1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024:1-20. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Calls A, Torres‐Espin A, Tormo M, Martínez‐Escardó L, Bonet N, Casals F, Navarro X, Yuste VJ, Udina E, Bruna J. A transient inflammatory response contributes to oxaliplatin neurotoxicity in mice. Ann Clin Transl Neurol 2022; 9:1985-1998. [PMID: 36369764 PMCID: PMC9735376 DOI: 10.1002/acn3.51691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Peripheral neuropathy is a relevant dose-limiting adverse event that can affect up to 90% of oncologic patients with colorectal cancer receiving oxaliplatin treatment. The severity of neurotoxicity often leads to dose reduction or even premature cessation of chemotherapy. Unfortunately, the limited knowledge about the molecular mechanisms related to oxaliplatin neurotoxicity leads to a lack of effective treatments to prevent the development of this clinical condition. In this context, the present work aimed to determine the exact molecular mechanisms involved in the development of oxaliplatin neurotoxicity in a murine model to try to find new therapeutical targets. METHODS By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of sensory neurons and satellite glial cells (SGC) of the Dorsal Root Ganglia (DRG) from a well-characterized mouse model of oxaliplatin neurotoxicity. RESULTS Analysis of scRNA-seq data pointed to modulation of inflammatory processes in response to oxaliplatin treatment. In this line, we observed increased levels of NF-kB p65 protein, pro-inflammatory cytokines, and immune cell infiltration in DRGs and peripheral nerves of oxaliplatin-treated mice, which was accompanied by mechanical allodynia and decrease in sensory nerve amplitudes. INTERPRETATION Our data show that, in addition to the well-described DNA damage, oxaliplatin neurotoxicity is related to an exacerbated pro-inflammatory response in DRG and peripheral nerves, and open new insights in the development of anti-inflammatory strategies as a treatment for preventing peripheral neuropathy induced by oxaliplatin.
Collapse
Affiliation(s)
- Aina Calls
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Abel Torres‐Espin
- Department of Neurological Surgery, Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marc Tormo
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Scientific IT Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Laura Martínez‐Escardó
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Núria Bonet
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Víctor J. Yuste
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain,Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| |
Collapse
|
4
|
Williams D, Mahmoud M, Liu R, Andueza A, Kumar S, Kang DW, Zhang J, Tamargo I, Villa-Roel N, Baek KI, Lee H, An Y, Zhang L, Tate EW, Bagchi P, Pohl J, Mosnier LO, Diamandis EP, Mihara K, Hollenberg MD, Dai Z, Jo H. Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. eLife 2022; 11:e72579. [PMID: 35014606 PMCID: PMC8806187 DOI: 10.7554/elife.72579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell (EC) gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified kallikrein-related peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial ECs, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo mouse models and in vitro studies with cultured ECs. Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs, as determined by NFκB activation, expression of vascular cell adhesion molecule 1 and intracellular adhesion molecule 1, and monocyte adhesion. Furthermore, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.
Collapse
Affiliation(s)
- Darian Williams
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
| | - Marwa Mahmoud
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Renfa Liu
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Department of Biomedical Engineering, Peking UniversityBeijingChina
| | - Aitor Andueza
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Sandeep Kumar
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Dong-Won Kang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Jiahui Zhang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Ian Tamargo
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
| | - Nicolas Villa-Roel
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Kyung-In Baek
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | | | | | - Leran Zhang
- Department of Chemistry, Imperial College LondonLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College LondonLondonUnited Kingdom
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory UniversityAtlantaUnited States
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Laurent O Mosnier
- Department of Molecular Medicine, Scripps Research InstituteSan DiegoUnited States
| | | | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
| | - Zhifei Dai
- Department of Biomedical Engineering, Peking UniversityBeijingChina
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
- Department of Medicine, Emory UniversityAtlantaUnited States
| |
Collapse
|
5
|
KLK4T2 Is a Hormonally Regulated Transcript from the KLK4 Locus. Int J Mol Sci 2021; 22:ijms222313023. [PMID: 34884832 PMCID: PMC8657796 DOI: 10.3390/ijms222313023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The human kallikrein-related peptidase 4 (KLK4) and the transcribed pseudogene KLKP1 are reported to be highly expressed in the prostate. When trying to clone transcripts of KLKP1, we partly failed. Instead, we identified an androgen-regulated transcript, KLK4T2, which appeared to be a splice variant of KLK4 that also contained exons of KLKP1. Expression analysis of KLK4, KLK4T2, and KLKP1 transcripts in prostate cancer cell lines showed high levels of KLKP1 transcripts in the nucleus and in unfractionated cell extract, whereas it was almost completely absent in the cytoplasmatic fraction. This was in contrast to KLK4 and KLK4T2, which displayed high to moderate levels in the cytoplasm. In patient cohorts we found significantly higher expression of both KLK4T2 and KLK4 in benign prostatic hyperplasia compared to both primary prostate cancer and bone metastasis. Analysis of tissue panels demonstrated the highest expression of KLK4T2 in the prostate, but in contrast to the classical KLK4, relatively high levels were also found in placenta. So far, the function of KLK4T2 is still to be explored, but the structure of the translation product indicated that it generates a 17.4 kDa intracellular protein with possible regulatory function.
Collapse
|
6
|
Moustardas P, Yamada-Fowler N, Apostolou E, Tzioufas AG, Turkina MV, Spyrou G. Deregulation of the Kallikrein Protease Family in the Salivary Glands of the Sjögren's Syndrome ERdj5 Knockout Mouse Model. Front Immunol 2021; 12:693911. [PMID: 34305928 PMCID: PMC8292930 DOI: 10.3389/fimmu.2021.693911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction The purpose of this study was to identify differentially expressed proteins in salivary glands of the ERdj5 knockout mouse model for Sjögren's syndrome and to elucidate possible mechanisms for the morbid phenotype development. At the same time, we describe for the first time the sexual dimorphism of the murine submandibular salivary gland at the proteome level. Methods We performed Liquid Chromatography/Mass Spectrometry in salivary gland tissues from both sexes of ERdj5 knockout and 129SV wildtype mice. The resulting list of proteins was evaluated with bioinformatic analysis and selected proteins were validated by western blot and immunohistochemistry and further analyzed at the transcription level by qRT-PCR. Results We identified 88 deregulated proteins in females, and 55 in males in wildtype vs knockout comparisons. In both sexes, Kallikrein 1b22 was highly upregulated (fold change>25, ANOVA p<0.0001), while all other proteases of this family were either downregulated or not significantly affected by the genotype. Bioinformatic analysis revealed a possible connection with the downregulated NGF that was further validated by independent methods. Concurrently, we identified 416 proteins that were significantly different in the salivary gland proteome of wildtype female vs male mice and highlighted pathways that could be driving the strong female bias of the pathology. Conclusion Our research provides a list of novel targets and supports the involvement of an NGF-mediating proteolytic deregulation pathway as a focus point towards the better understanding of the underlying mechanism of Sjögren's syndrome.
Collapse
Affiliation(s)
- Petros Moustardas
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Naomi Yamada-Fowler
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Eirini Apostolou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Giannis Spyrou
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
8
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int J Biol Macromol 2020; 170:674-687. [PMID: 33387547 DOI: 10.1016/j.ijbiomac.2020.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Marine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases. Accordingly, the actions of these types of proteases are regulated by serine protease inhibitors (SPIs). Marine SPIs control complement activation and various other physiological functions, such as inflammation, immune function, fibrinolysis, blood clotting, and cancer metastasis. This review highlights the potential use of serine proteases and their inhibitors as the new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahoor Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecological Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
9
|
Mesenchymal Stem Cells as Therapeutic Agents and Novel Carriers for the Delivery of Candidate Genes in Acute Kidney Injury. Stem Cells Int 2020; 2020:8875554. [PMID: 33381189 PMCID: PMC7748887 DOI: 10.1155/2020/8875554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.
Collapse
|
10
|
Peng Q, Shen Y, Zhao P, Cheng M, Wu Y, Zhu Y. Biomarker implication of kallikrein-related peptidases as prognostic tissue substrates of poor survival in colorectal cancer. Cancer Cell Int 2020; 20:260. [PMID: 32581650 PMCID: PMC7310231 DOI: 10.1186/s12935-020-01350-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background Recent studies have demonstrated that the kallikrein and kallikrein-related peptidases (KLKs) exhibit aberrant expression in patients with colorectal cancer (CRC) and might be considered as potential prognostic biomarkers of CRC. However, inconsistent findings have been reported, which promote us to summarize the global prognostic roles of KLKs for survival in CRC patients. Methods Eligible published studies were identified by searching electronic databases with several search strategies. The patients’ baseline characteristics and survival results were extracted from enrolled studies and pooled as combined hazard ratio (HR) with 95% confidence interval (95% CI) to estimate the effect size. Results A total of 25 and 22 eligible studies were included in the meta-analysis to evaluate the prognostic roles of KLKs on overall survival (OS) and disease-free survival (DFS), respectively. KLKs overexpression was significantly associated with worse OS (pooled HR = 1.43, 95% CI 1.27–1.60, P < 0.001) and short DFS (pooled HR = 1.35, 95% CI 1.21–1.51, P < 0.001). Importantly, subgroup and meta-regression analyses revealed the survival differences among different races and detection methods of KLKs. Furthermore, several specific members of KLKs were identified to be more significantly related to worse OS and DFS compared with other members. Conclusion The present study demonstrated that KLKs may have the potential to serve as promising biomarkers to monitor CRC prognosis and progression. The promising results concerning the utility of KLKs in clinical practice encourage the further investigation of their clinical utility applicability as tumor markers of CRC.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004 Jiangsu China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yi Shen
- Department of Radiation Oncology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Peifeng Zhao
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004 Jiangsu China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Ming Cheng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004 Jiangsu China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev 2020; 38:333-346. [PMID: 31659564 DOI: 10.1007/s10555-019-09815-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prostate-specific antigen (PSA) blood test is the accepted biomarker of tumor recurrence. PSA levels in serum correlate with disease progression, though its diagnostic accuracy is questionable. As a result, significant progress has been made in developing modified PSA tests such as PSA velocity, PSA density, 4Kscore, PSA glycoprofiling, Prostate Health Index, and the STHLM3 test. PSA, a serine protease, is secreted from the epithelial cells of the prostate. PSA has been suggested as a molecular target for prostate cancer therapy due to the fact that it is not only active in prostate tissue but also has a pivotal role on prostate cancer signaling pathways including proliferation, invasion, metastasis, angiogenesis, apoptosis, immune response, and tumor microenvironment regulation. Here, we summarize the current standing of PSA in prostate cancer progression as well as its utility in prostate cancer therapeutic approaches with an emphasis on the role of PSA in the tumor microenvironment.
Collapse
Affiliation(s)
- Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. .,Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
12
|
Chen X, Leahy D, Van Haeften J, Hartfield P, Prentis PJ, van der Burg CA, Surm JM, Pavasovic A, Madio B, Hamilton BR, King GF, Undheim EAB, Brattsand M, Harris JM. A Versatile and Robust Serine Protease Inhibitor Scaffold from Actinia tenebrosa. Mar Drugs 2019; 17:E701. [PMID: 31842369 PMCID: PMC6950308 DOI: 10.3390/md17120701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Serine proteases play pivotal roles in normal physiology and a spectrum of patho-physiological processes. Accordingly, there is considerable interest in the discovery and design of potent serine protease inhibitors for therapeutic applications. This led to concerted efforts to discover versatile and robust molecular scaffolds for inhibitor design. This investigation is a bioprospecting study that aims to isolate and identify protease inhibitors from the cnidarian Actinia tenebrosa. The study isolated two Kunitz-type protease inhibitors with very similar sequences but quite divergent inhibitory potencies when assayed against bovine trypsin, chymostrypsin, and a selection of human sequence-related peptidases. Homology modeling and molecular dynamics simulations of these inhibitors in complex with their targets were carried out and, collectively, these methodologies enabled the definition of a versatile scaffold for inhibitor design. Thermal denaturation studies showed that the inhibitors were remarkably robust. To gain a fine-grained map of the residues responsible for this stability, we conducted in silico alanine scanning and quantified individual residue contributions to the inhibitor's stability. Sequences of these inhibitors were then used to search for Kunitz homologs in an A. tenebrosa transcriptome library, resulting in the discovery of a further 14 related sequences. Consensus analysis of these variants identified a rich molecular diversity of Kunitz domains and expanded the palette of potential residue substitutions for rational inhibitor design using this domain.
Collapse
Affiliation(s)
- Xingchen Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Darren Leahy
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Jessica Van Haeften
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Perry Hartfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Peter J. Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chloé A. van der Burg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Joachim M. Surm
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Ana Pavasovic
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Bruno Madio
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia; (B.M.); (G.F.K.)
| | - Brett R. Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia; (B.R.H.); (E.A.B.U.)
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia; (B.M.); (G.F.K.)
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia; (B.R.H.); (E.A.B.U.)
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Maria Brattsand
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden;
| | - Jonathan M. Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (X.C.); (D.L.); (J.V.H.); (C.A.v.d.B.); (A.P.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
13
|
Singh S, Gill AA, Nlooto M, Karpoormath R. Prostate cancer biomarkers detection using nanoparticles based electrochemical biosensors. Biosens Bioelectron 2019; 137:213-221. [DOI: 10.1016/j.bios.2019.03.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
|
14
|
Thorpe JH, Edgar EV, Smith KJ, Lewell XQ, Rella M, White GV, Polyakova O, Nassau P, Walker AL, Holmes DS, Pearce AC, Wang Y, Liddle J, Hovnanian A. Evaluation of a crystallographic surrogate for kallikrein 5 in the discovery of novel inhibitors for Netherton syndrome. Acta Crystallogr F Struct Biol Commun 2019; 75:385-391. [PMID: 31045568 PMCID: PMC6497096 DOI: 10.1107/s2053230x19003169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 11/10/2022] Open
Abstract
The inhibition of kallikrein 5 (KLK5) has been identified as a potential strategy for treatment of the genetic skin disorder Netherton syndrome, in which loss-of-function mutations in the SPINK5 gene lead to down-regulation of the endogenous inhibitor LEKTI-1 and profound skin-barrier defects with severe allergic manifestations. To aid in the development of a medicine for this target, an X-ray crystallographic system was developed to facilitate fragment-guided chemistry and knowledge-based drug-discovery approaches. Here, the development of a surrogate crystallographic system in place of KLK5, which proved to be challenging to crystallize, is described. The biochemical robustness of the crystallographic surrogate and the suitability of the system for the study of small nonpeptidic fragments and lead-like molecules are demonstrated.
Collapse
Affiliation(s)
- James H. Thorpe
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Emma V. Edgar
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Kathrine J. Smith
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Xiao Q. Lewell
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Monika Rella
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Gemma V. White
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Oxana Polyakova
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Pamela Nassau
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Ann L. Walker
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Duncan S. Holmes
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Andrew C. Pearce
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Yichen Wang
- INSERM UMR1163 Laboratory of Genetic Skin Diseases, Imagine Institute and Université Paris Descartes–Sorbonne Paris Cité, Paris, France
| | - John Liddle
- GlaxoSmithKline, Medicinal Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England
| | - Alain Hovnanian
- INSERM UMR1163 Laboratory of Genetic Skin Diseases, Imagine Institute and Université Paris Descartes–Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Matin F, Jeet V, Srinivasan S, Cristino AS, Panchadsaram J, Clements JA, Batra J. MicroRNA-3162-5p-Mediated Crosstalk between Kallikrein Family Members Including Prostate-Specific Antigen in Prostate Cancer. Clin Chem 2019; 65:771-780. [PMID: 31018918 DOI: 10.1373/clinchem.2018.295824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs mediate biological processes through preferential binding to the 3' untranslated region (3' UTR) of target genes. Studies have shown their association with prostate cancer (PCa) risk through single-nucleotide polymorphisms (SNPs), known as miRSNPs. In a European cohort, 22 PCa risk-associated miRSNPs have been identified. The most significant miRSNP in the 3' UTR of Kallikrein-related peptidase 3 (KLK3) created a binding site for miR-3162-5p. Here we investigated the miR-3162-5p-KLK interaction and the clinical implication of miR-3162-5p in PCa. METHODS We tested the role of miR-3162-5p in PCa etiology using IncuCyte live-cell imaging and anchorage-independent growth assays. The effect of miR-3162-5p on KLK and androgen receptor (AR) expression was measured by RT-quantitative (q)PCR and target pulldown assays. KLK3 proteolytic activity was determined by DELFIA® immunoassay. Mass spectrometry identified pathways affected by miR-3162-5p. miR-3162-5p expression was measured in clinical samples using RT-qPCR. RESULTS miR-3162-5p affected proliferation, migration, and colony formation of LNCaP cells by regulating the expression of KLK2-4 and AR by direct targeting. KLK3 protein expression was regulated by miR-3162-5p consistent with lower KLK3 proteolytic activity observed in LNCaP-conditioned media. KLK/AR pulldown and mass spectrometry analysis showed a potential role of miR-3162-5p in metabolic pathways via KLK/AR and additional targets. Increased miR-3162-5p expression was observed in prostate tumor tissues with higher Gleason grade. CONCLUSIONS Our study provides an insight into possible involvement of miR-3162-5p in PCa etiology by targeting KLKs and AR. It highlights clinical utility of miR-3162-5p and its interactive axis as a new class of biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Farhana Matin
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Brisbane, Australia
| | - Varinder Jeet
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Brisbane, Australia
| | - Alexandre S Cristino
- University of Queensland Diamantina Institute (UQDI), Faculty of Medicine, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Janaththani Panchadsaram
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Brisbane, Australia
| | | | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Brisbane, Australia;
| | | |
Collapse
|
16
|
de Souza AS, Pacheco BDC, Pinheiro S, Muri EMF, Dias LRS, Lima CHS, Garrett R, de Moraes MBM, de Souza BEG, Puzer L. 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorg Med Chem Lett 2019; 29:1094-1098. [PMID: 30833107 DOI: 10.1016/j.bmcl.2019.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/30/2022]
Abstract
Human kallikreins 5 and 7 (KLK5 and KLK7) exhibit trypsin- and chymotrypsin-like activities and are involved in pathologies related to skin desquamation process. A series of new 3-acyltetramic acids were developed as a novel class of inhibitors of KLK5, KLK7 and trypsin enzymes. The nature and length of the acyl chain is crucial to the KLK5, KLK7 and trypsin inhibition activities, and the most potent compounds (but not the most selective) 2b, 2c and 2g showed low micromolar IC50 values. While very few of the compounds were selective for KLK5, the selective inhibition of trypsin against chymotrypsin was achieved. Our molecular modelling studies revealed that the double bond in 2g provided the best fit in the binding site of KLK5, while the hydrogen bonding interactions modulated the best fit of 2c in the binding site of KLK7 due to the hydrophobicity of the cavity.
Collapse
Affiliation(s)
- Acácio S de Souza
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil
| | - Barbara D C Pacheco
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n, Centro, 24020-141 Niterói, RJ, Brazil.
| | - Estela M F Muri
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Luiza R S Dias
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H S Lima
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana B M de Moraes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno E G de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| |
Collapse
|
17
|
Srinivasan S, Stephens C, Wilson E, Panchadsaram J, DeVoss K, Koistinen H, Stenman UH, Brook MN, Buckle AM, Klein RJ, Lilja H, Clements J, Batra J. Prostate Cancer Risk-Associated Single-Nucleotide Polymorphism Affects Prostate-Specific Antigen Glycosylation and Its Function. Clin Chem 2018; 65:e1-e9. [PMID: 30538125 DOI: 10.1373/clinchem.2018.295790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Genetic association studies have reported single-nucleotide polymorphisms (SNPs) at chromosome 19q13.3 to be associated with prostate cancer (PCa) risk. Recently, the rs61752561 SNP (Asp84Asn substitution) in exon 3 of the kallikrein-related peptidase 3 (KLK3) gene encoding prostate-specific antigen (PSA) was reported to be strongly associated with PCa risk (P = 2.3 × 10-8). However, the biological contribution of the rs61752561 SNP to PCa risk has not been elucidated. METHODS Recombinant PSA protein variants were generated to assess the SNP-mediated biochemical changes by stability and substrate activity assays. PC3 cell-PSA overexpression models were established to evaluate the effect of the SNP on PCa pathogenesis. Genotype-specific correlation of the SNP with total PSA (tPSA) concentrations and free/total (F/T) PSA ratio were determined from serum samples. RESULTS Functional analysis showed that the rs61752561 SNP affects PSA stability and structural conformation and creates an extra glycosylation site. This PSA variant had reduced enzymatic activity and the ability to stimulate proliferation and migration of PCa cells. Interestingly, the minor allele is associated with lower tPSA concentrations and high F/T PSA ratio in serum samples, indicating that the amino acid substitution may affect PSA immunoreactivity to the antibodies used in the clinical immunoassays. CONCLUSIONS The rs61752561 SNP appears to have a potential role in PCa pathogenesis by changing the glycosylation, protein stability, and PSA activity and may also affect the clinically measured F/T PSA ratio. Accounting for these effects on tPSA concentration and F/T PSA ratio may help to improve the accuracy of the current PSA test.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- Australian Prostate Cancer Research Centre-Queensland and Cancer Program, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Carson Stephens
- Australian Prostate Cancer Research Centre-Queensland and Cancer Program, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Emily Wilson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Janaththani Panchadsaram
- Australian Prostate Cancer Research Centre-Queensland and Cancer Program, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kerry DeVoss
- Endocrinology, QML Pathology, Mansfield, Queensland, Australia
| | - Hannu Koistinen
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert J Klein
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hans Lilja
- Departments of Laboratory Medicine, Surgery (Urology Service) and Medicine (Genitourinary Oncology), Memorial Sloan Kettering Cancer Center, New York, NY.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Judith Clements
- Australian Prostate Cancer Research Centre-Queensland and Cancer Program, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Queensland and Cancer Program, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; .,Translational Research Institute, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
18
|
Wang HE, Lin CL, Pan TL, Yeh CT. Increase of Serum Kallikrein-8 Level After Long-term Telbivudine Treatment. In Vivo 2018; 32:955-960. [PMID: 29936485 DOI: 10.21873/invivo.11334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIM Our previous cDNA microarray study revealed increased cellular mRNA levels of a panel of genes, including kallikrein-8 (KLK8), after long-term telbivudine treatment in chronic hepatitis B patients. The aim of this study was to verify whether serum protein levels of KLK8, a cancer-related enzyme, are indeed increased after telbivudine treatment. PATIENTS AND METHODS A total of 83 chronic hepatitis B patients receiving telbivudine for >2 years were retrospectively analyzed. Serum KLK8 protein and estimated glomerular filtration rate (eGFR) changes were compared before and after treatment. RESULTS Both serum KLK8 protein and eGFR increased significantly after long-term telbivudine treatment (paired t-test: KLK8, p<0.001; eGFR, p=0.001). No direct correlation was found between KLK8 increase and eGFR change. However, eGFR change was positively associated with post-treatment KLK8 levels following adjustment for body height (p<0.001). CONCLUSION Telbivudine treatment resulted in increased levels of serum KLK8 protein. Furthermore, eGFR increase was associated with body height-adjusted, post-treatment KLK8 levels.
Collapse
Affiliation(s)
- Haw-En Wang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Chih-Lang Lin
- Liver Research Unit, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan, R.O.C
| | - Tai-Long Pan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, R.O.C.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.
| |
Collapse
|
19
|
Magalhães B, Trindade F, Barros AS, Klein J, Amado F, Ferreira R, Vitorino R. Reviewing Mechanistic Peptidomics in Body Fluids Focusing on Proteases. Proteomics 2018; 18:e1800187. [DOI: 10.1002/pmic.201800187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Beatriz Magalhães
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
- Instituto de Biomedicina; Department of Medical Sciences; University of Aveiro; 3810-193 Aveiro Portugal
| | - António S. Barros
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale; Institute of Cardiovascular and Metabolic Disease; Toulouse France
- Université Toulouse III Paul-Sabatier; 31330 Toulouse France
| | - Francisco Amado
- Química Orgânica, Produtos Naturais e Agroalimentares; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Rita Ferreira
- Química Orgânica, Produtos Naturais e Agroalimentares; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
- Instituto de Biomedicina; Department of Medical Sciences; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
20
|
Huang Y, Zhao L, Yao C, Yang C, Zhu Z, Li P, Tian R, Chen H, He Z, Li Z. Effect of Kallikrein-related Peptidase KLK1 on Ameliorating Spermatogenesis Regeneration in Busulfan-induced Azoospermic Mice and Promoting Mouse Spermatogonial Stem Cell Proliferation In Vitro. Urology 2018; 122:89-96. [PMID: 30171922 DOI: 10.1016/j.urology.2018.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the effect of kallikrein-related peptidase KLK1 on azoospermic mice induced by busulfan and mouse spermatogonial stem cell. METHODS Mice were treated with a single intraperitoneal injection of busulfan, and 4 weeks later, they received a daily intraperitoneal injection of KLK1 at different doses for another 4 weeks. Eight weeks after the busulfan treatment, all mice were sacrificed and their testes were collected for histological evaluation, immunostaining and protein extraction. In vitro, immortalized mouse spermatogonial stem cells, namely C18-4 cells, were treated with KLK1 for proliferation assays. RESULTS Histological evaluation of testes, epididymis and epididymal fluid showed that KLK1-treated mice had better spermatogenesis than the control group. Immunostaining showed that tissue samples from testes of KLK1-treated mice had more PLZF- and SCP3-positive cells per seminiferous tubule as well as more PNA-positive cells in the seminiferous tubules. Western blots revealed higher expression levels of PCNA in KLK1-treated mice than in control mice. C18-4 cells treated with KLK1 had a higher proliferation rate and higher expression levels of PCNA, Cyclin A and Cyclin E, and the level of phosphorylated ERK2 were increased after KLK1 treatment. CONCLUSION Collectively, KLK1 can improve spermatogenesis in azoospermic mice, and KLK1 can promote the proliferation of mouse spermatogonial stem cells via activating ERK1/2 and cell cycle proteins Cyclin A and Cyclin E. This study could offer novel approach and provide new targets for the treatment of azoospermia.
Collapse
Affiliation(s)
- Yuhua Huang
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyu Zhao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yang
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zijue Zhu
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruhui Tian
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huixing Chen
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zuping He
- School of Medicine, Hunan Normal University, Changsha, China
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Morrison MD, Jackson-Boeters L, Khan ZA, Shimizu MS, Franklin JH, Fung K, Yoo JHJ, Darling MR. Identifying Candidate Biomarkers for Pleomorphic Adenoma: A Case-Control Study. Head Neck Pathol 2018; 13:286-297. [PMID: 30120721 PMCID: PMC6684674 DOI: 10.1007/s12105-018-0959-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
Pleomorphic adenoma (PA) is the most common benign salivary gland tumor. Kallikrein-related peptidases have been identified as biomarkers in many human tumors and may influence tumor behavior. We investigated KLK1-15 messenger ribonucleic acid and proteins in PA specimens to determine a KLK expression profile for this tumor. Fresh frozen PA tissue specimens (n = 26) and matched controls were subjected to quantitative real-time reverse transcription polymerase chain reaction to detect KLK1-15 mRNA. Expression of KLK1, KLK12, KLK13, and KLK8 proteins were then evaluated via immunostaining techniques. Statistical analyses were performed with the level of significance set at P < .05. We observed downregulation of KLK1, KLK12, and KLK13 mRNA expression, and immunostaining studies revealed downregulation of the corresponding proteins. Histologic evidence of capsular perforation was associated with increased KLK1 protein expression. Tumor size was not associated with capsular invasion and/or perforation. This study is the first to detail a KLK expression profile for PA at both the transcriptional level and the protein level. Future work is required to develop clinical applications of these findings.
Collapse
Affiliation(s)
- Matthew D Morrison
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada.
| | - Linda Jackson-Boeters
- Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Michael S Shimizu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - Jason H Franklin
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Kingston Health Sciences Centre, 144 Brock Street, Kingston, ON, K7L 5G2, Canada
| | - Kevin Fung
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - John H J Yoo
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - Mark R Darling
- Division of Oral and Maxillofacial Pathology, Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| |
Collapse
|
22
|
McAleer MA, Jakasa I, Raj N, O'Donnell CPF, Lane ME, Rawlings AV, Voegeli R, McLean WHI, Kezic S, Irvine AD. Early-life regional and temporal variation in filaggrin-derived natural moisturizing factor, filaggrin-processing enzyme activity, corneocyte phenotypes and plasmin activity: implications for atopic dermatitis. Br J Dermatol 2018; 179:431-441. [PMID: 29691836 PMCID: PMC6175251 DOI: 10.1111/bjd.16691] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Abstract
Background Filaggrin is central to the pathogenesis of atopic dermatitis (AD). The cheeks are a common initiation site of infantile AD. Regional and temporal expression of levels of filaggrin degradation products [natural moisturizing factors (NMFs)], activities of filaggrin‐processing enzymes [bleomycin hydrolase (BH) and calpain‐1 (C‐1)] and plasmin, and corneocyte envelope (CE) maturity in early life are largely unknown. Objectives We conducted a cross‐sectional, observational study investigating regional and age‐dependent variations in NMF levels, activity of proteases and CE maturity in stratum corneum (SC) from infants to determine whether these factors could explain the observed predilection sites for AD in early life. Methods We measured NMF using a tape‐stripping method at seven sites in the SC of 129 children (aged < 12 months to 72 months) and in three sites in 56 neonates and infants (< 48 h to 3 months). In 37 of these neonates and infants, corneocyte size, maturity, BH, C‐1 and plasmin activities were determined. Results NMF levels are low at birth and increase with age. Cheek SC, compared with elbow flexure and nasal tip, has the lowest NMF in the first year of life and is the slowest to reach stable levels. Cheek corneocytes remain immature. Plasmin, BH and C‐1 activities are all elevated by 1 month of age in exposed cheek skin, but not in elbow skin. Conclusions Regional and temporal differences in NMF levels, CE maturity and protease activities may explain the predilection for AD to affect the cheeks initially and are supportive of this site as key for allergen priming in early childhood. These observations will help design early intervention and treatment strategies for AD. What's already known about this topic?Atopic dermatitis (AD) frequently starts in early infancy, and the first eczematous lesions emerge on the cheeks. Filaggrin is a major structural protein in the stratum corneum (SC). Filaggrin deficiency is associated with the development of AD and, in the context of AD, food allergies and asthma. Filaggrin is metabolized into natural moisturizing factors (NMFs), which can be measured in the SC.
What does this study add? Regional differences in NMF levels, corneocyte envelope immaturity and protease activities may help explain why infantile AD most often initially affects the cheeks. Filaggrin processing, corneocyte maturity, and protease activities show regional and temporal differences in infant skin. These findings may explain disease patterns in early‐life AD.
What is the translational message? Cheek skin may be highly relevant for allergen priming. Emollient therapy at the vulnerable cheek site might help to prevent AD and/or food sensitization.
Linked Editorial: https://doi.org/10.1111/bjd.16806. https://doi.org/10.1111/bjd.16959 available online https://goo.gl/Uqv3dl
Collapse
Affiliation(s)
- M A McAleer
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,Paediatric Dermatology, Our Lady's Children's Hospital, Dublin, Ireland
| | - I Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - N Raj
- School of Pharmacy, University College London, London, U.K
| | - C P F O'Donnell
- Department of Neonatology, National Maternity Hospital, Dublin, Ireland
| | - M E Lane
- School of Pharmacy, University College London, London, U.K
| | - A V Rawlings
- School of Pharmacy, University College London, London, U.K
| | - R Voegeli
- DSM Nutritional Products Ltd, Wurmisweg 571, Kaiseraugst, Switzerland
| | - W H I McLean
- Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, U.K
| | - S Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam, the Netherlands
| | - A D Irvine
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,Paediatric Dermatology, Our Lady's Children's Hospital, Dublin, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Abstract
In forensic investigations, the identification of the cellular or body fluid source of biological evidence can provide crucial probative information for the court. Messenger RNA (mRNA) profiling has become a valuable tool for body fluid and cell type identification due to its high sensitivity and compatibility with DNA analysis. However, using a single marker to determine the somatic origin of a sample can lead to misinterpretation as a result of cross-reactions. While false positives may be avoided through the simultaneous detection of multiple markers per body fluid, this approach is currently limited by the small number of known differentially expressed mRNAs. Here we characterise six novel mRNAs, partly identified from RNA-Seq, which can supplement existing markers for the detection of circulatory blood, semen (with and without spermatozoa), and menstrual fluid: HBD and SLC4A1 for blood, TNP1 for spermatozoa, KLK2 for seminal fluid, and MMP3 and STC1 for menstrual fluid. Respective expression profiles were evaluated by singleplex endpoint reverse transcription polymerase chain reaction (RT-PCR). HBD, SLC4A1, and KLK2 were specific to their target body fluids. TNP1, MMP3, and STC1 each cross-reacted with two non-target samples; however, these signals were below 350RFU, not reproducible, and likely resulted from large body fluid inputs. All candidates were more sensitive for the detection of their target body fluids than corresponding well-known mRNAs, in particular those for menstrual fluid. The increased sensitivities were statistically significant, except for KLK2. Thus, the new mRNAs introduced here are promising new targets for improved body fluid profiling.
Collapse
Affiliation(s)
- Patricia P Albani
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand; The Institute of Environmental Science and Research Ltd. (ESR), Auckland, New Zealand
| | - Rachel Fleming
- The Institute of Environmental Science and Research Ltd. (ESR), Auckland, New Zealand.
| |
Collapse
|
24
|
Silva LM, Stoll T, Kryza T, Stephens CR, Hastie ML, Irving-Rodgers HF, Dong Y, Gorman JJ, Clements JA. Mass spectrometry-based determination of Kallikrein-related peptidase 7 (KLK7) cleavage preferences and subsite dependency. Sci Rep 2017; 7:6789. [PMID: 28754951 PMCID: PMC5533777 DOI: 10.1038/s41598-017-06680-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 11/23/2022] Open
Abstract
The cleavage preferences of Kallikrein-related peptidase 7 (KLK7) have previously been delineated using synthetic peptide libraries of fixed length, or single protein chains and have suggested that KLK7 exerts a chymotryptic-like cleavage preference. Due to the short length of the peptides utilised, only a limited number of subsites have however been assessed. To determine the subsite preferences of KLK7 in a global setting, we used a mass spectrometry (MS)-based in-depth proteomics approach that utilises human proteome-derived peptide libraries of varying length, termed Proteomic Identification of protease Cleavage Sites (PICS). Consistent with previous findings, KLK7 was found to exert chymotryptic-like cleavage preferences. KLK7 subsite preferences were also characterised in the P2-P2′ region, demonstrating a preference for hydrophobic residues in the non-prime and hydrophilic residues in the prime subsites. Interestingly, single catalytic triad mutant KLK7 (mKLK7; S195A) also showed residual catalytic activity (kcat/KM = 7.93 × 102 s−1M−1). Catalytic inactivity of KLK7 was however achieved by additional mutation in this region (D102N). In addition to characterising the cleavage preferences of KLK7, our data thereby also suggests that the use of double catalytic triad mutants should be employed as more appropriate negative controls in future investigations of KLK7, especially when highly sensitive MS-based approaches are employed.
Collapse
Affiliation(s)
- Lakmali Munasinghage Silva
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.,Proteases and Tissue Remodelling Section, National Institute of Dental and Craniofacial Research, National Institutes of Science, 30 Convent Drive, Bethesda, Maryland, 20892, USA
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Thomas Kryza
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Carson Ryan Stephens
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marcus Lachlan Hastie
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Helen Frances Irving-Rodgers
- School of Medical Science, Griffith University Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Ying Dong
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Jeffrey John Gorman
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Judith Ann Clements
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
25
|
Cui Z, Cui Y, Luo G, Yang S, Ling X, Lou Y, Sun X. Kallikrein-related peptidase 4 contributes to the tumor metastasis of oral squamous cell carcinoma. Biosci Biotechnol Biochem 2017; 81:1768-1777. [PMID: 28743213 DOI: 10.1080/09168451.2017.1356216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a disfiguring malignancy and significantly impacts the quality of patient's life. Kallikrein-related peptidase 4 (KLK4), which is closely related to cancers, is highly expressed in OSCC. To explore the biological function of KLK4 in OSCC, a KLK4-specific shRNA was used to silence its endogenous expression, and then the migration and invasion of OSCC cells were explored. Results of our study showed that silencing KLK4 inhibited the migration and invasion of OSCC cells. The protein levels of epithelial mesenchymal transition-associated markers and proteases were also altered by KLK4 silencing. Further study showed that the phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (AKT) signaling pathway was involved in the function of KLK4. Treatment with a PI3 K/AKT activator reversed the migration-inhibitory effect of KLK4 shRNA. Our study suggests that KLK4 may contribute to the metastasis of OSCC through the PI3 K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zhi Cui
- a Department of Oral and Maxillofacial Surgery, School of Stomatology , Jilin University , Changchun , People's Republic of China
| | - Ye Cui
- b Department of Orthodontics, School of Stomatology , Jilin University , Changchun , People's Republic of China
| | - Gan Luo
- b Department of Orthodontics, School of Stomatology , Jilin University , Changchun , People's Republic of China
| | - Shuting Yang
- c Department of Prosthodontics, School of Stomatology , Jilin University , Changchun , People's Republic of China
| | - Xinlian Ling
- b Department of Orthodontics, School of Stomatology , Jilin University , Changchun , People's Republic of China
| | - Yixin Lou
- b Department of Orthodontics, School of Stomatology , Jilin University , Changchun , People's Republic of China
| | - Xinhua Sun
- b Department of Orthodontics, School of Stomatology , Jilin University , Changchun , People's Republic of China
| |
Collapse
|
26
|
Raju I, Kaushal GP, Haun RS. Epigenetic regulation of KLK7 gene expression in pancreatic and cervical cancer cells. Biol Chem 2017; 397:1135-1146. [PMID: 27279059 DOI: 10.1515/hsz-2015-0307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/05/2016] [Indexed: 01/19/2023]
Abstract
Kallikrein-related peptidase 7 (KLK7) is a serine protease encoded within the kallikrein gene cluster located on human chromosome region 19q13.3-13.4. KLK7 is overexpressed in human pancreatic ductal adenocarcinomas (PDACs), but not in normal pancreas. Examination of KLK7 mRNA levels in pancreatic cancer cell lines revealed that it is readily detected in MIA PaCa-2 and PK-1 cells, but not in Panc-1 cells. Treatment of Panc-1 cells with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) significantly induced KLK7 mRNA expression. Similarly, KLK7 is highly expressed in cervical cancer cells, but its expression in the human cervical cancer cell line HeLa is only detected following TSA treatment. Promoter deletion analysis revealed that the proximal -238 promoter region, containing a putative Sp1-binding site, was sufficient for TSA activation of luciferase reporter activity, which was abrogated by the disruption of the Sp1-binding sequence. Consistent with the notion that TSA induced KLK7 expression via Sp1, co-expression of Sp1 with the KLK7-promoter/luciferase construct produced a significant increase in reporter activity. Chromatin immunoprecipitation (ChIP) analysis revealed enriched Sp1 occupancy on the KLK7 promoter following TSA treatment. Similarly, ChIP analysis showed the histone active mark, H3K4Me3, in the KLK7 promoter region was significantly increased after exposure to TSA.
Collapse
|
27
|
Zheng X, He M, Tan X, Zheng J, Wang F, Liu S. 3D-quantitative structure–activity relationship and docking studies of coumarin derivatives as tissue kallikrein 7 inhibitors. J Pharm Pharmacol 2017; 69:1136-1144. [DOI: 10.1111/jphp.12751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
Kallikrein 7 (KLK7) is a secreted serine protease that plays important roles in skin desquamation and tumour progression, which makes it an attracting drug target. To guide the design of KLK7 inhibitors, a series of coumarin-based inhibitors were used to perform 3D-quantitative structure–activity relationship analysis.
Methods
3D conformations of 37 inhibitors were generated and used to construct CoMFA and CoMSIA models. Then a complex model between the inhibitors and KLK7 was built with molecular docking.
Key findings
With the training set, the CoMFA and CoMSIA models achieved q2 values of 0.521 and 0.498, and r2 values of 0.942 and 0.983, respectively. With the testing set, the predicted r2 values were 0.663 and 0.669, respectively, for CoMFA and CoMSIA. 3D contour maps from these two models identified steric and hydrophobic interactions as the most important molecular features of these inhibitors. Furthermore, molecular docking study was performed to understand the binding modes between these compounds and KLK7, in which the critical steric and hydrophobic interactions between the inhibitors and KLK7 were confirmed.
Conclusions
Steric and hydrophobic interactions are critical in the efficient binding of KLK7 inhibitors. Our analysis would provide a meaningful guideline for the rational design of novel KLK7 inhibitors.
Collapse
Affiliation(s)
- Xin Zheng
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Mengxi He
- College of Medical Science, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xiao Tan
- College of Medical Science, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang, China
| | - Jun Zheng
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang, China
| | - Fangyu Wang
- College of Life Science and Environment, Hengyang Normal University, Hengyang, China
| | - Sen Liu
- College of Medical Science, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
28
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
29
|
Liu X, Quan B, Tian Z, Xi H, Jia G, Wang H, Zhang L, Liu R, Ma C, Han F, Li H, Yuan F. Elevated expression of KLK8 predicts poor prognosis in colorectal cancer. Biomed Pharmacother 2017; 88:595-602. [PMID: 28142115 DOI: 10.1016/j.biopha.2017.01.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/26/2022] Open
Abstract
KLK8, also known as neuropsin, is one of fifteen members of the human kallikrein-related peptidase (KLK) gene family, which consists of enzymes with serine protease enzymatic activity. Aberrant KLK8 expression has been reported in several malignancies. However, the clinicopathological significance and prognostic value of KLK8 expression in colorectal cancer (CRC) are unknown. Therefore, analysis of public datasets, quantitative real-time PCR and western blot analysis were performed to assess KLK8 expression in CRC at both the mRNA and protein level. KLK8 expression was also assessed by immunohistochemistry in a tissue microarray containing 124 CRC specimens. We observed that KLK8 was overexpressed in CRC tissues and was significantly associated with TNM stage, vascular invasion, differentiation and AJCC stage. Univariate and multivariate Cox analyses confirmed that KLK8 is a significant independent prognostic factor for both DFS and OS. Cell function assays also indicated that KLK8 could facilitate CRC cell proliferation, migration and invasion in vitro. In conclusion, elevated KLK8 expression was correlated with the progression of CRC and is a potential independent prognostic indicator for CRC.
Collapse
Affiliation(s)
- Xianwu Liu
- Department of General Surgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Bin Quan
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Zhilong Tian
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Hailin Xi
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Gaolei Jia
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Hui Wang
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Liang Zhang
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Ruming Liu
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Cheng Ma
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Fuzhou Han
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China
| | - Huansong Li
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China.
| | - Fukang Yuan
- Department of General Surgery, XuZhou Central Hospital, 199 Jiefang Road, Xuzhou, 221009, Jiangsu, China.
| |
Collapse
|
30
|
Darling MR, Woodford R, Cuddy KK, Jackson-Boeters L, Hayter A, Inkaran J, Diamandis EP, Khan Z. Kallikrein-related peptidase expression in odontogenic cysts and tumors: An immunohistochemical comparative study. ACTA ACUST UNITED AC 2017; 8. [PMID: 28054463 DOI: 10.1111/jicd.12256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/22/2016] [Indexed: 11/28/2022]
Abstract
AIM The aim of the present study was to profile the expression of human kallikrein (KLK)-related peptidases (KLK) in odontogenic lesions. METHODS Paraffin-embedded, formalin-fixed, non-odontogenic (control) and odontogenic lesions were stained for KLK using a standard immunohistochemical technique. The intensity and proportion of epithelial cells stained was scored. Reverse transcription-polymerase chain reaction was utilized to evaluate KLK 1-15 mRNA expression in ameloblastomas. RESULTS KLK 3, 4, 9, 11, and 14 were present in all lesions. KLK 3 staining was increased in ameloblastomas and keratocystic odontogenic tumors. KLK 5 was present only in Keratocystic odontogenic tumor. KLK 6 was significantly higher in ameloblastomas than in other lesions. For KLK 7, keratocystic odontogenic tumors and nasopalatine duct cysts were significantly different. KLK 6, 8, 10, 11, and 13 were significantly higher in ameloblastomas than in other lesions. KLK 9 was increased in keratocystic odontogenic tumors and dentigerous cysts. The expression of KLK 1, 4, 7, 8, 10, and 12 mRNA was found in ameloblastomas. CONCLUSION The results suggested that KLK 6, 8, 10, and 13 could be involved in the progression of ameloblastomas. KLK 10 could have a greater role in odontogenic lesions, rather than non-odontogenic lesions. Future studies aim to define the specific roles of KLK cascades in odontogenic lesions.
Collapse
Affiliation(s)
- Mark Roger Darling
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Rebecca Woodford
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Karl Kevin Cuddy
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Linda Jackson-Boeters
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Alyssa Hayter
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jeyanth Inkaran
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Zia Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Kallikrein in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Zhang CY, Zhu Y, Rui WB, Dai J, Shen ZJ. Expression of kallikrein-related peptidase 7 is decreased in prostate cancer. Asian J Androl 2016; 17:106-10. [PMID: 25219913 PMCID: PMC4291851 DOI: 10.4103/1008-682x.137613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent evidence suggests that the human kallikrein 7 (KLK7) is differentially regulated in a variety of tumors. The aim of this study was to determine the expression of kallikrein-related peptidase 7 and KLK7 in our large collection of prostate samples. Between August 2000 and December 2012, 116 patients with histologically confirmed prostate cancer (PCa) and 92 with benign prostate hyperplasia (BPH) were recruited into the study. Using immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot, kallikrein-related peptidase 7 expression in BPH and PCa tissues was determined at the mRNA and protein levels. The relationships between kallikrein-related peptidase 7 mRNA expression and clinicopathological features were analyzed. A total of 64 of 92 (69.57%) benign cases showed positive staining for KLK7 and 23 of 116 (19.83%) malignant cases showed positive, the difference of KLK7 expression between PCa and BPH was statistically significant (P < 0.001). The expression level of kallikrein-related peptidase 7 mRNA was significantly decreased in PCa tissues compared with that in BPH tissues and normal prostate tissue. Kallikrein-related peptidase 7 mRNA exhibited different expression patterns in terms of localization depending on pathological category of PCa. Similarly, our western immunoblot analyses demonstrated that the protein expression levels of KLK7 was lower in PCa than in BPH tissues and normal prostate tissue. Kallikrein-related peptidase 7 and KLK7 expression are down-regulated in PCa and lower expression of kallikrein-related peptidase 7 closely correlates with higher Gleason score and higher prostate-specific antigen level.
Collapse
Affiliation(s)
| | | | | | | | - Zhou-Jun Shen
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
33
|
de Veer SJ, Ukolova SS, Munro CA, Swedberg JE, Buckle AM, Harris JM. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers 2016; 100:510-8. [PMID: 24078181 DOI: 10.1002/bip.22231] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 02/06/2023]
Abstract
Potent and specific enzyme inhibition is a key goal in the development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclized peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein-related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through the use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesized individually this inhibitor showed an IC50 of 173.9 ± 7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modeling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilized by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Santos JA, Kondo MY, Freitas RF, dos Santos MH, Ramalho TC, Assis DM, Juliano L, Juliano MA, Puzer L. The natural flavone fukugetin as a mixed-type inhibitor for human tissue kallikreins. Bioorg Med Chem Lett 2016; 26:1485-9. [DOI: 10.1016/j.bmcl.2016.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
35
|
Srinivasan S, Clements JA, Batra J. Single nucleotide polymorphisms in clinics: Fantasy or reality for cancer? Crit Rev Clin Lab Sci 2015; 53:29-39. [DOI: 10.3109/10408363.2015.1075469] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie 2015; 122:283-99. [PMID: 26343558 DOI: 10.1016/j.biochi.2015.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Collapse
|
37
|
Triantafyllou A, Thompson LDR, Devaney KO, Bell D, Hunt JL, Rinaldo A, Vander Poorten V, Ferlito A. Functional Histology of Salivary Gland Pleomorphic Adenoma: An Appraisal. Head Neck Pathol 2015; 9:387-404. [PMID: 25380577 PMCID: PMC4542802 DOI: 10.1007/s12105-014-0581-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
The complex microstructure of salivary gland pleomorphic adenoma is examined in relation to function. Events related to secretion of macromolecules and absorption, responses to the altered microenvironment and controversies concerning epithelial-mesenchymal transition versus modified myoepithelial differentiation are explored. Their effects on tumor cell phenotypes and arrangements are emphasized. Heterotopic differentiation and attempts at organogenesis are also considered. The approach allows interpreting microstructure independently of histogenetic perceptions, envisaging the tumor cells as a continuum, endorsing luminal structures as the principal components, and defining pleomorphic adenoma as a benign epithelial tumour characterized by variable epithelial-mesenchymal transition, secretion/differentiation and metaplasia.
Collapse
Affiliation(s)
- Asterios Triantafyllou
- />Oral and Maxillofacial Pathology, School of Dentistry, University of Liverpool, Liverpool, UK
- />Cellular Pathology, University Hospital Aintree, Liverpool, UK
| | | | | | - Diana Bell
- />Department of Pathology, MD Anderson Cancer Center, Houston, TX USA
| | - Jennifer L. Hunt
- />Department of Pathology and Laboratory Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | | | - Vincent Vander Poorten
- />Otorhinolaryngology-Head and Neck Surgery, Department of Oncology, University Hospitals KU Leuven and Leuven Cancer Institute, Leuven, Belgium
- />European Salivary Gland Society, Geneva, Switzerland
| | - Alfio Ferlito
- />University of Udine School of Medicine, Udine, Italy
| |
Collapse
|
38
|
Lizama AJ, Andrade Y, Colivoro P, Sarmiento J, Matus CE, Gonzalez CB, Bhoola KD, Ehrenfeld P, Figueroa CD. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil. Innate Immun 2015; 21:575-586. [DOI: 10.1177/1753425914566083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
The family of kallikrein-related peptidases (KLKs) has been identified in a variety of immunolabeled human tissue sections, but no previous study has experimentally confirmed their presence in the human neutrophil. We have investigated the expression and bioregulation of particular KLKs in the human neutrophil and, in addition, examined whether stimulation by a kinin B1receptor (B1R) agonist or fMet-Leu-Phe (fMLP) induces their secretion. Western blot analysis of neutrophil homogenates indicated that the MM of the KLKs ranged from 27 to 50 kDa. RT-PCR showed that blood neutrophils expressed only KLK1, KLK4, KLK10, KLK13, KLK14 and KLK15 mRNAs, whereas the non-differentiated HL-60 cells expressed most of them, with exception of KLK3 and KLK7. Nevertheless, mRNAs for KLK2, KLK5, KLK6 and KLK9 that were previously undetectable appeared after challenging with a mixture of cytokines. Both kinin B1R agonist and fMLP induced secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the culture medium in similar amounts, whereas the B1R agonist caused the release of lower amounts of KLK2, KLK4 and KLK5. When secreted, the differing proteolytic activity of KLKs provides the human neutrophil with a multifunctional enzymatic capacity supporting a new dimension for its role in human disorders of diverse etiology.
Collapse
Affiliation(s)
- Alejandro J Lizama
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Yessica Andrade
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio Colivoro
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Sarmiento
- Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Carola E Matus
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B Gonzalez
- Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Kanti D Bhoola
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratorio de Patologia Celular, Instituto de Anatomia, Histologia y Patologia, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
39
|
Samaan S, Lichner Z, Ding Q, Saleh C, Samuel J, Streutker C, Yousef GM. Kallikreins are involved in an miRNA network that contributes to prostate cancer progression. Biol Chem 2015; 395:991-1001. [PMID: 25153383 DOI: 10.1515/hsz-2013-0288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/26/2014] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) are short RNA nucleotides that negatively regulate their target genes. They are differentially expressed in prostate cancer. Kallikreins are genes that encode serine proteases and are dysregulated in cancer. We elucidated a miRNA-kallikrein network that can be involved in prostate cancer progression. Target prediction identified 23 miRNAs that are dysregulated between high and low risk biochemical failure and are predicted to target five kallikreins linked to prostate cancer; KLK2, KLK3, KLK4, KLK14 and KLK15. We also identified 14 miRNAs that are differentially expressed between Gleason grades and are predicted to target these kallikreins. This demonstrates that kallikreins are downstream effectors through which miRNAs influence tumor progression. We show, through in-silico and experimental analysis, that miR-378/422a and its gene targets PIK3CG, GRB2, AKT3, KLK4 and KLK14 form an integrated circuit in prostate cancer. Our analysis shows that a minisatellite sequence in the kallikrein locus consists of a number of microsatellite repeats that represent predicted miRNA response elements. A number of kallikrein and non-kallikrein prostate cancer-related genes share these microsatellite repeats. We validated some of these interactions in prostate cancer cell lines. Finally, we provide preliminary evidence on the presence of a miRNA-mediated cross-talk between kallikreins, including a kallikrein pseudogene.
Collapse
|
40
|
Grin A, Samaan S, Tripathi M, Rotondo F, Kovacs K, Bassily MN, Yousef GM. Evaluation of human tissue kallikrein-related peptidases 6 and 10 expression in early gastroesophageal adenocarcinoma. Hum Pathol 2014; 46:541-8. [PMID: 25649006 DOI: 10.1016/j.humpath.2014.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/05/2014] [Accepted: 12/17/2014] [Indexed: 01/04/2023]
Abstract
Kallikreins are a family of serine proteases that are linked to malignancy of different body organs with potential clinical utility as tumor markers. In this study, we investigated kallikrein-related peptidase 6 (KLK6) and KLK10 expression in early gastroesophageal junction adenocarcinoma and Barrett esophagus (BE) with and without dysplasia. Immunohistochemistry revealed significantly increased KLK6 expression in early invasive cancer compared with dysplastic (P = .009) and nondysplastic BE (P = .0002). There was a stepwise expression increase from metaplasia to dysplasia and invasive tumors. Significantly higher KLK10 was seen in dysplastic lesions compared with metaplasia but not between dysplastic lesions and invasive cancers. KLK6 staining intensity was increased at the invasive front (P = .006), suggesting its role in tumor invasiveness. Neither KLK6 nor KLK10 was significantly associated with other prognostic markers, including depth of invasion, indicating their potential as independent biomarkers. Our results should be interpreted with caution due to limited sample size. There was a significant correlation between KLK6 and KLK10 expression both at the invasive front and within the main tumor, indicating a collaborative effect. We then compared KLK6 and KLK10 messenger RNA expression between metaplastic and cancerous tissues in an independent data set of esophageal carcinoma from The Cancer Genome Atlas. KLK6 and KLK10 may be useful markers and potential therapeutic targets in gastroesophageal junction tumors.
Collapse
Affiliation(s)
- Andrea Grin
- Department of Laboratory Medicine, St Michael's Hospital, Toronto, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Sara Samaan
- Department of Laboratory Medicine, St Michael's Hospital, Toronto, M5B 1W8, Canada
| | - Monika Tripathi
- Department of Laboratory Medicine, St Michael's Hospital, Toronto, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, M5B 1W8, Canada
| | - Fabio Rotondo
- Department of Laboratory Medicine, St Michael's Hospital, Toronto, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, M5B 1W8, Canada
| | - Kalman Kovacs
- Department of Laboratory Medicine, St Michael's Hospital, Toronto, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Mena N Bassily
- Department of Community Medicine and Public Health, Menoufiya University, Menufia 32511, Egypt
| | - George M Yousef
- Department of Laboratory Medicine, St Michael's Hospital, Toronto, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada.
| |
Collapse
|
41
|
Chu H, Zhong D, Tang J, Li J, Xue Y, Tong N, Qin C, Yin C, Zhang Z, Wang M. A functional variant in miR-143 promoter contributes to prostate cancer risk. Arch Toxicol 2014; 90:403-14. [PMID: 25354797 DOI: 10.1007/s00204-014-1396-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/16/2014] [Indexed: 11/28/2022]
Abstract
MicroRNAs are important regulators in numerous cellular processes, including cell differentiation, proliferation, and apoptosis. Recently, miR-143 was identified as a tumor suppressor in prostate cancer (PCa). To explore the mechanism of dysregulation and anti-tumor function of miR-143 in PCa, we first found a single-nucleotide polymorphism rs4705342T>C in the promoter region of miR-143 through bioinformatics tools and then performed a case-control study including 608 PCa patients and 709 controls. Results suggested that subjects with TC/CC genotypes had significantly decreased risk of PCa compared with those with TT genotype (adjusted OR 0.68, 95 % CI 0.55-0.85). Further functional assays showed that the risk-associated T allele increased the protein-binding affinity and reduced the activity of the promoter compared with C allele. In addition, restoration of miR-143 by mimics in PCa cells significantly inhibited cell proliferation and migration and down-regulated the expression level of kallikrein-related peptidase 2 (KLK2) mRNA and protein. The miR-143-KLK2 axis was also confirmed by luciferase reporter assay in vitro. In conclusion, our findings demonstrate that there is the significant association between the functional promoter variant rs4705342T>C in miR-143 and PCa risk and newly describe the miR-143-KLK2 interaction which provided another potential mechanism for miR-143 anti-tumor function.
Collapse
Affiliation(s)
- Haiyan Chu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 818 East Tianyuan Road, Nanjing, 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongyan Zhong
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jialin Tang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Public Health, Jiangxi Center for Disease Control and Prevention, 555 Beijing East Road, Nanchang, 330029, Jiangxi, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 818 East Tianyuan Road, Nanjing, 211166, China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 818 East Tianyuan Road, Nanjing, 211166, China. .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Singh B, Haftek M, Harding CR. Retention of corneodesmosomes and increased expression of protease inhibitors in dandruff. Br J Dermatol 2014; 171:760-70. [PMID: 24815089 DOI: 10.1111/bjd.13111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dandruff is a common, relapsing and uncomfortable scalp condition affecting a large proportion of the global population. The appearance of flakes on the scalp and in the hair line, and associated itch are thought to be consequences of a damaged skin barrier, altered corneocyte cohesion and abnormal desquamation in dandruff. The balance between skin proteases and protease inhibitors is essential for driving the key events, including corneodesmosome degradation, in the desquamation process and to maintain stratum corneum (SC) barrier integrity. OBJECTIVES To investigate the distribution of corneodesmosomes, the key component of the SC cohesivity and barrier function, and the protease inhibitors lympho-epithelial Kazal-type-related inhibitor (LEKTI-1) and squamous cell carcinoma antigen (SCCA1) in the scalp of dandruff-affected participants. METHODS The methods utilized were immunohistochemistry, scanning immunoelectron microscopy, phase-contrast microscopy, Western blotting and serine protease activity assay on tape-stripped SC or scalp skin biopsies. RESULTS In SC samples from healthy subjects, corneodesmosomes were peripherally located in the corneocytes. In samples of dandruff lesions, corneodesmosomes were located both peripherally and on the entire surface area of the corneocytes. LEKTI-1 and SCCA1 protein levels and parakeratosis were found to be highly elevated in the lesional samples. CONCLUSIONS The persistence of nonperipheral corneodesmosomes is a characteristic feature of the perturbed desquamation seen in dandruff. The increased expression levels of LEKTI-1 and SCCA1 are consistent with the view that the dandruff condition is characterized by an imbalance in protease-protease inhibitor interaction in the SC.
Collapse
Affiliation(s)
- B Singh
- Unilever Research & Development, Port Sunlight, Bebington, U.K
| | | | | |
Collapse
|
43
|
Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opin Ther Targets 2014; 18:365-83. [DOI: 10.1517/14728222.2014.880693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Dong Y, Loessner D, Irving-Rodgers H, Obermair A, Nicklin JL, Clements JA. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin Exp Metastasis 2014; 31:135-47. [PMID: 24043563 PMCID: PMC3892111 DOI: 10.1007/s10585-013-9615-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
Ovarian cancer, in particular epithelial ovarian cancer (EOC), is commonly diagnosed when the tumor has metastasized into the abdominal cavity with an accumulation of ascites fluid. Combining histopathology and genetic variations, EOC can be sub-grouped into Type-I and Type-II tumors, of which the latter are more aggressive and metastatic. Metastasis and chemoresistance are the key events associated with the tumor microenvironment that lead to a poor patient outcome. Kallikrein-related peptidases (KLKs) are aberrantly expressed in EOC, in particular, in the more metastatic Type-II tumors. KLKs are a family of 15 serine proteases that are expressed in diverse human tissues and involved in various patho-physiological processes. As extracellular enzymes, KLKs function in the hydrolysis of growth factors, proteases, cell membrane bound receptors, adhesion proteins, and cytokines initiating intracellular signaling pathways and their downstream events. High KLK levels are differentially associated with the prognosis of ovarian cancer patients, suggesting that they not only have application as biomarkers but also function in disease progression, and therefore are potential therapeutic targets. Recent studies have demonstrated the function of these proteases in promoting and/or suppressing the invasive behavior of ovarian cancer cells in metastasis in vitro and in vivo. Both conventional cell culture methods and three-dimensional platforms have been applied to mimic the ovarian cancer microenvironment of patients, such as the solid stromal matrix and ascites fluid. Here we summarize published studies to provide an overview of our understanding of the role of KLKs in EOC, and to lay the foundation for future research directions.
Collapse
Affiliation(s)
- Ying Dong
- Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia,
| | | | | | | | | | | |
Collapse
|
45
|
Ghannam A, Defendi F, Charignon D, Csopaki F, Favier B, Habib M, Cichon S, Drouet C. Contact System Activation in Patients with HAE and Normal C1 Inhibitor Function. Immunol Allergy Clin North Am 2013; 33:513-33. [PMID: 24176216 DOI: 10.1016/j.iac.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Shang Z, Niu Y, Cai Q, Chen J, Tian J, Yeh S, Lai KP, Chang C. Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via function as a modulator to promote the ARA70-enhanced androgen receptor transactivation. Tumour Biol 2013; 35:1881-90. [DOI: 10.1007/s13277-013-1253-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022] Open
|
47
|
Emerging clinical importance of the cancer biomarkers kallikrein-related peptidases (KLK) in female and male reproductive organ malignancies. Radiol Oncol 2013; 47:319-29. [PMID: 24294176 PMCID: PMC3814276 DOI: 10.2478/raon-2013-0053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/25/2013] [Indexed: 01/01/2023] Open
Abstract
Background Tumor tissue-associated KLKs (kallikrein-related peptidases) are clinically important biomarkers that may allow prognosis of the cancer disease and/or prediction of response/failure of cancer patients to cancer-directed drugs. Regarding the female/male reproductive tract, remarkably, all of the fifteen KLKs are expressed in the normal prostate, breast, cervix uteri, and the testis, whereas the uterus/endometrium and the ovary are expressing a limited number of KLKs only. Conclusions Most of the information regarding elevated expression of KLKs in tumor-affected organs is available for ovarian cancer; depicting them as valuable biomarkers in the cancerous phenotype. In contrast, for breast cancer, a series of KLKs was found to be downregulated. However, in breast cancer, KLK4 is elevated which is also true for ovarian and prostate cancer. In such cases, selective synthetic KLK inhibitors that aim at blocking the proteolytic activities of certain KLKs may serve as future candidate therapeutic drugs to interfere with tumor progression and metastasis.
Collapse
|
48
|
Thorek DLJ, Evans MJ, Carlsson SV, Ulmert D, Lilja H. Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles. Thromb Haemost 2013; 110:484-92. [PMID: 23903407 PMCID: PMC4029064 DOI: 10.1160/th13-04-0275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Kallikreins are a family of serine proteases with a range of tissue-specific and essential proteolytic functions. Among the best studied are the prostate tissue-specific KLK2 and KLK3 genes and their secreted protease products, human kallikrein 2, hk2, and prostate-specific antigen (PSA). Members of the so-called classic kallikreins, these highly active trypsin-like serine proteases play established roles in human reproduction. Both hK2 and PSA expression is regulated by the androgen receptor which has a fundamental role in prostate tissue development and progression of disease. This feature, combined with the ability to sensitively detect different forms of these proteins in blood and biopsies, result in a crucially important biomarker for the presence and recurrence of cancer. Emerging evidence has begun to suggest a role for these kallikreins in critical vascular events. This review discusses the established and developing biological roles of hK2 and PSA, as well as the historical and advanced use of their detection to accurately and non-invasively detect and guide treatment of prostatic disease.
Collapse
Affiliation(s)
- Daniel L J Thorek
- Hans Lilja, MD, PhD, Memorial Sloan-Kettering Cancer Center, 1275 York Ave Box 213, New York, NY 10065, USA, Tel.: +1 212 639 6982, Fax: +1 646 422 2379, E-mail:
| | | | | | | | | |
Collapse
|
49
|
Loessner D, Kobel S, Clements JA, Lutolf MP, Hutmacher DW. Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival. MICROARRAYS 2013; 2:208-27. [PMID: 27605189 PMCID: PMC5003461 DOI: 10.3390/microarrays2030208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/31/2013] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.
Collapse
Affiliation(s)
- Daniela Loessner
- Faculty of Health, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia.
| | - Stefan Kobel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Building AI 3138, Station 15, CH-1015 Lausanne, Switzerland.
| | - Judith A Clements
- Faculty of Health, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Building AI 3138, Station 15, CH-1015 Lausanne, Switzerland.
| | - Dietmar W Hutmacher
- Faculty of Science and Engineering, IHBI, QUT, 60 Musk Avenue, Kelvin Grove 4059, Brisbane, Australia.
| |
Collapse
|
50
|
Koumandou VL, Scorilas A. Evolution of the plasma and tissue kallikreins, and their alternative splicing isoforms. PLoS One 2013; 8:e68074. [PMID: 23874499 PMCID: PMC3707919 DOI: 10.1371/journal.pone.0068074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/25/2013] [Indexed: 12/14/2022] Open
Abstract
Kallikreins are secreted serine proteases with important roles in human physiology. Human plasma kallikrein, encoded by the KLKB1 gene on locus 4q34-35, functions in the blood coagulation pathway, and in regulating blood pressure. The human tissue kallikrein and kallikrein-related peptidases (KLKs) have diverse expression patterns and physiological roles, including cancer-related processes such as cell growth regulation, angiogenesis, invasion, and metastasis. Prostate-specific antigen (PSA), the product of the KLK3 gene, is the most widely used biomarker in clinical practice today. A total of 15 KLKs are encoded by the largest contiguous cluster of protease genes in the human genome (19q13.3-13.4), which makes them ideal for evolutionary analysis of gene duplication events. Previous studies on the evolution of KLKs have traced mammalian homologs as well as a probable early origin of the family in aves, amphibia and reptilia. The aim of this study was to address the evolutionary and functional relationships between tissue KLKs and plasma kallikrein, and to examine the evolution of alternative splicing isoforms. Sequences of plasma and tissue kallikreins and their alternative transcripts were collected from the NCBI and Ensembl databases, and comprehensive phylogenetic analysis was performed by Bayesian as well as maximum likelihood methods. Plasma and tissue kallikreins exhibit high sequence similarity in the trypsin domain (>50%). Phylogenetic analysis indicates an early divergence of KLKB1, which groups closely with plasminogen, chymotrypsin, and complement factor D (CFD), in a monophyletic group distinct from trypsin and the tissue KLKs. Reconstruction of the earliest events leading to the diversification of the tissue KLKs is not well resolved, indicating rapid expansion in mammals. Alternative transcripts of each KLK gene show species-specific divergence, while examination of sequence conservation indicates that many annotated human KLK isoforms are missing the catalytic triad that is crucial for protease activity.
Collapse
Affiliation(s)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|