1
|
Çelik E, Meletli F, Özdemir M, Köksoy B, Danış Ö, Yalçın B. DNA and hemoglobin binding activities: Investigation of coumarin-thiosemicarbazone hybrids. Bioorg Chem 2024; 153:107857. [PMID: 39383810 DOI: 10.1016/j.bioorg.2024.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Coumarin and coumarin-thiosemicarbazone hybrids were synthesized and characterized by various techniques such as FT-IR, 1H NMR, 13C NMR, MALDI-TOF-MS spectroscopy, and single crystal X-Ray diffractometer (XRD). The photochemical and photophysical properties of the compounds, such as solvatochromism, solubility, and chemical reactivity, were analyzed using UV-vis spectroscopy in different solvents. Due to the potential biological activities of the synthesized compounds, their binding affinity and mechanisms with calf thymus DNA (ct-DNA) and bovine hemoglobin (BHb) were determined using several useful spectrophotometric and theoretical approaches such as UV-vis absorption and fluorescence spectroscopy, molecular docking, and density functional theory (DFT). The experimental results showed that the compounds exhibited strong binding interactions with DNA and BHb. Additionally, the compounds demonstrated predominantly binding modes, such as intercalation and groove binding with DNA and π-π stacking interactions with BHb.To better understand the thermodynamics of these interactions, quenching constants, binding constants, and Gibbs free energy changes (ΔG°) were calculated. Molecular docking and DFT results supported the experimental data regarding the binding affinity and mechanisms of the compounds to DNA and BHb. Overall, this comprehensive study on coumarin and coumarin-thiosemicarbazone hybrids provides valuable insights into their interaction mechanisms with critical biomolecules, highlighting their potential in therapeutic applications as multifunctional agents.
Collapse
Affiliation(s)
- Esra Çelik
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkiye
| | - Furkan Meletli
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkiye
| | - Mücahit Özdemir
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkiye
| | - Baybars Köksoy
- Bursa Technical University, Department of Chemistry, 16310 Bursa, Turkiye
| | - Özkan Danış
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkiye
| | - Bahattin Yalçın
- Marmara University, Department of Chemistry, 34722 Istanbul, Turkiye.
| |
Collapse
|
2
|
Wang Z, He J, Qi Q, Wang K, Tang H, Feng Y, Zhao X, Yi S, Zhao Y, Xu D. Chromosome-level genome assembly of Cnidium monnieri, a highly demanded traditional Chinese medicine. Sci Data 2024; 11:667. [PMID: 38909038 PMCID: PMC11193713 DOI: 10.1038/s41597-024-03523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
Cnidium monnieri, a medicinal herb of the Cnidium genus and the Apiaceae family, is among the most important traditional Chinese medicines and is widely distributed in China. However, to date, no C. monnieri-related genomic information has been described. In this study, we assembled the C. monnieri genome of approximately 1210.23 Mb with a contig N50 of 83.14 Mb. Using PacBio HiFi and Hi-C sequencing data, we successfully anchored 93.86% of the assembled sequences to 10 pseudochromosomes (2n = 20). We predicted a total of 37,460 protein-coding genes, with 97.02% of them being functionally annotated in Non-Redundant, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and other databases. In addition, we identified 2,778 tRNAs, 4,180 rRNAs, 258 miRNAs, and 1,700 snRNAs in the genome. This is the first reported C. monnieri genome. Hopefully, the availability of this chromosome-level reference genome provides a significant basis for upcoming natural product-related biosynthetic pathway assessment in C. monnieri.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin He
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yimeng Feng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyue Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Dingqiao Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
3
|
Liu H, Wang Y, Chang Q, Li Q, Fang J, Cao N, Tong X, Jiang X, Yu X, Cheng Y. Combined metabolome and transcriptome reveal HmF6'H1 regulating simple coumarin accumulation against powdery mildew infection in Heracleum moellendorffii Hance. BMC PLANT BIOLOGY 2024; 24:507. [PMID: 38844853 PMCID: PMC11155083 DOI: 10.1186/s12870-024-05185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Powdery mildew, caused by Eeysiphe heraclei, seriously threatens Heracleum moellendorffii Hance. Plant secondary metabolites are essential to many activities and are necessary for defense against biotic stress. In order to clarify the functions of these metabolites in response to the pathogen, our work concentrated on the variations in the accumulation of secondary metabolites in H. moellendorffii during E. heraclei infection. RESULTS Following E. heraclei infection, a significant upregulation of coumarin metabolites-particularly simple coumarins and associated genes was detected by RNA-seq and UPLC-MS/MS association analysis. Identifying HmF6'H1, a Feruloyl CoA 6'-hydroxylase pivotal in the biosynthesis of the coumarin basic skeleton through ortho-hydroxylation, was a significant outcome. The cytoplasmic HmF6'H1 protein was shown to be able to catalyze the ortho-hydroxylation of p-coumaroyl-CoA and caffeoyl-CoA, resulting in the formation of umbelliferone and esculetin, respectively. Over-expression of the HmF6'H1 gene resulted in increased levels of simple coumarins, inhibiting the biosynthesis of furanocoumarins and pyranocoumarins by suppressing PT gene expression, enhancing H. moellendorffii resistance to powdery mildew. CONCLUSIONS These results established HmF6'H1 as a resistance gene aiding H. moellendorffii in combatting E. heraclei infection, offering additional evidence of feruloyl-CoA 6'-hydroxylase role in catalyzing various types of simple coumarins. Therefore, this work contributes to our understanding of the function of simple coumarins in plants' defense against powdery mildew infection.
Collapse
Affiliation(s)
- Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yiran Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - QinZheng Chang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Qiubi Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jiahui Fang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Hu X, Wang J, Zhang Y, Li R, Li M. Molecular mechanism of Osthole against chitin synthesis of Ustilaginoidea virens based on combined transcriptome and metabolome analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105612. [PMID: 37945229 DOI: 10.1016/j.pestbp.2023.105612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 11/12/2023]
Abstract
Rice false smut, caused by the fungus Ustilaginoidea virens, is a destructive grain disease in rice-producing areas worldwide. To reveal the action mechanism of osthole against U. virens, the mycelial morphology, differential genes and metabolites of osthole-treated U. virens were determined using electron microscopy and multi-omics, respectively. The hyphae of osthole-treated U. virens were severely wrinkled and distorted with rough cell walls, uneven thickness, and protoplast aggregation. Calcium fluorescent white staining showed that osthole affected chitin synthesis in U. virens. The differential genes and metabolites in U. virens were significantly enriched in amino sugar and nucleotide sugar metabolism pathway. The expression of the acetylglucosamine phosphate mutase (AGM) gene (UvAGM1) and UDP-N-acetylglucosamine was significantly down regulated. The AGM of osthole-treated U. virens was 133.43 ng/mL, which was significantly lower than that of the control group (205.67 ng/mL). Osthole combined with the amino acid residue THR334 of AGM via hydrogen bonding. These results indicate that UvAGM1 may be a key candidate gene of osthole against U. virens. Overall, the results provide valuable information for the application of osthole to control rice false smut.
Collapse
Affiliation(s)
- Xianfeng Hu
- College of Agriculture, Anshun University, Anshun 561000, Guizhou, PR China
| | - Jian Wang
- Institute of Crop Protection, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun 561000, Guizhou, PR China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, PR China; Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, PR China; Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
5
|
Gu M, Wang Q, Fan R, Liu S, Zhu F, Feng G, Zhang J. Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense. Molecules 2023; 28:molecules28083572. [PMID: 37110806 PMCID: PMC10146670 DOI: 10.3390/molecules28083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 μmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents.
Collapse
Affiliation(s)
- Mengxuan Gu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Qin Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
| | - Shoubai Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan Key Laboratory for Biology of Tropical Specific Ornamental Plants Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Fadi Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| |
Collapse
|
6
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
7
|
Munir N, Mehmood Z, Shahid M, Aslam S, Abbas M, Mehboob H, Al-Mijallia SH, Jahangeer M, Badar QUA. Phytochemical Constituents and In vitro Pharmacological Response of Cnidium monnieri; A Natural Ancient Medicinal Herb. Dose Response 2022; 20:15593258221115543. [PMID: 36003320 PMCID: PMC9393695 DOI: 10.1177/15593258221115543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Natural medicines are being used for the treatment of various disorders due
to pharmacological, therapeutical, and nutraceuticals characteristics. Objectives Current research was planned to explore In vitro pharmacological response of
phytochemical constituents extracted from C. monnieri’
seeds using aqueous ethanol (70%). Methods Qualitative and quantitative measurements for phytochemical constituents were
performed following reference protocols. Then In vitro antioxidant
potential, cytotoxic studies, antimicrobial, and spermicidal pharmacological
response of C. monnieri extract were investigated. Results The results of High Performance Liquid Chromatography (HPLC), Fourier
Transform Infra-Red (FTIR) spectroscopy, and Atomic Absorption
Spectrophotometer (AAS) explored the presence of wide range of bioactive
compounds with significant (p<.05) antioxidant activities. Cytotoxic
studies revealed significant (p<.05) protective behavior of C.
monnieri evaluated using CtDNA damage protection, against
Salmonella typhi TA98 and TA100, RBCs membrane
stabilizing and clot lysis assay. It was also found that selected herb has
antibacterial and antifungal activities. The results of spermicidal study on
human (n = 30) spermatozoa revealed significant (p<.05) contraceptive per
vaginal behavior of this natural medicinal plant. Conclusion It could be concluded that C. monnieri showed significant
pharmacological activities with non-toxic behavior, however In vivo study in
animals and clinical trials are required to declare this natural herb as
therapeutic agent.
Collapse
Affiliation(s)
- Naveed Munir
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Zahed Mehmood
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animals Science Lahore (Jhang Campus), Jhang, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government Women College University Faisalabad, Pakistan
| | - Samiah H Al-Mijallia
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Jahangeer
- Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Lahore, Pakistan
| | - Qurrat Ul Ain Badar
- School of Biochemistry and Biotechnology University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6492346. [PMID: 34531939 PMCID: PMC8440074 DOI: 10.1155/2021/6492346] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Pía López-Jornet
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Eduardo Pons-Fuster Lopez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Nidaa Harun
- Lahore College for Women University, Lahore, Pakistan
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- University of Health Sciences, Department of Medicinal and Aromatic Plants, Istanbul 34668, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | | | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe 734063, Tajikistan
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
9
|
Yan S, Hu Q, Jiang Q, Chen H, Wei J, Yin M, Du X, Shen J. Simple Osthole/Nanocarrier Pesticide Efficiently Controls Both Pests and Diseases Fulfilling the Need of Green Production of Strawberry. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36350-36360. [PMID: 34283576 DOI: 10.1021/acsami.1c09887] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for controlling strawberry pests and diseases simultaneously, a star polymer (SPc) with a low production cost was synthesized as a pesticide nanocarrier through simple reactions. The SPc complexed with osthole quickly through electrostatic interaction and hydrophobic association, which decreased the particle size of osthole down to the nanoscale (17.66 nm). With the help of SPc, more nano-sized osthole was delivered into cytoplasm through endocytosis, leading to the enhanced cytotoxicity against insect cells. As a green botanical pesticide, the control efficacy of the osthole/SPc complex was improved against main strawberry pests (green peach aphid and two-spotted spider mite) and disease (powdery mildew), which fulfilled the need of both pest and disease management in sustainable production of strawberry. Meanwhile, the introduction of SPc not only improved plant-uptake but also decreased the residue of osthole due to the higher degradation rate. Furthermore, the application of the osthole/SPc complex exhibited no influence on the strawberry fruit quality and nontarget predators. To our knowledge, it is the first success to control plant pests and diseases simultaneously for sustainable agriculture by only one pesticidal formulation based on nanoparticle-delivered botanical pesticides.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Qian Hu
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
10
|
Shi Y, Zhang S, Peng D, Shan C, Zhao L, Wang B, Wu J. De novo transcriptome analysis of Cnidium monnieri (L.) Cuss and detection of genes related to coumarin biosynthesis. PeerJ 2020; 8:e10157. [PMID: 33194397 PMCID: PMC7651471 DOI: 10.7717/peerj.10157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
Cnidium monnieri (L.) Cuss (C. monnieri) is one of the most widely used traditional herbal medicines, exhibiting a wide range of pharmacological functions for treating asynodia, trichomonas vaginitis, and osphyalgia. Its important medicinal value comes from its abundance of coumarins. To identify genes involved in coumarin biosynthesis and accumulation, we analyzed transcriptome data from flower, leaf, root and stem tissues of C. monnieri. A total of 173,938 unigenes with a mean length of 1,272 bp, GC content of 38.79%, and N50 length of 2,121 bp were assembled using the Trinity program. Of these, 119,177 unigenes were annotated in public databases. We identified differentially expressed genes (DEGs) based on expression profile analysis. These DEGs exhibited higher expression levels in flower tissue than in leaf, stem or root tissues. We identified and analyzed numerous genes encoding enzymes involved in coumarin biosynthesis, and verified genes encoding key enzymes using quantitative real-time PCR. Our transcriptome data will make great contributions to research on C. monnieri and provide clues for identifying candidate genes involved in coumarin metabolic pathways.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Wang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
11
|
Sun C, Wang Y, Sun S, Chen X, Shi X, Fang H, Zhang Y, Fang Z. Fragmentation pathways of protonated coumarin by ESI-QE-Orbitrap-MS/MS coupled with DFT calculations. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4496. [PMID: 31914483 DOI: 10.1002/jms.4496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 05/20/2023]
Abstract
Coumarin is one of the basic structures of naturally oxygen heterocyclic compound, which was investigated in this paper for its gas-phase fragmentation behaviors using electrospray quadrupole extractive orbitrap mass spectrometry in the positive mode. The possible fragmentation pathways were proposed based on electrospray ionization (ESI)- mass spectrometry (MS)/MS data and theory calculation. The elimination of two CO and CO2 was observed for protonated coumarin, which was followed by the formation of a stabilized seven-, six-, and five-membered ring carbocation by loss of C2H2. The possible protonation sites occurred at Oxygen 11 atom of coumarin were the main fragmentation pathways. The relative abundance of characteristic fragment ions and the energy-resolved breakdown curves were used to confirm the cleavage mechanism of protonated coumarin. The methodology and results of present work would contribute to the chemical structure identification of other coumarins.
Collapse
Affiliation(s)
- Changhai Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Yazhuo Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shiyuan Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Xin Chen
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Xinlei Shi
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Hongzhuang Fang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Zhou Fang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154007, China
| |
Collapse
|
12
|
Prusty JS, Kumar A. Coumarins: antifungal effectiveness and future therapeutic scope. Mol Divers 2019; 24:1367-1383. [PMID: 31520360 DOI: 10.1007/s11030-019-09992-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
The antifungals that are in current clinical practice have a high occurrence of a side effect and multidrug resistance (MDR). Researchers across the globe are trying to develop a suitable antifungal that has minimum side effect as well as no MDR issues. Due to serious undesired effects connected with individual antifungals, it is now necessary to introduce novel and effective drugs having numerous potentials to regulate complex therapeutic targets of several fungal infections simultaneously. Thus, by taking a lead from this subject, synthesis of potent antifungals from coumarin moiety could contribute to the development of promising antifungal. Its resemblance and structural diversity make it possible to produce an auspicious antifungal candidate. Due to the natural origin of coumarin, its presence in diversity, and their broad spectrum of pharmacological activities, it secures an important place for the researcher to investigate and develop it as a promising antifungal in future. This manuscript discusses the bioavailability of coumarin (natural secondary metabolic molecule) that has privileged scaffold for many mycologists to develop it as a broad-spectrum antifungal against several opportunistic mycoses. As a result, several different kinds of coumarin derivatives were synthesized and their antifungal properties were evaluated. This review compiles various coumarin derivatives broadly investigated for antifungal activities to understand its current status and future therapeutic scope in antifungal therapy.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India.
| |
Collapse
|
13
|
Dos Santos RR, Turra B, Simon K, Damiani AP, Strapazzon G, Leandro RT, Vilela TC, Peterson M, de Andrade VM, Amaral PDA. Evaluation of genotoxicity and coumarin production in conventional and organic cultivation systems of Mikania glomerata Spreng. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:866-874. [PMID: 31258003 DOI: 10.1080/03601234.2019.1634423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mikania glomerata Sprengel, popularly known as "guaco," is used in Brazilian folk medicine for several inflammatory and allergic conditions. Besides, the popular use "guaco" is indicated by the Brazilian Ministry of Health as a safe and effective herbal medicine. The biological activity of M. glomerata extracts is due to the presence of the coumarins, a large family of phenolic substances found in plants and is made of fused benzene and α-pyrone rings. Considering that there are few data on the biological effects of the extracts of M. glomerata, mainly in genetic level, this work aims to evaluate, in vitro, the genotoxicity and coumarin production in M. glomerata in conventional and organic growing. The data showed that the organic culture system showed double the concentration of coumarin being significantly more productive than the conventional system. Besides, the results of comet assay suggest that extracts of M. glomerata cultivated in a conventional system was genotoxic, increased DNA damage levels while the organic extracts seem to have antigenotoxic effect possibly due to the concentration of coumarins. Additional biochemical investigations are necessary to elucidate the mechanisms of action of M. glomerata extracts, which were found to have a role in protection against DNA damage.
Collapse
Affiliation(s)
- Roberto Recart Dos Santos
- Laboratory of Medicinal Plants, Graduate Programme of Environmental Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Bianca Turra
- Laboratory of Medicinal Plants, Graduate Programme of Environmental Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Kellen Simon
- Laboratory of Medicinal Plants, Graduate Programme of Environmental Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Rafaela Tomaz Leandro
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Thais Ceresér Vilela
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Michael Peterson
- Programme of Materials Science and Engineering, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patrícia de Aguiar Amaral
- Laboratory of Medicinal Plants, Graduate Programme of Environmental Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
14
|
Karakaya S, Gözcü S, Güvenalp Z, Özbek H, Yuca H, Dursunoğlu B, Kazaz C, Kılıç CS. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. PHARMACEUTICAL BIOLOGY 2018; 56:18-24. [PMID: 29233045 PMCID: PMC6130714 DOI: 10.1080/13880209.2017.1414857] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Ferulago (Apiaceae) species have been used since ancient times for the treatment of intestinal worms, hemorrhoids, and as a tonic, digestive, aphrodisiac, or sedative, as well as in salads or as a spice due to their special odors. OBJECTIVES This study reports the α-amylase and α-glucosidase inhibitory activities of dichloromethane extract and bioactive compounds isolated from Ferulago bracteata Boiss. & Hausskn. roots. MATERIALS AND METHODS The isolated compounds obtained from dichloromethane extract of Ferulago bracteata roots through bioassay-guided fractionation and isolation process were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activities at 5000-400 µg/mL concentrations. Compound structures were elucidated by detailed analyses (NMR and MS). RESULTS A new coumarin, peucedanol-2'-benzoate (1), along with nine known ones, osthole (2), imperatorin (3), bergapten (4), prantschimgin (5), grandivitinol (6), suberosin (7), xanthotoxin (8), felamidin (9), umbelliferone (10), and a sterol mixture consisted of stigmasterol (11), β-sitosterol (12) was isolated from the roots of F. bracteata. Felamidin and suberosin showed significant α-glucosidase inhibitory activity (IC50 0.42 and 0.89 mg/mL, respectively) when compared to the reference standard acarbose (IC50 4.95 mg/mL). However, none of the tested extracts were found to be active on α-amylase inhibition. DISCUSSION AND CONCLUSIONS The present study demonstrated that among the compounds isolated from CH2Cl2 fraction of F. bracteata roots, coumarins were determined as the main chemical constituents of this fraction. This is the first report on isolation and characterization of the bioactive compounds from root extracts of F. bracteata and on their α-amylase and α-glucosidase inhibitory activities.
Collapse
Affiliation(s)
- Songül Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- CONTACT Songül Karakaya Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum25240, Turkey
| | - Sefa Gözcü
- Department of Pharmacognosy, Faculty of Pharmacy, Erzincan University, Erzincan, Turkey
| | - Zühal Güvenalp
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Hilal Özbek
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Benan Dursunoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Zhang S, Huang Q, Cai X, Jiang S, Xu N, Zhou Q, Cao X, Hultström M, Tian J, Lai EY. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol 2018; 9:1650. [PMID: 30524310 PMCID: PMC6258720 DOI: 10.3389/fphys.2018.01650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is a common pathway of virtually all progressive kidney diseases. Osthole (OST, 7-Methoxy-8-(3-methylbut-2-enyl)-2-chromenone), a derivative of coumarin mainly found in plants of the Apiaceae family, has shown inhibitory effects on inflammation, oxidative stress, fibrosis and tumor progression. The present study investigated whether OST mediates its effect via suppressing fibroblast activation and epithelial-mesenchymal transition (EMT) in unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Herein, we found that OST inhibited fibroblast activation in a dose-dependent manner by inhibiting the transforming growth factor-β1 (TGFβ1)-Smad pathway. OST also blocked fibroblast proliferation by reducing DNA synthesis and downregulating the expressions of proliferation- and cell cycle-related proteins including proliferating cell nuclear antigen (PCNA), CyclinD1 and p21 Waf1/Cip1. Meanwhile, in the murine model of renal interstitial fibrosis induced by UUO, myofibroblast activation with increased expression of α-smooth muscle actin (α-SMA) and proliferation were attenuated by OST treatment. Additionally, we provided in vivo evidence suggesting that OST repressed EMT with preserved E-cadherin and reduced Vimentin expression in obstructed kidney. UUO injury-induced upregulation of EMT-related transcription factors, Snail family transcriptional repressor-1(Snail 1) and Twist family basic helix-loop-helix (BHLH) transcription factor (Twist) as well as elevated G2/M arrest of tubular epithelial cell, were rescued by OST treatment. Further, OST treatment reversed aberrant expression of TGFβ1-Smad signaling pathway, increased level of proinflammatory cytokines and NF-kappaB (NF-κB) activation in kidneys with obstructive nephropathy. Taken together, these findings suggest that OST hinder renal fibrosis in UUO mouse mainly through inhibition of fibroblast activation and EMT.
Collapse
Affiliation(s)
- Suping Zhang
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Huang
- Department of Physiology, Quanzhou Medical College, Quanzhou, China
| | - Xiaoxia Cai
- Department of Basic Medical Sciences, Honghe Health Vocational College, Mengzi, China
| | - Shan Jiang
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Xu
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Cao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiong Tian
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - En Yin Lai
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Li LP, Wang XJ, Zhang JY, Zhang LL, Cao YB, Gu LQ, Yu YQ, Yang QL, Shen CY, Han B, Jiang YY. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers. Virulence 2018; 9:555-562. [PMID: 28795862 PMCID: PMC5955437 DOI: 10.1080/21505594.2017.1356503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro interaction of osthol (Ost) and fluconazole (FLC) was investigated against 11 fluconazole-resistant clinical isolates of Candida albicans. Synergistic activities were determined using the checkerboard microdilution assay. The results of agar diffusion test confirmed the synergistic interaction. We used an enteric material Eudragit S100 for preparation of Ost nanoparticle (Ost-NP) to improve the oral bioavailability, biological activity of Ost. The physicochemical characteristics of Ost-S100-NP revealed Ost-S100-NP with mean particle size of 55.4±0.4 nm, encapsulation efficiency of 98.95±0.06%, drug loading efficiency of 23.89±0.25%, yield of 98.5±0.1% and a polydispersity index (PDI) of 0.165. As the Ost concentration-time curve showed, Ost-S100-NP can increase the plasma concentration and relative bioavailability of Ost compared with Ost-suspension by oral administration. In vivo, Ost-S100-NP enhanced the therapeutic efficacy of Ost against FLC-resistant C. albicans in immunosuppressed candidiasis mice model. The available information strongly suggests that Ost-S100-NP may be used as a promising compound against drug-resistant fungi.
Collapse
Affiliation(s)
- Lin-Peng Li
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Xiao-Juan Wang
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Jin-Yu Zhang
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Lu-Lu Zhang
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Yong-Bing Cao
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Li-Qun Gu
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Yi-Qun Yu
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Qi-Lian Yang
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Chun-Ying Shen
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Bing Han
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Yuan-Ying Jiang
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| |
Collapse
|
17
|
Potent In Vitro Synergism of Fluconazole and Osthole against Fluconazole-Resistant Candida albicans. Antimicrob Agents Chemother 2017; 61:AAC.00436-17. [PMID: 28607012 DOI: 10.1128/aac.00436-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 01/15/2023] Open
Abstract
Osthole is a natural coumarin that exhibits wide biological and pharmacological activities such as neuroprotective, osteogenic, immunomodulation, antitumor, and anti-inflammatory effects. In this study, we investigated the antifungal effects of osthole in vitro A checkerboard microdilution assay showed that osthole has significant synergistic effect with fluconazole against fluconazole-resistant Candida albicans Similar results were obtained from a growth curve assay. Meanwhile, XTT reduction assay demonstrated the synergism of fluconazole and osthole against C. albicans biofilm formation. Microarray results showed that the expression of genes involved in the oxidation-reduction process, energy metabolism, and transportation changed significantly after the combined treatment with fluconazole and osthole, and further results showed that endogenous reactive oxygen species (ROS) was significantly increased in the combination group. In conclusion, these results demonstrate the synergism of fluconazole and osthole against fluconazole-resistant C. albicans and indicate that endogenous ROS augmentation might contribute to the synergism of fluconazole and osthole.
Collapse
|
18
|
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:919616. [PMID: 26246843 PMCID: PMC4515521 DOI: 10.1155/2015/919616] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.
Collapse
|
19
|
Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:963248. [PMID: 23586066 PMCID: PMC3622347 DOI: 10.1155/2013/963248] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further.
Collapse
Affiliation(s)
- K. N. Venugopala
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - V. Rashmi
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - B. Odhav
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
20
|
Wang KY, Yao L, Du YH, Xie JB, Huang JL, Yin ZQ. Anthelmintic activity of the crude extracts, fractions, and osthole from Radix angelicae pubescentis against Dactylogyrus intermedius in goldfish (Carassius auratus) in vivo. Parasitol Res 2010; 108:195-200. [DOI: 10.1007/s00436-010-2058-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/06/2010] [Indexed: 12/01/2022]
|