000000423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The extent to which rats express anxiety-like behavior on the elevated plus-maze (EPM) depends on their previous maze experience. Open-arm avoidance develops in maze-experienced rats, and is often accompanied by a diminished anxiolytic response to benzodiazepines. Regions of the dorsal raphe nucleus (DRN) were examined in male Sprague-Dawley rats using c-Fos and serotonin immunohistochemistry following a single exposure, a second exposure or no exposure to the EPM. We then examined the effect of the benzodiazepine anxiolytic chlordiazepoxide (CDP, 5 mg/kg) on EPM behavior and DRN neural activity. Enhanced open-arm avoidance was evident on the second EPM trial in both experiments. The observed pattern of c-Fos expression suggests that the first exposure to the maze activates serotonin cells in the rostral and dorsal regions of the DRN and that only the dorsal subregion is activated by a second exposure. CDP increased open-arm exploration during the first trial, which corresponded to decreased 5-hydroxytryptamine (5-HT) activity in the rostral and ventral subregions of the DRN. However, 5-HT activity in the DRN was reduced in rats on the second maze trial compared with the first trial, when CDP had no effect on open-arm exploration. These results suggest that open-arm avoidance in maze-experienced rats can be characterized as a coping response that is mediated by specific populations of 5-HT neurons in the DRN.
Collapse
|
37
|
Reinebrant HE, Wixey JA, Buller KM. Hypoxia-ischemia in the immature rodent brain impairs serotonergic neuronal function in certain dorsal raphé nuclei. Neural Regen Res 2020; 15:457-463. [PMID: 31571657 PMCID: PMC6921336 DOI: 10.4103/1673-5374.266067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neonatal hypoxia-ischemia (HI) results in losses of serotonergic neurons in specific dorsal raphé nuclei. However, not all serotonergic raphé neurons are lost and it is therefore important to assess the function of remaining neurons in order to understand their potential to contribute to neurological disorders in the HI-affected neonate. The main objective of this study was to determine how serotonergic neurons, remaining in the dorsal raphé nuclei after neonatal HI, respond to an external stimulus (restraint stress). On postnatal day 3 (P3), male rat pups were randomly allocated to one of the following groups: (i) control + no restraint (n = 5), (ii) control + restraint (n = 6), (iii) P3 HI + no restraint (n = 5) or (iv) P3 HI + restraint (n = 7). In the two HI groups, rat pups underwent surgery to ligate the common carotid artery and were then exposed to 6% O2 for 30 minutes. Six weeks after P3 HI, on P45, rats were subjected to restraint stress for 30 minutes. Using dual immunolabeling for Fos protein, a marker for neuronal activity, and serotonin (5-hydroxytrypamine; 5-HT), numbers of Fos-positive 5-HT neurons were determined in five dorsal raphé nuclei. We found that restraint stress alone increased numbers of Fos-positive 5-HT neurons in all five dorsal raphé nuclei compared to control animals. However, following P3 HI, the number of stress-induced Fos-positive 5-HT neurons was decreased significantly in the dorsal raphé ventrolateral, interfascicular and ventral nuclei compared with control animals exposed to restraint stress. In contrast, numbers of stress-induced Fos-positive 5-HT neurons in the dorsal raphé dorsal and caudal nuclei were not affected by P3 HI. These data indicate that not only are dorsal raphé serotonergic neurons lost after neonatal HI, but also remaining dorsal raphé serotonergic neurons have reduced differential functional viability in response to an external stimulus. Procedures were approved by the University of Queensland Animal Ethics Committee (UQCCR958/08/NHMRC) on February 27, 2009.
Collapse
Affiliation(s)
- Hanna E Reinebrant
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kathryn M Buller
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
38
|
Mathee K, Cickovski T, Deoraj A, Stollstorff M, Narasimhan G. The gut microbiome and neuropsychiatric disorders: implications for attention deficit hyperactivity disorder (ADHD). J Med Microbiol 2020; 69:14-24. [PMID: 31821133 PMCID: PMC7440676 DOI: 10.1099/jmm.0.001112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as depression, anxiety, bipolar disorder, autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) all relate to behavioural, cognitive and emotional disturbances that are ultimately rooted in disordered brain function. More specifically, these disorders are linked to various neuromodulators (i.e. serotonin and dopamine), as well as dysfunction in both cognitive and socio-affective brain networks. Increasing evidence suggests that the gut environment, and particularly the microbiome, plays a significant role in individual mental health. Although the presence of a gut-brain communication axis has long been established, recent studies argue that the development and regulation of this axis is dictated by the gut microbiome. Many studies involving both animals and humans have connected the gut microbiome with depression, anxiety and ASD. Microbiome-centred treatments for individuals with these same NPDs have yielded promising results. Despite its recent rise and underlying similarities to other NPDs, both biochemically and symptomatically, connections between the gut microbiome and ADHD currently lag behind those for other NPDs. We demonstrate that all evidence points to the importance of, and dire need for, a comprehensive and in-depth analysis of the role of the gut microbiome in ADHD, to deepen our understanding of a condition that affects millions of individuals worldwide.
Collapse
Affiliation(s)
- Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Trevor Cickovski
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Florida, USA
| | - Alok Deoraj
- Department of Environmental and Occupational Health, Robert Stempel College of Public Health and Social Work, Florida International University, Florida, USA
| | - Melanie Stollstorff
- Department of Psychology, College of Arts, Science and Education, Florida International University, Florida, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Florida, USA
| |
Collapse
|
39
|
Yamamoto R, Furuyama T, Sugai T, Ono M, Pare D, Kato N. Serotonergic control of GABAergic inhibition in the lateral amygdala. J Neurophysiol 2019; 123:670-681. [PMID: 31875487 DOI: 10.1152/jn.00500.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Much evidence implicates the serotonergic regulation of the amygdala in anxiety. Thus the present study was undertaken to characterize the influence of serotonin (5-HT) on principal neurons (PNs) of the rat lateral amygdala (LA), using whole cell recordings in vitro. Because inhibition is a major determinant of PN activity, we focused on the control of GABAergic transmission by 5-HT. IPSCs were elicited by local electrical stimulation of LA in the presence of glutamate receptor antagonists. We found that 5-HT reduces GABAA inhibitory postsynaptic currents (IPSCs) via presynaptic 5-HT1B receptors. While the presynaptic inhibition of GABA release also attenuated GABAB currents, this effect was less pronounced than for GABAA currents because 5-HT also induced a competing postsynaptic enhancement of GABAB currents. That is, GABAB currents elicited by pressure application of GABA or baclofen were enhanced by 5-HT. In addition, we obtained evidence suggesting that 5-HT differentially regulates distinct subsets of GABAergic synapses. Indeed, GABAA IPSCs were comprised of two components: a relatively 5-HT-insensitive IPSC that had a fast time course and a 5-HT-sensitive component that had a slower time course. Because the relative contribution of these two components varied depending on whether neurons were recorded at proximity versus at a distance from the stimulating electrodes, we speculate that distinct subtypes of local-circuit cells contribute the two contingents of GABAergic synapses. Overall, our results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.NEW & NOTEWORTHY We report that 5-HT, acting via presynaptic 5-HT1B receptors, attenuates GABAA IPSCs by reducing GABA release in the lateral amygdala (LA). In parallel, 5-HT enhances GABAB currents postsynaptically, such that GABAB inhibitory postsynaptic currents (IPSCs) are relatively preserved from the presynaptic inhibition of GABA release. We also found that the time course of 5-HT-sensitive and -insensitive GABAA IPSCs differ. Together, these results indicate that 5-HT is a potent regulator of synaptic inhibition in LA.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
40
|
Bär KJ, Köhler S, Cruz FDL, Schumann A, Zepf FD, Wagner G. Functional consequences of acute tryptophan depletion on raphe nuclei connectivity and network organization in healthy women. Neuroimage 2019; 207:116362. [PMID: 31743788 DOI: 10.1016/j.neuroimage.2019.116362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Previous research on central nervous serotonin (5-HT) function provided evidence for a substantial involvement of 5-HT in the regulation of brain circuitries associated with cognitive and affective processing. The underlying neural networks comprise core subcortical/cortical regions such as amygdala and medial prefrontal cortex, which are assumed to be modulated amongst others by 5-HT. Beside the use of antidepressants, acute tryptophan depletion (ATD) is a widely accepted technique to manipulate of 5-HT synthesis and its respective metabolites in humans by means of a dietary and non-pharmacological tool. We used a double-blind, randomized, cross-over design with two experimental challenge conditions, i.e. ATD and tryptophan (TRP) supplementation (TRYP+) serving as a control. The aim was to perturb 5-HT synthesis and to detect its impact on brain functional connectivity (FC) of the upper serotonergic raphe nuclei, the amygdala and the ventromedial prefrontal cortex as well as on network organization using resting state fMRI. 30 healthy adult female participants (age: M = 24.5 ± 4.4 yrs) were included in the final analysis. ATD resulted in a 90% decrease of TRP in the serum relative to baseline. Compared to TRYP + for the ATD condition a significantly lower FC of the raphe nucleus to the frontopolar cortex was detected, as well as greater functional coupling between the right amygdala and the ventromedial prefrontal cortex. FC of the raphe nucleus correlated significantly with the magnitude of TRP changes for both challenge conditions (ATD & TRYP+). Network-based statistical analysis using time series from 260 independent anatomical ROIs revealed significantly greater FC after ATD compared to TRYP+ in several brain regions being part of the default-mode (DMN) and the executive-control networks (ECN), but also of salience or visual networks. Finally, we observed an impact of ATD on the rich-club organization in terms of decreased rich-club coefficients compared to TRYP+. In summary we could confirm previous findings that the putative decrease in brain 5-HT synthesis via ATD significantly alters FC of the raphe nuclei as well as of specific subcortical/cortical regions involved in affective, but also in cognitive processes. Moreover, an ATD-effect on the so-called rich-club organization of some nodes with the high degree was demonstrated. This may indicate effects of brain 5-HT on the integration of information flow from several brain networks.
Collapse
Affiliation(s)
- Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Stefanie Köhler
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Feliberto de la Cruz
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Florian D Zepf
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, 07743, Jena, Germany
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|
41
|
Arnold MR, Greenwood BN, McArthur JA, Clark PJ, Fleshner M, Lowry CA. Effects of repeated voluntary or forced exercise on brainstem serotonergic systems in rats. Behav Brain Res 2019; 378:112237. [PMID: 31525404 DOI: 10.1016/j.bbr.2019.112237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Voluntary exercise increases stress resistance by modulating stress-responsive neurocircuitry, including brainstem serotonergic systems. However, it remains unknown how exercise produces adaptations to serotonergic systems. Recruitment of serotonergic systems during repeated, daily exercise could contribute to the adaptations in serotonergic systems following exercise, but whether repeated voluntary exercise recruits serotonergic systems is unknown. In this study, we investigated the effects of six weeks of voluntary or forced exercise on rat brain serotonergic systems. Specifically, we analyzed c-Fos and FosB/ΔFosB as markers of acute and chronic cellular activation, respectively, in combination with tryptophan hydroxylase, a marker of serotonergic neurons, within subregions of the dorsal raphe nucleus using immunohistochemical staining. Compared to sedentary controls, rats exposed to repeated forced exercise, but not repeated voluntary exercise, displayed decreased c-Fos expression in serotonergic neurons in the rostral dorsal portion of the dorsal raphe nucleus (DRD) and increased c-Fos expression in serotonergic neurons in the caudal DR (DRC), and interfascicular part of the dorsal raphe nucleus (DRI) during the active phase of the diurnal activity rhythm. Similarly, increases in c-Fos expression in serotonergic neurons in the DRC, DRI, and ventral portion of the dorsal raphe nucleus (DRV) were observed in rats exposed to repeated forced exercise, compared to rats exposed to repeated voluntary exercise. Six weeks of forced exercise, relative to the sedentary control condition, also increased FosB/ΔFosB expression in DRD, DRI, and DRV serotonergic neurons. While both voluntary and forced exercise increase stress resistance, these results suggest that repeated forced exercise, but not repeated voluntary exercise, increases activation of DRI serotonergic neurons, an effect that may contribute to the stress resistance effects of forced exercise. These results also suggest that mechanisms of exercise-induced stress resistance may differ depending on the controllability of the exercise.
Collapse
Affiliation(s)
- M R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - B N Greenwood
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - J A McArthur
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - P J Clark
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - M Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
42
|
Nikolaus S, Mamlins E, Hautzel H, Müller HW. Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction. Rev Neurosci 2019; 30:381-426. [PMID: 30269107 DOI: 10.1515/revneuro-2018-0037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/30/2018] [Indexed: 11/15/2022]
Abstract
Dopamine (DA) receptor and transporter dysfunctions play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) in the manic (BDman) or depressive (BDdep) state and schizophrenia (SZ). We performed a PUBMED search, which provided a total of 239 in vivo imaging studies with either positron emission tomography (PET) or single-proton emission computed tomography (SPECT). In these studies, DA transporter binding, D1 receptor (R) binding, D2R binding, DA synthesis and/or DA release in patients with the primary diagnosis of acute AD (n=310), MDD (n=754), BDman (n=15), BDdep (n=49) or SZ (n=1532) were compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BDman, BDdep and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and/or receptor binding sites. In contrast to AD and SZ, in MDD, BDman and BDdep, neostriatal DA function was normal, whereas MDD, BDman, and BDdep were characterized by the increased availability of prefrontal and frontal DA. In contrast to AD, MDD, BDman and BDdep, DA function in SZ was impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Ballanger B, Bath KG, Mandairon N. Odorants: a tool to provide nonpharmacological intervention to reduce anxiety during normal and pathological aging. Neurobiol Aging 2019; 82:18-29. [PMID: 31377537 DOI: 10.1016/j.neurobiolaging.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
Anxiety disorders represent 1 of the most common classes of psychiatric disorders. In the aging population and for patients with age-related pathology, the percentage of people suffering of anxiety is significantly elevated. Furthermore, anxiety carries with it an increased risk for a variety of age-related medical conditions, including cardiovascular disease, stroke, cognitive decline, and increased severity of motor symptoms in Parkinson's disease. A variety of anxiolytic compounds are available but often carry with them disturbing side effects that impact quality of life. Among nonmedicinal approaches to reducing anxiety, odor diffusion and aromatherapy are the most popular. In this review, we highlight the emerging perspective that the use of odorants may reduce anxiety symptoms or at least potentiate the effect of other anxiolytic approaches and may serve as an alternative form of therapy to deal with anxiety symptoms. Such approaches may be particularly beneficial in aging populations with elevated risk for these disorders. We also discuss potential neural mechanisms underlying the anxiolytic effects of odorants based on work in animal models.
Collapse
Affiliation(s)
- Benedicte Ballanger
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon F-69000, France; University Lyon, Lyon F-69000, France; University Lyon 1, Villeurbanne, F-69000, France
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon F-69000, France; University Lyon, Lyon F-69000, France; University Lyon 1, Villeurbanne, F-69000, France.
| |
Collapse
|
44
|
The plus maze and scototaxis test are not valid behavioral assays for anxiety assessment in the South African clawed frog. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:567-582. [DOI: 10.1007/s00359-019-01351-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023]
|
45
|
Waider J, Popp S, Mlinar B, Montalbano A, Bonfiglio F, Aboagye B, Thuy E, Kern R, Thiel C, Araragi N, Svirin E, Schmitt-Böhrer AG, Corradetti R, Lowry CA, Lesch KP. Serotonin Deficiency Increases Context-Dependent Fear Learning Through Modulation of Hippocampal Activity. Front Neurosci 2019; 13:245. [PMID: 31068767 PMCID: PMC6491456 DOI: 10.3389/fnins.2019.00245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses.
Collapse
Affiliation(s)
- Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Francesco Bonfiglio
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Benjamin Aboagye
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Elisabeth Thuy
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Raphael Kern
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Christopher Thiel
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Naozumi Araragi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Evgeniy Svirin
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Angelika G Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Translational Psychiatry, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
46
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
47
|
Ogata M, Akita H, Ishibashi H. Behavioral responses to anxiogenic tasks in young adult rats with neonatal dopamine depletion. Physiol Behav 2019; 204:10-19. [PMID: 30738032 DOI: 10.1016/j.physbeh.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
The dopaminergic neural system plays a crucial role in motor regulation as well as regulation of anxiety-related behaviors. Although rats with neonatal dopamine depletion exhibit motor hyperactivity and have been utilized as animal models of attention deficit hyperactivity disorder, characterization of their behavior under anxiogenic conditions is lacking. In the present study, we investigated behavioral responses to anxiogenic stimuli in young adult rats with neonatal dopamine depletion using the open field (OF), elevated plus maze (EPM), and light/dark (L/B) box tests. The OF and EPM tests were performed under low-light and bright-light conditions. The ameliorative effects of pretreatment with methamphetamine (MAP) or atomoxetine (ATX) on abnormal behaviors induced by neonatal dopamine depletion were also assessed. Rats that underwent 6-hydroxydopamine treatment 4 day after birth showed significant increases in motor activity and decreases in anxiety-related behaviors in OF tests under both conditions and in EPM tests under bright-light conditions. Furthermore, rats with neonatal dopamine depletion did not show normal behavioral responsiveness to changes in the intensity of anxiogenic stimuli. Pretreatment with MAP (4 mg/kg) and ATX (1.2 mg/kg/day) ameliorated motor hyperactivity but not abnormal anxiety-related behaviors. These results suggest that the dopaminergic system plays a crucial role in the development of neural networks involved in locomotion as well as in those involved in anxiety-related behavior. The results indicate that the mechanisms underlying the abnormal anxiolytic responses partially differ from those underlying motor hyperactivity.
Collapse
Affiliation(s)
- Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| | - Hisanao Akita
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
48
|
Hassell JE, Nguyen KT, Gates CA, Lowry CA. The Impact of Stressor Exposure and Glucocorticoids on Anxiety and Fear. Curr Top Behav Neurosci 2019; 43:271-321. [PMID: 30357573 DOI: 10.1007/7854_2018_63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders and trauma- and stressor-related disorders, such as posttraumatic stress disorder (PTSD), are common and are associated with significant economic and social burdens. Although trauma and stressor exposure are recognized as a risk factors for development of anxiety disorders and trauma or stressor exposure is recognized as essential for diagnosis of PTSD, the mechanisms through which trauma and stressor exposure lead to these disorders are not well characterized. An improved understanding of the mechanisms through which trauma or stressor exposure leads to development and persistence of anxiety disorders or PTSD may result in novel therapeutic approaches for the treatment of these disorders. Here, we review the current state-of-the-art theories, with respect to mechanisms through which stressor exposure leads to acute or chronic exaggeration of avoidance or anxiety-like defensive behavioral responses and fear, endophenotypes in both anxiety disorders and trauma- and stressor-related psychiatric disorders. In this chapter, we will explore physiological responses and neural circuits involved in the development of acute and chronic exaggeration of anxiety-like defensive behavioral responses and fear states, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid hormones.
Collapse
Affiliation(s)
- J E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - K T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - C A Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO, USA.
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA.
| |
Collapse
|
49
|
Blanchard D, Meyza K. Risk assessment and serotonin: Animal models and human psychopathologies. Behav Brain Res 2019; 357-358:9-17. [DOI: 10.1016/j.bbr.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/19/2017] [Accepted: 07/07/2017] [Indexed: 02/08/2023]
|
50
|
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 2018; 175:472-487.e20. [PMID: 30146164 PMCID: PMC6173627 DOI: 10.1016/j.cell.2018.07.043] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/01/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023]
Abstract
The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.
Collapse
Affiliation(s)
- Jing Ren
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Drew Friedmann
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jing Xiong
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Cindy D Liu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Brielle R Ferguson
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Tanya Weerakkody
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Katherine E DeLoach
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Chen Ran
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Albert Pun
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yanwen Sun
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Brandon Weissbourd
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rachael L Neve
- Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - John Huguenard
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Mark A Horowitz
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|