1
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
2
|
Yadav AR, Katariya AP, Kanagare AB, Patil PDJ, Tagad CK, Dake SA, Nagwade PA, Deshmukh SU. Review on advancements of pyranopyrazole: synthetic routes and their medicinal applications. Mol Divers 2024; 28:3557-3604. [PMID: 38236443 DOI: 10.1007/s11030-023-10757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 01/19/2024]
Abstract
Pyranopyrazoles are among the most distinguished, biologically potent, and exciting scaffolds in medicinal chemistry and drug discovery. Synthesis and design of pyranopyrazoles using functional modifications via multicomponent reactions (MCRs) are thoroughly found in synthetic protocols by forming new C-C, C-N, and C-O bonds. This review aims to focus on the biological importance of pyranopyrazoles as well as on a diverse synthetic approach for their synthesis using various catalytic systems such as acid-catalyzed, base-catalyzed, ionic liquids and green media-catalyzed, nano-particle-catalyzed, metal oxide-supported catalysts, and silica-supported catalysts. In this review, we have summarized data on the advancements in synthesizing pyranopyrazole from the last two decades to the mid-2023 and research papers describing the importance of these scaffolds. This review will be significant for synthetic organic chemists and researchers working in organic chemistry.
Collapse
Affiliation(s)
- Ashok R Yadav
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India
| | - Ashishkumar P Katariya
- Department of Chemistry, SAJVPM'S Smt. S. K. Gandhi Arts, Amolak Science & P. H. Gandhi, Commerce College, Kada, Beed, Maharashtra, 414202, India
| | - Anant B Kanagare
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| | - Pramod D Jawale Patil
- Department of Chemistry, Balbhim Arts, Science and Commerce College, Beed, Maharashtra, 431122, India
| | - Chandrakant K Tagad
- Department of Biochemistry, S.B.E.S. College of Science, Aurangabad, Maharashtra, 431001, India
| | - Satish A Dake
- Department of Chemistry, Sunderrao Solanke Mahavidyalaya, Majalgaon, Maharashtra, 431131, India
| | - Pratik A Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, Maharashtra, 414102, India
| | - Satish U Deshmukh
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, 431005, India.
| |
Collapse
|
3
|
Xie K, Guo X, Li H, Liu F, Wang Q. Gellan gum-cellulose hydrogel incorporating with graphene oxide and magnetic nanoparticles as a novel nanocatalyst for the synthesis of dihydropyrano derivatives. Int J Biol Macromol 2024:135315. [PMID: 39236959 DOI: 10.1016/j.ijbiomac.2024.135315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
In this project, a highly efficient catalyst with a remarkable yield of over 97 % was developed for the synthesis of dihydropyrano[2,3-c] pyrazole derivatives. A Gellan Gum-Cellulose hydrogel was prepared using Glutaraldehyde as the cross-linker, which served as the matrix for further modifications. Synthesized graphene oxide was then incorporated into the hydrogel structure using a modified Hummers method, enhancing the catalytic properties of the material. To facilitate the separation and recovery of the catalyst, the resulting structure was magnetized, leading to the formation of a magnetic nanocomposite. Even after undergoing four cycles of catalyst recovery, the GG-Cell hydrogel/GO/Fe3O4 nanocomposite retained 90 % of its initial catalytic activity, highlighting its robustness and stability. Detailed physical and chemical analyses were conducted to gain a comprehensive understanding of the synthesized magnetic catalyst, contributing to the advancement of the field of catalysis and holding great potential for various applications in organic synthesis and related fields.
Collapse
Affiliation(s)
- Kaizhong Xie
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Key Laboratory of Disaster Prevention, Mitigation and Engineering Safety, Guangxi University, Nanning 530004, China
| | - Xiao Guo
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Key Laboratory of Disaster Prevention, Mitigation and Engineering Safety, Guangxi University, Nanning 530004, China.
| | - Haoxu Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Fei Liu
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Quanguo Wang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Betcke I, Götzinger AC, Kornet MM, Müller TJJ. Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps. Beilstein J Org Chem 2024; 20:2024-2077. [PMID: 39161713 PMCID: PMC11331544 DOI: 10.3762/bjoc.20.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Pyrazoles are rarely found in nature but are traditionally used in the agrochemical and pharmaceutical industries, while other areas of use are also actively developing. However, they have also found numerous other applications. The search for new and efficient syntheses of these heterocycles is therefore highly relevant. The modular concept of multicomponent reactions (MCR) has paved a broad alley to heteroaromatics. The advantages over traditional methods are the broader scope and increased efficiency of these reactions. In particular, traditional multistep syntheses of pyrazoles have considerably been extended by MCR. Progress has been made in the cyclocondensation of 1,3-dielectrophiles that are generated in situ. Limitations in the regioselectivity of cyclocondensation with 1,3-dicarbonyls were overcome by the addition-cyclocondensation of α,β-unsaturated ketones. Embedding 1,3-dipolar cycloadditions into a one-pot process has additionally been developed for concise syntheses of pyrazoles. The MCR strategy also allows for concatenating classical condensation-based methodology with modern cross-coupling and radical chemistry, as well as providing versatile synthetic approaches to pyrazoles. This overview summarizes the most important MCR syntheses of pyrazoles based on ring-forming sequences in a flashlight fashion.
Collapse
Affiliation(s)
- Ignaz Betcke
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Alissa C Götzinger
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Maryna M Kornet
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Zaporizhzhia National University, Faculty of Biology, Department of Chemistry, Zhukovskogo Street 66, 69600 Zaporizhzhia, Ukraine
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Momeni S, Ghorbani-Vaghei R. Copper Immobilized on Modified LDHs as a Novel Efficient Catalytic System for Three-Component Synthesis of Pyrano[2,3- d]pyrimidine and pyrazolo[4',3':5,6]pyrano[2,3- d]pyrimidine Derivatives. ACS OMEGA 2024; 9:10332-10342. [PMID: 38463312 PMCID: PMC10918776 DOI: 10.1021/acsomega.3c07913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
A novel catalyst based on layered double hydroxides coated with copper nitrate [LDH@(3-chloropropyl)trimethoxysilane@N1,N4-bis(4,6-diamino-1,3,5-triazin-2-yl)benzene-1,4-disulfonamide@Cu] was successfully synthesized. The structure of the new synthesized catalyst was investigated and confirmed using different analytical techniques, such as Fourier-transform infrared spectroscopy (FTIR), energy-scattered X-ray spectroscopy (EDX) mapping, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and heat gravity/heat derivatization (TGA/DSC). The skilled catalyst proved its efficiency for one-pot three-component synthesis of pyrano[2,3-d]pyrimidine and new dihydropyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidine-dione derivatives. Using this efficient catalyst, products were synthesized with a high yield, in a short time, and under soft and solvent-free conditions. The catalyst can be recovered and reused four times without a significant loss of efficiency.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65174, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry,
Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 65174, Iran
| |
Collapse
|
6
|
Habeeb Naser I, Thoulfikar A. Alamir H, Al-Shukarji AH, Ahmed BA, Qassem TA, Kamal M, Almeleebia TM, Alwaily ER, Hasan Kadhum E, Alawadi A, Alsalamy A. Choline chloride/urea as a green and efficient deep eutectic solvent in three-component and four-component synthesis of novel pyrazole and pyrano[2,3-c] pyrazole derivatives with antibacterial and antifungal activity. Front Chem 2024; 12:1342784. [PMID: 38435668 PMCID: PMC10904593 DOI: 10.3389/fchem.2024.1342784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
In this study, choline chloride/urea was used as a green deep eutectic solvent in the three-component reaction of hydrazine/phenylhydrazine, malononitrile, and aromatic aldehydes for synthesizing pyrazole derivatives, and in the four-component reaction of methyl/ethyl acetoacetate, hydrazine/phenylhydrazine, malononitrile, and aromatic aldehydes for synthesizing pyrano[2,3-c]pyrazole derivatives. Elemental analysis, 1H, and 13C NMR spectroscopy were used to confirm the structure of the synthesized pyrazole and pyrano[2,3-c] pyrazole derivatives. The antimicrobial effects of the synthesized pyrazole and pyrano[2,3-c] pyrazole derivatives were investigated. In antimicrobial tests, instructions from clinical and laboratory standards institutes were used. Antimicrobial study was done on pathogenic gram-positive and gram-negative species, and specialized aquatic strains and fungal species. Using choline chloride/urea, novel pyrazole derivatives and pyrano[2,3-c]pyrazole derivatives were synthesized, and other derivatives were synthesized with higher efficiency in less time than some previously reported methods. MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) obtained for derivatives were higher than some antibiotic drugs. Synthesis and reports of new derivatives of pyrazole and pyrano[2,3-c]pyrazole, and investigation and reports of their antimicrobial properties on gram-positive, gram-negative, and specialized aquatic and fungal species are among the novel and important findings of this study.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, Al-Mustaqbal University, Hillah, Iraq
| | | | - Ali Hisham Al-Shukarji
- Department of Medical Laboratories Technology, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Talal Aziz Qassem
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Maher Kamal
- Department of Dentistry, Al-Hadi University College, Baghdad, Iraq
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Enas R. Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Al‐Muthanna, Iraq
| |
Collapse
|
7
|
Ahmad A, Rao S, Shetty NS. Green multicomponent synthesis of pyrano[2,3- c]pyrazole derivatives: current insights and future directions. RSC Adv 2023; 13:28798-28833. [PMID: 37790089 PMCID: PMC10543893 DOI: 10.1039/d3ra05570a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The past decade has witnessed significant progress in synthesizing structurally diverse and biologically relevant pyrano[2,3-c]pyrazole derivatives through the integration of green methodologies. This review summarizes the recent advances in the green multicomponent synthesis of pyrano[2,3-c]pyrazole and spiro-pyrano[2,3-c]pyrazole derivatives. These include the application of energy-efficient techniques such as microwave and ultrasound-assisted synthesis, benign catalysts and biodegradable composites, solvent selection with a focus on water as a renewable and non-toxic medium, and solvent-free conditions. The review consolidates the current knowledge and future research directions, providing a valuable resource for researchers dedicated to advancing green chemistry practices.
Collapse
Affiliation(s)
- Afrisham Ahmad
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Sithara Rao
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Nitinkumar S Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| |
Collapse
|
8
|
Khayat MT, Ahmed HEA, Omar AM, Muhammad YA, Mohammad KA, Malebari AM, Khayyat AN, Halawa AH, Abulkhair HS, Al-Karmalawy AA, Almaghrabi M, Alharbi M, Aljahdali AS, El-Agrody AM. A novel class of phenylpyrazolone-sulphonamides rigid synthetic anticancer molecules selectively inhibit the isoform IX of carbonic anhydrases guided by molecular docking and orbital analyses. J Biomol Struct Dyn 2023; 41:15243-15261. [PMID: 36914238 DOI: 10.1080/07391102.2023.2188957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
All the previously reported phenylpyrazoles as carbonic anhydrase inhibitors (CAIs) were found to have small sizes and high levels of flexibility, and hence showed low selectivity profiles toward a particular isoform of CA. Herein, we report the development of a more rigid ring system bearing a sulfonamide hydrophilic head and a lipophilic tail to develop novel molecules that are suggested to have a better selectivity toward a special CA isoform. Accordingly, three novel sets of pyrano[2,3-c]pyrazoles attached with sulfonamide head and aryl hydrophobic tail were synthesized to enhance the selectivity toward a specific isoform of human carbonic anhydrases (hCAs). The impact of both attachments on the potency and selectivity has been extensively discussed in terms of in vitro cytotoxicity evaluation under hypoxic conditions, structure-activity relationship and carbonic anhydrase enzyme assay. All of the new candidates displayed good cytotoxic activities against breast and colorectal carcinomas. Results of the carbonic anhydrase enzyme assay demonstrated the preferential of compounds 22, 24 and 27 to inhibit the isoform IX of hCAs selectively. Wound-healing assay has also been performed and revealed the potential of 27 to decrease the wound closure percentage in MCF-7 cells. Molecular docking and molecular orbital analysis have finally been conducted. Results indicate the potential binding interactions of 24 and 27 with several crucial amino acids of the hCA IX.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maan T Khayat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Abdelsattar M Omar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Yosra A Muhammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah A Mohammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahdab N Khayyat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Majed Alharbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anfal S Aljahdali
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Mallah D, Mirjalili BBF. A green protocol ball milling synthesis of dihydropyrano[2,3-c]pyrazole using nano-silica/aminoethylpiperazine as a metal-free catalyst. BMC Chem 2023; 17:10. [PMID: 36870991 PMCID: PMC9985283 DOI: 10.1186/s13065-023-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Ball mill is an effective, and green method for the synthesis of heterocyclic compounds in very good yields. This method is a simple, economical, and environmentally friendly process. In this work, an efficient approach for the synthesis of pyranopyrazoles (PPzs) using ball milling and metal-free nano-catalyst (Nano-silica/aminoethylpiperazine), under solvent-free conditions was reported. RESULTS The new nano-catalyst silica/aminoethylpiperazine was prepared by immobilization of 1-(2-aminoethyl)piperazine on nano-silica chloride. The structure of the prepared nano-catalyst was identified by FT-IR, FESEM, TGA, EDX, EDS-map, XRD, and pH techniques. This novel nano-catalyst was used for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives under ball milling and solvent-free conditions. CONCLUSIONS Unlike other pyranopyrazoles synthesis reactions, this method has advantages including short reaction time (5-20 min), room temperature, and relatively high efficiency, which makes this protocol very attractive for the synthesis of pyranopyrazoles derivatives.
Collapse
Affiliation(s)
- Dina Mallah
- grid.413021.50000 0004 0612 8240Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| |
Collapse
|
10
|
Chakraborty S, Paul B, De UC, Natarajan R, Majumdar S. Water-SDS-[BMIm]Br composite system for one-pot multicomponent synthesis of pyrano[2,3- c]pyrazole derivatives and their structural assessment by NMR, X-ray, and DFT studies. RSC Adv 2023; 13:6747-6759. [PMID: 36860543 PMCID: PMC9969234 DOI: 10.1039/d3ra00137g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Here, we report a simple, efficient, and green protocol for the one-pot synthesis of pyrano[2,3-c]pyrazole derivatives via a sequential three-component strategy using aromatic aldehydes, malononitrile and pyrazolin-5-one in a water-SDS-ionic liquid system. This is a base and volatile organic solvent-free approach that could be applicable to a wide substrate scope. The key advantages of the method over other established protocols are very high yield, eco-friendly conditions, chromatography-free purification and recyclability of the reaction medium. Our study revealed that the N-substituent present in pyrazolinone controls the selectivity of the process. N-unsubstituted pyrazolinone favours the formation of 2,4-dihydro pyrano[2,3-c]pyrazoles whereas under identical conditions N-phenyl substituent pyrazolinone favours the formation 1,4-dihydro pyrano[2,3-c]pyrazoles. Structures of the synthesized products were established by NMR and X-ray diffraction techniques. Energy optimized structures and energy gaps between the HOMO-LUMO of some selected compounds were estimated using density functional theory to explain the extra stability of the 2,4-dihydro pyrano[2,3-c]pyrazoles over 1,4-dihydro pyrano[2,3-c]pyrazoles.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Bhaswati Paul
- CSIR-Indian Institute of Chemical Biology4,Raja S. C. Mullick RoadKolkata 700 032India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Ramalingam Natarajan
- CSIR-Indian Institute of Chemical Biology4,Raja S. C. Mullick RoadKolkata 700 032India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| |
Collapse
|
11
|
Hossein Nia R, Taati Z, Mamaghani M. Multi-Component Synthesis of Indole-Substituted Heterocycles– A Review. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Zahra Taati
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
12
|
Malebari AM, E A Ahmed H, Ihmaid SK, Omar AM, Muhammad YA, Althagfan SS, Aljuhani N, A A El-Sayed AA, Halawa AH, El-Tahir HM, Turkistani SA, Almaghrabi M, K B Aljohani A, El-Agrody AM, Abulkhair HS. Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorg Chem 2023; 130:106255. [PMID: 36403336 PMCID: PMC9671780 DOI: 10.1016/j.bioorg.2022.106255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 μM respectively compared with 12.85 and 82.17 μM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| | - Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University Irbid, Jordan
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yosra A Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Sultan S Althagfan
- Clinical and Hospital Pharmacy Department, Taibah University, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Naif Aljuhani
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia; Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba M El-Tahir
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | | | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| |
Collapse
|
13
|
Tanpure S, Mulik A, Rajmane M, Lawande S. Novel ionic liquid dihydrogen 4,4′-trimethylenedipiperidine phosphate-catalyzed greener and efficient synthesis of dihydro pyrano [2,3-c] pyrazole. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Dotsenko VV, Khalatyan KV, Russkikh AA, Varzieva EA, Kramareva DA, Vasilin VK, Aksenov NA, Aksenova IV. Synthesis and Some Properties of 2-Amino-4-aryl-6-hexyl-7-hydroxy-4H-chromene-3-carbonitriles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Ghorbani Dehshal N, Mamaghani M, Jahanshahi P, Rezaei I. A Green Synthesis of Novel Derivatives of Thiazole-5-One Using Magnetic Supported Copper Nanocatalyst (γ-Fe 2O 3@HAp@CPTMS@AT@Cu(ӀI)). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2146147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Parivash Jahanshahi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Iman Rezaei
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
16
|
Hojati SF, Amiri A, Mohamadi S, Soleimanian S. MOF-199 as an Efficient Metal Organic Framework Catalyst for the Synthesis of Spiro[Indoline-3,4′-Pyrano[2,3- c]Pyrazole] Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2144915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Amirhassan Amiri
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Mohamadi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran
| | - Sara Soleimanian
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
17
|
Synthesis, DFT calculations, In silico studies, and biological evaluation of pyrano[2,3-c]pyrazole and pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Efficient one-pot synthesis of arylated pyrazole-fused pyran analogs: as leads to treating diabetes and Alzheimer's disease. Future Med Chem 2022; 14:1507-1526. [PMID: 36268762 DOI: 10.4155/fmc-2022-0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: To discover novel lead molecules against diabetes, Alzheimer's disease and oxidative stress, a library of arylated pyrazole-fused pyran derivatives, 1-20, were synthesized in a one-pot reaction. Materials & methods:1H-NMR spectroscopic and electron ionization mass spectrometry techniques were used to characterize the synthetic hybrid molecules 1-20. Analogs were screened against four indispensable therapeutic targets, including α-amylase, α-glucosidase, acetylcholinesterase and butyrylcholinesterase enzymes. Results: Except for derivatives 17 and 18, all other compounds exhibited varying degrees of inhibitory activities against target enzymes. The kinetic studies revealed that the synthetic molecules followed a competitive-type mode of inhibition for α-amylase and acetylcholinesterase enzymes, as well as a non-competitive mode of inhibition for α-glucosidase and butyrylcholinesterase enzymes. In addition, molecular docking studies identified crucial binding interactions of ligands with the enzyme's active site. Conclusion: These molecules may serve as a potential drug candidate to cure diabetes, Alzheimer's disease and oxidative stress in the future.
Collapse
|
19
|
Patki AS, Muley DB, Kagne RP, Mathapati SR. One-Pot Room-Temperature Protocol for the Synthesis of Pyrazolines Using SnO2 Nanocomposite as Heterogeneous Catalyst. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Maddila S, Kerru N, Jonnalagadda SB. Recent Progress in the Multicomponent Synthesis of Pyran Derivatives by Sustainable Catalysts under Green Conditions. Molecules 2022; 27:6347. [PMID: 36234888 PMCID: PMC9571218 DOI: 10.3390/molecules27196347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrans are one of the most significant skeletons of oxygen-containing heterocyclic molecules, which exhibit a broad spectrum of medicinal applications and are constituents of diverse natural product analogues. Various biological applications of these pyran analogues contributed to the growth advances in these oxygen-containing molecules. Green one-pot methodologies for synthesising these heterocyclic molecules have received significant attention. This review focuses on the recent developments in synthesising pyran ring derivatives using reusable catalysts and emphasises the multicomponent reaction strategies using green protocols. The advantages of the catalysts in terms of yields, reaction conditions, and recyclability are discussed.
Collapse
Affiliation(s)
- Suresh Maddila
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| | - Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru Campus, Bengaluru 561203, Karnataka, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
21
|
Mamaghani M, Ansar S, Jahanshahi P. A Convergent One-Pot Synthesis of Novel Pyrrole-Pyridopyrimidines Hybrids Using 1-Carboxymethyl-2,3-Dimethylimidazolium Iodide {[cmdmim]I} as a Recyclable Catalyst. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1931368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Shaghayegh Ansar
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Parivash Jahanshahi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
22
|
Sulfonic acid pyridinium chloride-functionalized nanoparticles (MnCoFe2O4@Niacin-SO3H)+Cl− as a novel and reusable catalyst for synthesis of tetrahydrodipyrazolopyridines and pyranopyrazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Jadhav CK, Nipate AS, Chate AV, Gill CH. β‐Cyclodextrin: An Efficient Supramolecular Catalyst for the Synthesis of Pyranoquinolines Derivatives under Ultrasonic Irradiation in Water. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chetan K. Jadhav
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Amol S. Nipate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Charansingh. H. Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| |
Collapse
|
24
|
Synthesis and characterization of graphitic carbon nitride supported Tris(hydroxymethyl)aminomethanes) g-C3N4/THAM) as a novel catalyst for the synthesis of poly hydroquinoline and pyranopyrazole derivatives. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Katariya AP, Katariya MV, Sangshetti J, Deshmukh SU. Ionic Liquid [(EMIM)Ac] Catalyzed Green and Efficient Synthesis of Pyrano[2,3- c]Pyrazole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ashishkumar P Katariya
- Department of Chemistry, SAJVPM’S Smt. S. K. Gandhi Arts, Amolak Science and P. H. Gandhi Commerce College, Kada, Maharashtra, India
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, India
| | - Maya V. Katariya
- Department of Chemistry Muktanand College, Gangapur, Maharashtra, India
| | | | - Satish U Deshmukh
- Department of Chemistry, Deogiri College, Aurangabad, Maharashtra, India
| |
Collapse
|
26
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
27
|
Ramesh A, Srinivas B, Pawar R, Ramachandraiah A. Synthesis, characterization, crystal structure determination, computational modelling and biological studies of a new tetrakis-(2-hydroxy-5-methylphenyl)(1H-pyrazol-4-yl)methanonezinc(II) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Synthesis of magnetic nanoparticles Fe3O4@CQD@Si(OEt)(CH2)3@melamine@TC@Ni(NO3) with application in the synthesis of 2-amino-3-cyanopyridine and pyrano[2,3-c]pyrazole derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Koolivand M, Nikoorazm M, Ghorbani‐Choghamaran A, Mohammadi M. A novel cubic Zn‐citric acid‐based MOF as a highly efficient and reusable catalyst for the synthesis of pyranopyrazoles and 5‐substituted 1H‐tetrazoles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mostafa Koolivand
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|
30
|
Alshabanah LA, Al-Mutabagani LA, Gomha SM, Ahmed HA. Three-Component Synthesis of Some New Coumarin Derivatives as Anticancer Agents. Front Chem 2022; 9:762248. [PMID: 35145952 PMCID: PMC8822056 DOI: 10.3389/fchem.2021.762248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
A three-component reaction for the synthesis of novel 3-heteroaryl-coumarin utilizing acetylcoumarin synthon under ultrasonic irradiation was developed using chitosan-grafted poly(vinylpyridine) as an eco-friendly catalyst. The process is a simple, facile, efficient procedure for the preparation of compounds displaying a thiazole ring linked to coumarin moiety. Moreover, all the products were evaluated for their anticancer activities against HEPG2-1. The results revealed that three new compounds showed promising anticancer activities.
Collapse
Affiliation(s)
- Latifah A. Alshabanah
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Laila A. Al-Mutabagani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- *Correspondence: Sobhi M. Gomha, ,
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
31
|
Babaei B, Mamaghani M, Mokhtary M. Clean Synthesis of Propargylamines Using Novel Magnetically Recyclable Silver Nanocatalyst (AgMNPs). Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bahareh Babaei
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Masoud Mokhtary
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
32
|
Mali G, Shaikh BA, Garg S, Kumar A, Bhattacharyya S, Erande RD, Chate AV. Design, Synthesis, and Biological Evaluation of Densely Substituted Dihydropyrano[2,3- c]pyrazoles via a Taurine-Catalyzed Green Multicomponent Approach. ACS OMEGA 2021; 6:30734-30742. [PMID: 34805701 PMCID: PMC8600639 DOI: 10.1021/acsomega.1c04773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
An efficient taurine-catalyzed green multicomponent approach has been described for the first time to synthesize densely substituted therapeutic core dihydropyrano[2,3-c]pyrazoles. Applications of the developed synthetic strategies and technologies revealed the synthesis of a series of newly designed 1,4-dihydropyrano[2,3-c]pyrazoles containing isonicotinamide, spirooxindole, and indole moieties. Detailed in silico analysis of the synthesized analogues revealed their potential to bind wild-type and antibiotic-resistant variants of dihydrofolate reductase, a principal drug target enzyme for emerging antibiotic-resistant pathogenic Staphylococcus aureus strains. Hence, the synthesized dihydropyrano[2,3-c]pyrazole derivatives presented herein hold immense promise to develop future antistaphylococcal therapeutic agents.
Collapse
Affiliation(s)
- Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Badrodin A. Shaikh
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, India
| | - Shivani Garg
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akhilesh Kumar
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Sudipta Bhattacharyya
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Asha V. Chate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004, India
| |
Collapse
|
33
|
Synthesis and characterization of Fe3O4@SiO2-(CH2)3-NH-Asn-M(II) (Cu (II)/ Ni(II)/ Co(II)) and its catalytic application in the synthesis of chromeno-pyrazolo-phthalazine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Kamalzare M, Ahghari MR, Bayat M, Maleki A. Fe 3O 4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Sci Rep 2021; 11:20021. [PMID: 34625599 PMCID: PMC8501051 DOI: 10.1038/s41598-021-99121-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Recently magnetic nanocatalyst has attracted considerable attention because of its unique properties, including high performance, easy separation from the reaction mixture, and recyclability. In this study, a novel magnetic bionanocomposite was synthesized with chitosan and tannic acid as a natural material. The synthesized bionanocatalyst was characterized by essential analysis. Fe3O4@chitosan-tannic acid as a heterogeneous nanocatalyst was successfully applied to synthesize pyranopyrazole and its derivatives by a one-pot four-component reaction of malononitrile, ethyl acetoacetate, hydrazine hydrate, and various aromatic aldehyde. At the end of the reaction, the nanocatalyst was separated from the reaction mixture and was reused several times with no significant decrease in its catalytic performance. Simple purification of products, the ability for recovering and reusing the nanocatalyst, eco-friendliness, high yields of pure products, mild reaction conditions, short reaction time, non-toxicity, economically affordable are some of the advantages of using the fabricated nanocatalyst in the synthesis of pyranopyrazole.
Collapse
Affiliation(s)
- Maryam Kamalzare
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
35
|
Sharma T, Singh J, Singh B, Kataria R, Kumar V. Methyl linked pyrazoles: Synthetic and Medicinal Perspective. Mini Rev Med Chem 2021; 22:770-804. [PMID: 34521325 DOI: 10.2174/1389557521666210914124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Pyrazoles, an important and well known class of the azole family, have been found to show a large number of applications in various fields specially of medicinal chemistry. Among pyrazole derivatives, particularly, methyl substituted pyrazoles have been reported as the potent medicinal scaffolds that exhibit a wide spectrum of biological activities. The present review is an attempt to highlight the detailed synthetic approaches for methyl substituted pyrazoles along with in depth analysis of their respective medical significances till March2021. It is hoped that literature sum-up in the form of present review article would certainly be a great tool to assist the medicinal chemists for generating new leads possessing pyrazole nucleus with high efficacy and less microbial resistance.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana. India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana. India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, Haryana. India
| | - Ramesh Kataria
- Department of Chemistry and Centre of Advances Studies in Chemistry, Panjab University, Chandigarh 160014. India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, Haryana. India
| |
Collapse
|
36
|
Nia RH, Mamaghani M, Tavakoli F. Ag-Catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review. Curr Org Synth 2021; 19:COS-EPUB-117839. [PMID: 34515006 DOI: 10.2174/1570179418666210910105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
The investigation of the procedures for the multi-component synthesis of heterocycles has attracted the interest of organic and medicinal chemists. The use of heterogeneous catalysts, especially transition metal catalysts in organic synthesis, can provide a new, improved alternative to traditional methods in modern synthetic chemistry. The main focus is on the utilization of silver as a catalyst for the multi-component synthesis of heterocyclic compounds. The present review describes some important reported studies for the period of 2010 to 2020. Conclusion: The present review addresses some of the important reported studies on multi-component synthesis of heterocycles in the period of 2010-2020. These approaches were performed under classical and nonclassical conditions, using Ag salts, Ag NPs, Ag on the support, Ag as co-catalysts with other transition metals, ionic liquids, acidic or basic materials. Most of the reported reactions were performed under solvent-free conditions or in green solvents and the utilized catalysts were mostly recyclable. The main aim of the present review is to provide the organic chemists with the most appropriate procedures in the multi-component synthesis of desired heterocycles using silver catalysts.
Collapse
Affiliation(s)
- Roghayeh Hossein Nia
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Fatemeh Tavakoli
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| |
Collapse
|
37
|
Verma P, Chauhan S, Singh V, Singh S, Srivastava V. Urea hydrogen peroxide-initiated synthesis of pyranopyrazoles through oxidative coupling under base- and metal-free conditions by physical grinding method. Mol Divers 2021; 26:1769-1777. [PMID: 34448984 DOI: 10.1007/s11030-021-10278-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
A novel multicomponent one-pot expeditious synthesis of highly functionalized and pharmaceutically fascinated pyranopyrazoles has been developed. This reaction occurs via tandem Knoevenagel condensation reaction of methyl aryl derivatives, 3-methyl pyrazolone and malononitrile in the presence of urea hydrogen peroxide under the physical grinding method. The present methodology offers several benefits such as available green and cheap starting materials, solvent-free, mild reaction conditions, high atom economy, eco-friendly standards, excellent yields and easy isolation of the products without column chromatographic separation.
Collapse
Affiliation(s)
- Pratibha Verma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Swati Chauhan
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vishal Singh
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
38
|
Yahyazadehfar M, Ahmadi SA, Sheikhhosseini E, Ghazanfari D. Bentonite Catalyzed an Efficient and Green Synthesis of Arylidene Meldrum's Acid Derivatives in Aqueous Media. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807155325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present paper, a simple, highly efficient, and environmentally friendly protocol
was proposed for the Knoevenagel condensation reaction of aromatic aldehydes using Meldrum’s acid
(2,2-dimethyl-4,6-dioxo-1,3-dioxane) with bentonite as an available non-toxic mineral catalyst exposed
to aqueous media under green conditions. Together with the substitution protocol of electron-donating
or -withdrawing groups, all reactions were finalized from 5 to 120 min in water at 90°C. With regard to
such reactions, the purification of columns on products was not a requirement. Considering the environmental
aspect, use of water as a green solvent, utilization of a reusable catalyst, simple work-up
process and steps, as well as rapid reaction times were taken into account as some characteristics of
these chemical reactions.
Collapse
Affiliation(s)
| | - Sayed Ali Ahmadi
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman,Iran
| | | | - Dadkhoda Ghazanfari
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman,Iran
| |
Collapse
|
39
|
Ganta RK, Kerru N, Maddila S, Jonnalagadda SB. Advances in Pyranopyrazole Scaffolds' Syntheses Using Sustainable Catalysts-A Review. Molecules 2021; 26:3270. [PMID: 34071629 PMCID: PMC8199150 DOI: 10.3390/molecules26113270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Heterogeneous catalysis plays a crucial role in many chemical processes, including advanced organic preparations and the design and synthesis of new organic moieties. Efficient and sustainable catalysts are vital to ecological and fiscal viability. This is why green multicomponent reaction (MCR) approaches have gained prominence. Owing to a broad range of pharmacological applications, pyranopyrazole syntheses (through the one-pot strategy, employing sustainable heterogeneous catalysts) have received immense attention. This review aimed to emphasise recent developments in synthesising nitrogen-based fused heterocyclic ring frameworks, exploring diverse recyclable catalysts. The article focused on the synthetic protocols used between 2010 and 2020 using different single, bi- and tri-metallic materials and nanocomposites as reusable catalysts. This review designated the catalysts' efficacy and activity in product yields, reaction time, and reusability. The MCR green methodologies (in conjunction with recyclable catalyst materials) proved eco-friendly and ideal, with a broad scope that could feasibly lead to advancements in organic synthesis.
Collapse
Affiliation(s)
- Ravi Kumar Ganta
- Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam 530045, India; (R.K.G.); (S.M.)
| | - Nagaraju Kerru
- Department of Chemistry, GITAM School of Science, Bengaluru Campus, GITAM University, Karnataka 561203, India;
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| | - Suresh Maddila
- Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam 530045, India; (R.K.G.); (S.M.)
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
40
|
C. Malakar C, Singh V, Kumar V, Singh D, Gujjarappa R. Efficient Approach towards the Polysubstituted 4H-Pyran Hybrid Quinolone Derivatives and Subsequent Copper-Catalyzed Hydroxylation of Haloarenes. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Mohamadpour F. Caffeine as a Naturally Green and Biodegradable Catalyst for Preparation of Dihydropyrano[2,3-c]pyrazoles. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1780883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Hojati SF, Amiri A, Fardi E. The application of copolymer‐coated graphene oxide‐Fe
3
O
4
in the highly efficient synthesis of 2′‐aminospiro[indeno[1,2‐
b
]quinoxaline‐11,4′‐[4'H] pyran]‐3′‐carbonitrile and 2′‐aminospiro[indeno‐2,4′‐[4'H]pyran]‐3′‐carbonitrile. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Amirhassan Amiri
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | - Elham Fardi
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| |
Collapse
|
43
|
Dwivedi KD, Borah B, Chowhan LR. Ligand Free One-Pot Synthesis of Pyrano[2,3- c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach. Front Chem 2020; 7:944. [PMID: 32039156 PMCID: PMC6987396 DOI: 10.3389/fchem.2019.00944] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Here, we have developed a novel, simple, efficient, and green protocol for one-pot synthesis of pyrano[2,3-c]pyrazole using arylidene malononitrile and pyrazolone in Water Extract of Banana Peels (WEB) as a reaction medium at room temperature (r.t.). This is a green and general synthetic protocol without utilization of any toxic organic solvent, ligand, base that could be applicable for the wide substrate scope in good to excellent yields. This protocol has various advantages such as fast reactions, eco-friendly reaction conditions, easy isolation of the product without using column chromatography. The green chemistry matrices calculation like atom economy reaction, environmental factor, as well as process mass intensity indicates the eco-friendly nature of the protocol.
Collapse
Affiliation(s)
| | | | - L. Raju Chowhan
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
44
|
Ghasemzadeh MA, Mirhosseini-Eshkevari B, Abdollahi-Basir MH. Green synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazoles] using Fe 3O 4@l-arginine as a robust and reusable catalyst. BMC Chem 2019; 13:119. [PMID: 31624802 PMCID: PMC6787995 DOI: 10.1186/s13065-019-0636-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesized Fe3O4@l-arginine showed strong catalytic performance in the one-pot synthesis of spiropyranopyrazoles via the reactions of hydrazines, β-keto esters, isatins, and malononitrile or ethyl cyanoacetate under solvent-free conditions. The biologically active heterocyclic compounds including spiropyranopyrazole derivatives were efficiently synthesized in short reaction times and excellent yields in the presence of Fe3O4/l-arginine at room temperature. The highlighted features of the Fe3O4@l-arginine nanocomposite are highly stable, easy to separate, low loading, cost-effective with easy preparation and reusability of the catalyst. The heterogeneous nanocomposite was fully characterized by SEM, EDX, FT-IR, XRD and TEM analysis.
Collapse
Affiliation(s)
- Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom Branch, Islamic Azad University, Post Box: 37491-13191, Qom, Islamic Republic of Iran
| | - Boshra Mirhosseini-Eshkevari
- Department of Chemistry, Qom Branch, Islamic Azad University, Post Box: 37491-13191, Qom, Islamic Republic of Iran
| | | |
Collapse
|