1
|
Casertano M, Vito A, Aiello A, Imperatore C, Menna M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023; 15:2321. [PMID: 37765290 PMCID: PMC10538088 DOI: 10.3390/pharmaceutics15092321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an ongoing, risky, and costly health problem that therefore always requires new treatment options. Moreover, although several drugs are available, only 36% of patients achieve glycaemic control, and patient adherence is a major obstacle. With monotherapy, T2DM and its comorbidities/complications often cannot be managed, and the concurrent administration of several hypoglycaemic drugs is required, which increases the risk of side effects. In fact, despite the efficacy of the drugs currently on the market, they generally come with serious side effects. Therefore, scientific research must always be active in the discovery of new therapeutic agents. DISCUSSION The present review highlights some of the recent discoveries regarding marine natural products that can modulate the various targets that have been identified as crucial in the establishment of T2DM disease and its complications, with a focus on the compounds isolated from marine invertebrates. The activities of these metabolites are illustrated and discussed. OBJECTIVES The paper aims to capture the relevant evidence of the great chemical diversity of marine natural products as a key tool that can advance understanding in the T2DM research field, as well as in antidiabetic drug discovery. The variety of chemical scaffolds highlighted by the natural hits provides not only a source of chemical probes for the study of specific targets involved in the onset of T2DM, but is also a helpful tool for the development of drugs that are capable of acting via novel mechanisms. Thus, it lays the foundation for the design of multiple ligands that can overcome the drawbacks of polypharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (A.V.); (A.A.); (C.I.)
| |
Collapse
|
2
|
Liu J, Gu YC, Su MZ, Guo YW. Chemistry and bioactivity of secondary metabolites from South China Sea marine fauna and flora: recent research advances and perspective. Acta Pharmacol Sin 2022; 43:3062-3079. [PMID: 36104434 PMCID: PMC9712606 DOI: 10.1038/s41401-022-00980-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Marine organisms often produce a variety of metabolites with unique structures and diverse biological activities that enable them to survive and struggle in the extremely challenging environment. During the last two decades, our group devoted great effort to the discovery of pharmaceutically interesting lead compounds from South China Sea marine plants and invertebrates. We discovered numerous marine secondary metabolites spanning a wide range of structural classes, various biosynthetic origins and various aspects of biological activities. In a series of reviews, we have summarized the bioactive natural products isolated from Chinese marine flora and fauna found during 2000-2012. The present review provides an updated summary covering our latest research progress and development in the last decade (2012-2022) highlighting the discovery of over 400 novel marine secondary metabolites with promising bioactivities from South China Sea marine organisms.
Collapse
Affiliation(s)
- Jiao Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
3
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
4
|
Chi LP, Yang SQ, Li XM, Li XD, Wang BG, Li X. A new steroid with 7β,8β-epoxidation from the deep sea-derived fungus Aspergillus penicillioides SD-311. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:884-891. [PMID: 32657145 DOI: 10.1080/10286020.2020.1791096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
7β,8β-epoxy-(22E,24R)-24-methylcholesta-4,22-diene-3,6-dione (1), a new steroid, along with five known analogues (2-6), was isolated from the deep sea-derived fungus, Aspergillus penicillioides SD-311. Strikingly, 1 possessed a rare 7,8-epoxidation moiety. Meanwhile, this is the first time to report natural products from this fungus species. The structures were established by extensive spectroscopic analysis. The absolute configuration was determined by X-ray diffraction experiments. Compound 1 showed antibacterial activity against Vibrio anguillarum with MIC value of 32.0 µg/mL, while 2 displayed inhibitions against Edwardsiella tarda and Micrococcus luteus with MIC values both of 16 µg/mL.
Collapse
Affiliation(s)
- Lu-Ping Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Sui-Qun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiao-Ming Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiao-Dong Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
6
|
Hoang CK, Nguyen VTH, Tran HTH, Le CH, Nguyen TD, Tran QH, Le HM, Tran HTN. Isolation and Structure Determination of PTP1B Inhibitor from Streptomyces sp. Strain TD-X10. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fernández-Aparicio Á, Schmidt-RioValle J, Perona JS, Correa-Rodríguez M, Castellano JM, González-Jiménez E. Potential Protective Effect of Oleanolic Acid on the Components of Metabolic Syndrome: A Systematic Review. J Clin Med 2019; 8:jcm8091294. [PMID: 31450844 PMCID: PMC6780804 DOI: 10.3390/jcm8091294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The high prevalence of obesity is a serious public health problem in today’s world. Both obesity and insulin resistance favor the development of metabolic syndrome (MetS), which is associated with a number of pathologies, especially type 2 diabetes mellitus, and cardiovascular diseases. This serious problem highlights the need to search for new natural compounds to be employed in therapeutic and preventive strategies, such as oleanolic acid (OA). This research aimed to systematically review the effects of OA on the main components of MetS as well as oxidative stress in clinical trials and experimental animal studies. Databases searched included PubMed, Medline, Web of Science, Scopus, EMBASE, Cochrane, and CINAHL from 2013 to 2019. Thus, both animal studies (n = 23) and human clinical trials (n = 1) were included in our review to assess the effects of OA formulations on parameters concerning insulin resistance and the MetS components. The methodological quality assessment was performed through using the SYRCLE’s Risk of Bias for animal studies and the Jadad scale. According to the studies in our review, OA improves blood pressure levels, hypertriglyceridemia, hyperglycemia, oxidative stress, and insulin resistance. Although there is scientific evidence that OA has beneficial effects in the prevention and treatment of MetS and insulin resistance, more experimental studies and randomized clinical trials are needed to guarantee its effectiveness.
Collapse
Affiliation(s)
- Ángel Fernández-Aparicio
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| | - Jacqueline Schmidt-RioValle
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain.
| | - Javier S Perona
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013 Seville, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| | - Jose M Castellano
- Instituto de la Grasa, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013 Seville, Spain
| | - Emilio González-Jiménez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016 Granada, Spain
| |
Collapse
|
8
|
YANG GX, MA GL, LI H, HUANG T, XIONG J, HU JF. Advanced natural products chemistry research in China between 2015 and 2017. Chin J Nat Med 2018; 16:881-906. [DOI: 10.1016/s1875-5364(18)30131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 10/27/2022]
|
9
|
Haubrich BA. Microbial Sterolomics as a Chemical Biology Tool. Molecules 2018; 23:E2768. [PMID: 30366429 PMCID: PMC6278499 DOI: 10.3390/molecules23112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
Collapse
Affiliation(s)
- Brad A Haubrich
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
11
|
Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch Pharm Res 2017; 41:130-161. [PMID: 29214599 DOI: 10.1007/s12272-017-0997-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/26/2017] [Indexed: 01/25/2023]
Abstract
Since PTP1B enzyme was discovered in 1988, it has captured the research community's attention. This landmark discovery has stimulated numerous research studies on a variety of human diseases, including cancer, inflammation, and diabetes. Tremendous progress has been made in finding PTP1B inhibitors and exploring PTP1B regulatory mechanisms. This review investigates for the natural PTP1B inhibitors, and focuses on the common characteristics of the discovered structures and structure-activity relationships. To facilitate understanding, all the natural compounds are here divided into five different classes (fatty acids, phenolics, terpenoids, steroids, and alkaloids), according to their skeletons. These PTP1B inhibitors of scaffold structures could serve as a theoretical basis for new concept drug discovery and design.
Collapse
|
12
|
Zhou Y, Zhang W, Liu X, Yu H, Lu X, Jiao B. Inhibitors of Protein Tyrosine Phosphatase 1B from Marine Natural Products. Chem Biodivers 2017; 14. [PMID: 28261970 DOI: 10.1002/cbdv.201600462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
The ocean is a capacious area with the most abundant biological resources on the earth. The particularity of the marine ecological environment (high pressure, high salt, and hypoxia) makes the marine species survival competition fiercely, forcing many marine organisms in the process of life to produce a great deal of secondary metabolites with special structures and biological activities. In this article, 118 natural products which were isolated from four kinds of marine organisms, sponges, algae, soft corals and fungus, showing PTP1B inhibitory activity were summarized from 2010 to 2016, which may become the leading compounds towards treating Diabetes mellitus (DM). What's more, we briefly summarized the structure-activity relationship of PTP1B inhibitors.
Collapse
Affiliation(s)
- Yue Zhou
- Marine Biopharmaceutical Institute, Second Military Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Weirui Zhang
- Marine Biopharmaceutical Institute, Second Military Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiaoyu Liu
- Marine Biopharmaceutical Institute, Second Military Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Haobing Yu
- Marine Biopharmaceutical Institute, Second Military Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiaoling Lu
- Marine Biopharmaceutical Institute, Second Military Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Binghua Jiao
- Marine Biopharmaceutical Institute, Second Military Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, P. R. China
| |
Collapse
|
13
|
Lamonaca P, Prinzi G, Kisialiou A, Cardaci V, Fini M, Russo P. Metabolic Disorder in Chronic Obstructive Pulmonary Disease (COPD) Patients: Towards a Personalized Approach Using Marine Drug Derivatives. Mar Drugs 2017; 15:E81. [PMID: 28335527 PMCID: PMC5367038 DOI: 10.3390/md15030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorder has been frequently observed in chronic obstructive pulmonary disease (COPD) patients. However, the exact correlation between obesity, which is a complex metabolic disorder, and COPD remains controversial. The current study summarizes a variety of drugs from marine sources that have anti-obesity effects and proposed potential mechanisms by which lung function can be modulated with the anti-obesity activity. Considering the similar mechanism, such as inflammation, shared between obesity and COPD, the study suggests that marine derivatives that act on the adipose tissues to reduce inflammation may provide beneficial therapeutic effects in COPD subjects with high body mass index (BMI).
Collapse
Affiliation(s)
- Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Aliaksei Kisialiou
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Vittorio Cardaci
- Department of Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana 235, I-00163 Rome, Italy.
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| |
Collapse
|