1
|
Geng Y, Zheng Y, Zhou R, Ma M. Effect of supercritical carbon dioxide on protein structure modification and antimicrobial peptides production of Mongolian cheese and its in vitro digestion. Food Res Int 2024; 191:114714. [PMID: 39059962 DOI: 10.1016/j.foodres.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The aim of this research was to investigate the effects of supercritical carbon dioxide (SC-CO2) treatment on protein structure in Mongolian cheese. The peptides during the digestive process of the SC-CO2 treated cheese were also studied. SC-CO2 technology was utilized to treat Mongolian cheese at three temperatures (45, 55 and 65 °C) and three pressures (7.5, 12.5 and 17.5 MPa). The results of fluorescence, ultraviolet-visible, Fourier transform infrared spectroscopy and free sulfhydryl groups showed that SC-CO2, particularly at 65 °C and 17.5 MPa, modified the protein structure in Mongolian cheese effectively. The data of LC-MS/MS-based peptidomics showed that the content of antimicrobial peptides found in the SC-CO2 treated Mongolian cheese was 1.55 times that of the untreated Mongolian cheese; the content of unique antimicrobial peptides in the digested SC-CO2 treated Mongolian cheese was 1.46 times that of the digested untreated Mongolian cheese, which proved that SC-CO2 could help produce antimicrobial peptides in cheese not only during the process of SC-CO2 treatment but during subsequent simulated gastrointestinal digestion as well. In conclusion, SC-CO2 could be considered a promising method to develop cheese products with potential health benefits.
Collapse
Affiliation(s)
- Yawen Geng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Ran Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China.
| | - Ming Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
3
|
Ivanović M, Knez Ž, Leitgeb M. Influence of Supercritical Carbon Dioxide on the Activity and Conformational Changes of α-Amylase, Lipase, and Peroxidase in the Solid State Using White Wheat Flour as an Example. Foods 2023; 12:4499. [PMID: 38137304 PMCID: PMC10743174 DOI: 10.3390/foods12244499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, extending shelf life of e.g., flour could be reached by tuning the present enzymes activity. In this study, the effect of different sc-CO2 conditions such as temperature (35-50 °C), pressure (200 bar and 300 bar), and exposure time (1-6 h) on the inactivation and structural changes of α-amylase, lipase, and horseradish peroxidase (POD) from white wheat flour and native enzymes was investigated. The total protein (TPC) content and residual activities of the enzymes were determined by standard spectrophotometric methods, while the changes in the secondary structures of the enzymes were determined by circular dichroism spectrometry (CD). The present work is therefore concerned for the first time with the study of the stability and structural changes of the enzyme molecules dominant in white wheat flour under sc-CO2 conditions at different pressures and temperatures. In addition, the changes in aggregation or dissociation of the enzyme molecules were investigated based on the changes in particle size distribution and ζ-potential. The results of the activity assays showed a decrease in the activity of native POD and lipase under optimal exposure conditions (6 h and 50 °C; and 1 h and 50 °C) by 22% and 16%, respectively. In contrast, no significant changes were observed in α-amylase activity. Consequently, analysis of the CD spectra of POD and lipase confirmed a significant effect on secondary structure damage (changes in α-helix, β-sheet, and β-turn content), whereas the secondary structure of α-amylase retained its original configuration. Moreover, the changes in particle size distribution and ζ-potential showed a significant effect of sc-CO2 treatment on the aggregation and dissociation of the selected enzymes. The results of this study confirm that sc-CO2 technology can be effectively used as an environmentally friendly technology to control the activity of major flour enzymes by altering their structures.
Collapse
Affiliation(s)
- Milena Ivanović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (M.I.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (M.I.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (M.I.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Xing Y, Yi R, Yue T, Bi X, Wu L, Pan H, Liu X, Che Z. Effect of dense phase carbon dioxide treatment on the flavor, texture, and quality changes in new-paocai. Food Res Int 2023; 165:112431. [PMID: 36869467 DOI: 10.1016/j.foodres.2022.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
This study investigated the effect of dense phase carbon dioxide (DPCD) treatment on the organoleptic properties of new-paocai. Optimal DPCD treatment (25 MPa/40 °C/40 min) was determined by conducting single-factor and orthogonal experiments with the sensory, bactericidal, and electronic eye evaluations. DPCD treatment (25 MPa/40 °C/40 min) did not significantly affect the nitrite, pH, total acid, and organic acid of the new-paocai brine, and the texture of the radish slices did not display substantial changes. Gas chromatography-mass spectrometry (GC-MS) was employed to characterize the new-paocai brine flavor, revealing 63 and 60 respective flavor compounds with and without DPCD treatment. In addition, DPCD treatment significantly reduced the total organic volatile compound content in the paocai from 48.182 μg/mL to 35.952 μg/mL, DPCD has a great influence on volatile flavor substances. The electronic nose (E-nose) effectively distinguished the flavor differences in the new-paocai brine with and without DPCD treatment. This study combined new food processing technology with traditional food production, could provide a new idea for pickle production technology.
Collapse
Affiliation(s)
- Yage Xing
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Rumeng Yi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Tianyi Yue
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiufang Bi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Lin Wu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Hongjie Pan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Zhenming Che
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
5
|
High-pressure carbon dioxide treatment and vacuum packaging alleviate the yellowing of peeled Chinese water chestnut (Eleocharis tuberosa). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zambon A, Facco P, Morbiato G, Toffoletto M, Poloniato G, Sut S, Andrigo P, Dall'Acqua S, de Bernard M, Spilimbergo S. Promoting the preservation of strawberry by supercritical CO2 drying. Food Chem 2022; 397:133789. [DOI: 10.1016/j.foodchem.2022.133789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
|
7
|
Zheng O, Sun Q, Dong A, Han Z, Wang Z, Wei S, Xia Q, Liu Y, Ji H, Liu S. Gelation Process Optimization of Shrimp Surimi Induced by Dense Phase Carbon Dioxide and Quality Evaluation of Gel. Foods 2022; 11:foods11233807. [PMID: 36496615 PMCID: PMC9739194 DOI: 10.3390/foods11233807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Dense phase carbon dioxide (DPCD) is a new non-thermal method to induce surimi gel. However, the gel quality is affected by many factors, such as DPCD treatment time, temperature, and pressure, which makes it complicated to determine its operating parameters. Box-Behnken and backward linear regression were used to optimize the conditions (temperature, pressure, and treatment time) of DPCD-induced shrimp surimi gel formation, and a model between shrimp surimi gel strength and treatment conditions was developed and validated in the present study. Meanwhile, the heat-induced method was used as a control to analyze the effect of DPCD on the quality of shrimp surimi gel in the present study. The results showed that DPCD treatment affected the strength of shrimp surimi gel significantly, and the pressure of DPCD had the greatest influence on the gel strength of shrimp surimi, followed by time and temperature. When the processing pressure was 30 MPa, the temperature was 55 °C, and the treatment time was 60 min, the gel strength of the shrimp surimi was as high as 197.35 N·mm, which was not significantly different from the simulated value of 198.28 N mm (p > 0.05). The results of the gel quality properties showed that, compared with the heat-induced method, DPCD reduced the nutrient and quality loss of the shrimp surimi gel, and increased the gel strength and gel water-holding capacity. The results of low-field nuclear magnet resonance showed that DPCD increased the binding capacity of shrimp surimi to bound water and immobilized water, and reduced their losses. Gel microstructure further demonstrated that DPCD could improve shrimp surimi gelation properties, characterized by a finer and uniformly dense gel network structure. In summary, DPCD is a potential method for inducing shrimp surimi to form a suitable gel. The prediction model established in this study between DPCD treatment temperature, pressure, time, and gel strength can provide a reference for the production of shrimp surimi by DPCD.
Collapse
Affiliation(s)
- Ouyang Zheng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qinxiu Sun
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Andi Dong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zongyuan Han
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zefu Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiuyu Xia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongwu Ji
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-0759-238-3143
| |
Collapse
|
8
|
Inactivation of Clostridium Spores in Honey with Supercritical CO2 and in Combination with Essential Oils. Processes (Basel) 2022. [DOI: 10.3390/pr10112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of tens of Clostridium botulinum spores per gram of honey can cause infantile botulism. Thermal treatment is insufficient to inactivate these resistant forms. This study explored the effectiveness of supercritical CO2 (scCO2) on its own and combined with lemon (LEO), clove (CLEO), and cinnamon (CEO) essential oils on the inactivation of Clostridium sporogenes (CECT 553) as a surrogate of Clostridium botulinum. In water, the degree of inactivation at 10 MPa after 60 min increased with the increasing temperature, reducing the population by 90% at 40 °C and by 99.7% at 80 °C. In contrast, when applied to honey, scCO2 did not inactivate Clostridium spores satisfactorily at temperatures below 70 °C, which was related to the protective effect of honey. Meanwhile, scCO2 modified with CEO (<0.4% mass) improved the inactivation degree, with a 1.3-log reduction achieved at 60 °C. With this same mixture, a reduction of 3.7 logs was accomplished in a derivative with 70% moisture. Honey was very sensitive to the temperature of the applied CO2. The obtained product could be used as a novel food, food ingredient, cosmetic, or medicine.
Collapse
|
9
|
Li J, Zhu L, Murtaza A, Iqbal A, Zhang J, Xu X, Pan S, Hu W. The effect of high pressure carbon dioxide on the inactivation kinetics and structural alteration of phenylalanine ammonia-lyase from Chinese water chestnut: An investigation using multi-spectroscopy and molecular docking methods. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Yang S, Mi L, Wu J, Liao X, Xu Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis. Crit Rev Food Sci Nutr 2022; 63:9409-9424. [PMID: 35486571 DOI: 10.1080/10408398.2022.2067117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.
Collapse
Affiliation(s)
- Shini Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
11
|
Barbhuiya RI, Singha P, Singh SK. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 2021; 149:110647. [PMID: 34600649 DOI: 10.1016/j.foodres.2021.110647] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.
Collapse
Affiliation(s)
- Rahul Islam Barbhuiya
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
12
|
Zheng O, Luo S, Sun Q, Liu S, Wei S, Xia Q, Ji H, Hao J, Deng C. Radial adsorption behaviour of high pressure carbon dioxide in shrimp surimi. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Wang F, Zhou H, Cheng F, Niu H, Yuan L, Yi J, Zhou L. Comparison of the characterization and the temperature/pressure stability of soluble and membrane-bound polyphenol oxidase from ‘Lijiang’ snow peach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Whitaker RD, Altintzoglou T, Lian K, Fernandez EN. Marine Bioactive Peptides in Supplements and Functional Foods - A Commercial Perspective. Curr Pharm Des 2021; 27:1353-1364. [PMID: 33155895 DOI: 10.2174/1381612824999201105164000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Many bioactive peptides have been described from marine sources and much marine biomass is still not explored or utilized in products. Marine peptides can be developed into a variety of products, and there is a significant interest in the use of bioactive peptides from marine sources for nutraceuticals or functional foods. We present here a mini-review collecting the knowledge about the value chain of bioactive peptides from marine sources used in nutraceuticals and functional foods. Many reports describe bioactive peptides from marine sources, but in order to make these available to the consumers in commercial products, it is important to connect the bioactivities associated with these peptides to commercial opportunities and possibilities. In this mini-review, we present challenges and opportunities for the commercial use of bioactive peptides in nutraceuticals and functional food products. We start the paper by introducing approaches for isolation and identification of bioactive peptides and candidates for functional foods. We further discuss market-driven innovation targeted to ensure that isolated peptides and suggested products are marketable and acceptable by targeted consumers. To increase the commercial potential and ensure the sustainability of the identified bioactive peptides and products, we discuss scalability, regulatory frameworks, production possibilities and the shift towards greener technologies. Finally, we discuss some commercial products from marine peptides within the functional food market. We discuss the placement of these products in the larger picture of the commercial sphere of functional food products from bioactive peptides.
Collapse
|
15
|
Dense phase carbon dioxide treatment of mango in syrup: Microbial and enzyme inactivation, and associated quality change. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Buszewski B, Wrona O, Mayya RP, Zakharenko AM, Kalenik TK, Golokhvast KS, Piekoszewski W, Rafińska K. The potential application of supercritical CO 2 in microbial inactivation of food raw materials and products. Crit Rev Food Sci Nutr 2021; 62:6535-6548. [PMID: 33938772 DOI: 10.1080/10408398.2021.1902939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to review the possibility of using supercritical CO2 as a green and sustainable technology for microbial inactivation of raw material for further application in the food industry. The history of the development of supercritical CO2 microbial inactivation has been widely described in this article. The fundamental scientific part of the process like mechanism of bactericidal action of CO2 or inactivation of key enzymes were characterized in detail. In summary, this study provides an overview of the latest literature on the use of supercritical carbon dioxide in microbial inactivation of food raw materials and products.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Olga Wrona
- Łukasiewicz Research Network - New Chemical Synthesis Institute, Puławy, Poland
| | - Razgonova P Mayya
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia
| | - Alexander Mikhailovich Zakharenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia
| | | | - Kirill Sergeevich Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sankt-Petersburg, Russia.,Far-Eastern Federal University, Vladivostok, Russia.,Pacific Geographical Institute, Far-Eastern Branch of the Russian Academy of Sciences, Centralnaya, Presidium, Krasnoobsk, Russia.,Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk, Russia
| | - Wojciech Piekoszewski
- Far-Eastern Federal University, Vladivostok, Russia.,Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonien University, Gronostajowa, Kraków, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
17
|
Effect of high pressure carbon dioxide on the browning inhibition of sugar-preserved orange peel. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
A Computational Method to Predict Effects of Residue Mutations on the Catalytic Efficiency of Hydrolases. Catalysts 2021. [DOI: 10.3390/catal11020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With scientific and technological advances, growing research has focused on engineering enzymes that acquire enhanced efficiency and activity. Thereinto, computer-based enzyme modification makes up for the time-consuming and labor-intensive experimental methods and plays a significant role. In this study, for the first time, we collected and manually curated a data set for hydrolases mutation, including structural information of enzyme-substrate complexes, mutated sites and Kcat/Km obtained from vitro assay. We further constructed a classification model using the random forest algorithm to predict the effects of residue mutations on catalytic efficiency (increase or decrease) of hydrolases. This method has achieved impressive performance on a blind test set with the area under the receiver operating characteristic curve of 0.86 and the Matthews Correlation Coefficient of 0.659. Our results demonstrate that computational mutagenesis has an instructive effect on enzyme modification, which may expedite the design of engineering hydrolases.
Collapse
|
19
|
|
20
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
21
|
Lao F, Cheng H, Wang Q, Wang X, Liao X, Xu Z. Enhanced water extraction with high-pressure carbon dioxide on purple sweet potato pigments: Comparison to traditional aqueous and ethanolic extraction. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Kustyawati ME, Pratama F, Saputra D, Wijaya A. Shelf life of tempeh processed with sub-supercritical carbon dioxides. POTRAVINARSTVO 2020. [DOI: 10.5219/1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tempeh, a fermented soybean-based food originally from Indonesia, is a remarkably nutritious functional food with health benefits. Unfortunately, tempeh is highly perishable, with a shelf life of 24 – 48 hours. The goal of this research was to evaluate the possibility of a sub-supercritical CO2 technique to increase the shelf life of tempeh by measuring the changes in the L* (lightness) value and texture of tempeh via application of a kinetic approach and, based on the observations, to estimate its shelf life. Tempeh was processed with sub-supercritical CO2 at 6.3 MPa for 10 min, then together with unprocessed tempeh (control), stored for 5 days at temperatures of 20, 30 and 40 °C. The Accelerated Self-Life Test (ASLT) with the Arrhenius model was used to measure the shelf life of processed and control tempeh. The calculated shelf life of processed tempeh using the ASLT by the Arrhenius method was 2.43 days at 20 °C, 3.7 days at 30 °C and 1.4 days at 40 °C, and the shelf life of unprocessed tempeh was 3.33 days at 20 °C, 2.90 days at 30 °C and 2.56 days at 40 °C. The conclusion was that the use of sub-supercritical CO2 at 6.3 MPa for 10 min increased the shelf life of tempeh stored at 30 °C.
Collapse
|
23
|
Lindeque RM, Woodley JM. The Effect of Dissolved Oxygen on Kinetics during Continuous Biocatalytic Oxidations. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rowan M. Lindeque
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
24
|
Illera AE, Beltrán S, Sanz MT. Enzyme inactivation and changes in the properties of cloudy apple juice after high‐pressure carbon dioxide and thermosonication treatments and during refrigerated storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. Illera
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| | - S. Beltrán
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| | - M. T. Sanz
- Department of Biotechnology and Food Science University of Burgos Burgos Spain
| |
Collapse
|
25
|
Benito-Román Ó, Sanz M, Illera A, Melgosa R, Beltrán S. Polyphenol oxidase (PPO) and pectin methylesterase (PME) inactivation by high pressure carbon dioxide (HPCD) and its applicability to liquid and solid natural products. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Perez-Won M, Lemus-Mondaca R, Herrera-Lavados C, Reyes JE, Roco T, Palma-Acevedo A, Tabilo-Munizaga G, Aubourg SP. Combined Treatments of High Hydrostatic Pressure and CO 2 in Coho Salmon ( Oncorhynchus kisutch): Effects on Enzyme Inactivation, Physicochemical Properties, and Microbial Shelf Life. Foods 2020; 9:E273. [PMID: 32138171 PMCID: PMC7143631 DOI: 10.3390/foods9030273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
This study focused on applying different high hydrostatic pressure + carbon dioxide (HHP + CO2) processing conditions on refrigerated (4 °C, 25 days) farmed coho salmon (Oncorhynchus kisutch) to inactivate endogenous enzymes (protease, lipase, collagenase), physicochemical properties (texture, color, lipid oxidation), and microbial shelf life. Salmon fillets were subjected to combined HHP (150 MPa/5 min) and CO2 (50%, 70%, 100%). Protease and lipase inactivation was achieved with combined HHP + CO2 treatments in which lipase activity remained low as opposed to protease activity during storage. Collagenase activity decreased approximately 90% during storage when applying HHP + CO2. Combined treatments limited the increase in spoilage indicators, such as total volatile amines and trimethylamine. The 150 MPa + 100% CO2 treatment was the most effective at maintaining hardness after 10 days of storage. Combined treatments limited HHP-induced color change and reduced the extent of changes caused by storage compared with the untreated sample. Microbial shelf life was extended by the CO2 content and not by the HHP treatments; this result was related to an increased lag phase and decreased growth rate. It can be concluded that combining HHP and CO2 could be an effective method of inactivating endogenous enzymes and extend salmon shelf life.
Collapse
Affiliation(s)
- Mario Perez-Won
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile; (C.H.-L.); (J.E.R.); (A.P.-A.); (G.T.-M.)
| | - Roberto Lemus-Mondaca
- Department of Food Science and Chemical Technology, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
| | - Carolina Herrera-Lavados
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile; (C.H.-L.); (J.E.R.); (A.P.-A.); (G.T.-M.)
| | - Juan E. Reyes
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile; (C.H.-L.); (J.E.R.); (A.P.-A.); (G.T.-M.)
| | - Teresa Roco
- Department of Food Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile;
| | - Anais Palma-Acevedo
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile; (C.H.-L.); (J.E.R.); (A.P.-A.); (G.T.-M.)
| | - Gipsy Tabilo-Munizaga
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile; (C.H.-L.); (J.E.R.); (A.P.-A.); (G.T.-M.)
| | - Santiago P. Aubourg
- Department of Food Technology, Instituto de Investigaciones Marinas (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
27
|
Enzymatic, Phyto-, and Physicochemical Evaluation of Apple Juice under High-Pressure Carbon Dioxide and Thermal Processing. Foods 2020; 9:foods9020243. [PMID: 32102327 PMCID: PMC7073744 DOI: 10.3390/foods9020243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, the changes in enzyme activities, total polyphenols, phenolic profile, and physicochemical properties from thermally (25–75 °C) and high-pressure carbon dioxide (HP-CO2) (25–65 °C/20 MPa)-treated apple juice were investigated. The HP-CO2 exhibited complete inactivation of polyphenol oxidase (PPO) at 65 °C, whereas PPO was still active at 75 °C under thermal processing (TP). Similarly, the relative activity of peroxidase (POD) significantly decreased by 71% at 65 °C under HP-CO2 processing, whereas TP was less effective. HP-CO2 and TP treatments at 65 °C reduced the browning degree (BD) value to 0.47 and 0.89, respectively. Thus, HP-CO2 inhibits the browning reactions caused by PPO and POD enzymes at each operating temperature. The concentration of epicatechin and catechin increased significantly with increasing temperature above 45 °C in TP-treated juices. HP-CO2 treatment increased the same phenolic compounds at 35 °C and 9 MPa, whereas high-temperature and -pressure conditions caused insignificant changes in concentration of epicatechin and catechin. Changes in others phenolic compounds were insignificant under TP and HP-CO2 treatment. Overall, HP-CO2 is a promising technology to get high-quality juices with lower enzyme activity.
Collapse
|
28
|
Kobayashi F, Nakajima R, Narai-Kanayama A, Odake S. Inactivation and structural alteration of α-amylase by low-pressure carbon dioxide microbubbles. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Zhou L, Liao T, Liu W, Zou L, Liu C, Terefe NS. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit Rev Food Sci Nutr 2019; 60:3594-3621. [PMID: 31858810 DOI: 10.1080/10408398.2019.1702500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic acids are widely utilized in the food industry for inhibiting the activity of polyphenol oxidase (PPO) and enzymatic browning. This review discusses the mechanisms of inhibition of PPO and enzymatic browning by various organic acids based on studies in model systems, critically evaluates the relevance of such studies to real food systems and assesses the implication of the synergistic inhibitory effects of organic acids with other physicochemical processing techniques on product quality and safety. Organic acids inhibit the activity of PPO and enzymatic browning via different mechanisms and therefore the suitability of a particular organic acid depends on the structure and the catalytic properties of PPO and the physicochemical properties of the food matrix. Studies in model systems provide an invaluable insight into the inhibitory mechanisms of various organics acids. However, the difference in the effectiveness of PPO inhibitors between model systems and food systems and the lack of correlation between the degree of PPO inhibition based on in vitro assays and enzymatic browning imply that the effectiveness of organic acids can be accurately evaluated only via direct assessment of browning inhibition in a particular food system. Combination of organic acids with physical processing techniques is one of the most viable approaches for PPO inhibition since the observed synergistic effect helps to reduce the undesirable organoleptic quality changes from the use of excessive concentration of organic acids or intense physical processing.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | |
Collapse
|
30
|
Green Chemistry Extractions of Carotenoids from Daucus carota L.-Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules 2019; 24:molecules24234339. [PMID: 31783600 PMCID: PMC6930531 DOI: 10.3390/molecules24234339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple reviews have been published on various aspects of carotenoid extraction. Nevertheless, none of them focused on the discussion of recent green chemistry extraction protocols, especially for the carotenoids extraction from Daucus carota L. This group of bioactive compounds has been chosen for this review since most of the scientific papers proved their antioxidant properties relevant for inflammation, stress-related disorders, cancer, or neurological and neurodegenerative diseases, such as stroke and Alzheimer's Disease. Besides, carrots constitute one of the most popular sources of carotenoids. In the presented review emphasis has been placed on the supercritical carbon dioxide and enzyme-assisted extraction techniques for the relevant tetraterpenoids. The detailed descriptions of these methods, as well as practical examples, are provided. In addition, the pros and cons of each method and comparison with the standard solvent extraction have been discussed.
Collapse
|
31
|
Illera AE, Beltrán S, Sanz MT. Structural changes of a protein extract from apple with polyphenoloxidase activity obtained by cationic reversed micellar extraction induced by high-pressure carbon dioxide and thermosonication. Sci Rep 2019; 9:13749. [PMID: 31551453 PMCID: PMC6760208 DOI: 10.1038/s41598-019-50209-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
Polyphenoloxidase from apple was extracted and further concentrated by cationic reversed micellar extraction. Previous to reversed micellar extraction a crude protein extract was obtained using AG2-X8 as adsorbent of phenolic compounds and the detergent Triton X-100. Forward and backward extraction conditions were optimized by using dodecyl trimethyl ammonium bromide as surfactant in the organic phase. Optimization was carried out to obtain the highest value of PPO activity recovery and the purification fold at the different experimental conditions. Under the optimum extraction conditions, PPO activity recovery was 99% and purification fold reached a value of 17, showing that reversed micellar extraction was a good technique as a first step to concentrate on a targeted enzyme. After removing some impurities by centrifuge ultrafiltration, the protein extract with PPO activity was treated by pressurized carbon dioxide and thermosonication achieving residual PPO activity values of 16 ± 3 and 9 ± 1%, respectively. Quenching experiments by iodide performed in the non-treated extract and in the treated extracts revealed conformational changes of this protein fraction reflected in the greater exposure of the fluorophore to the quencher.
Collapse
Affiliation(s)
- A E Illera
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos, 09001, Burgos, Spain
| | - S Beltrán
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos, 09001, Burgos, Spain
| | - M T Sanz
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos, 09001, Burgos, Spain.
| |
Collapse
|
32
|
Iqbal A, Murtaza A, Hu W, Ahmad I, Ahmed A, Xu X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Murtaza A, Iqbal A, Linhu Z, Liu Y, Xu X, Pan S, Hu W. Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Benito-Román Ó, Teresa Sanz M, Melgosa R, de Paz E, Escudero I, Beltrán S. Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
de Souza Pedrosa GT, de Carvalho RJ, Berdejo D, de Souza EL, Pagán R, Magnani M. Control of Autochthonous Spoilage Lactic Acid Bacteria in Apple and Orange Juices by Sensorially Accepted Doses of Citrus Spp. Essential Oils Combined with Mild Heat Treatments. J Food Sci 2019; 84:848-858. [PMID: 30866044 DOI: 10.1111/1750-3841.14474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 01/04/2023]
Abstract
This study assessed the compromised acceptance threshold (CAT) and rejection threshold (RT) of Citrus lemon (CLEO) and Citrus reticulata essential oil (CREO) in apple and orange juices. The efficacy of CLEO and CREO concentrations below the RT were evaluated alone and combined with mild heat treatment (MHT) (54 °C, up to 12 min) to inactivate the autochthonous spoilage bacteria Lactobacillus brevis, Lactobacillus plantarum, and Leuconostoc mesenteroides in apple and orange juices. The CAT of CLEO and CREO varied from 0.15 to 0.17 μL/mL in orange and apple juices. The RT of CLEO was approximately 0.58 μL/mL in apple and orange juices, and the RT of CREO was 0.68 μL/mL in both juices. When CLEO and CREO were assayed alone, the highest concentration (0.50 μL/mL) decreased counts of all strains approximately 2 log10 CFU/mL after 12 min of exposure to 54 °C. All concentrations of CLEO or CREO in combination with MHT acted synergistically against L. brevis, L. plantarum, and L. mesenteroides. Decreases in counts varied with the strain, CLEO and CREO concentrations, juice type, and exposure time to the combined treatment. CREO was more effective than CLEO in combination with MHT against the strains in apple and orange juices. Effective combinations of CLEO or CREO with MHT to control the autochthonous spoilage bacteria did not compromise the quality parameters (°Brix, pH, and titratable acidity) that characterize unsweetened juices. These results indicate CLEO or CREO at concentrations below the sensory RT in combination with MHT as a feasible technology to control autochthonous spoilage bacteria in fresh fruit juices. PRACTICAL APPLICATION: The present study provides novel information concerning the efficacy of sensorially accepted doses of CLEO and CREO combined with MHT against autochthonous spoilers in fruit juice. The valuable synergistic effects that can be observed when combining CLEO and CREO with MHT reveal a feasible preservation technology and alternative to traditional treatments that are successful because they help reduce treatment intensity, thereby avoiding adverse effects on the sensory, physicochemical, and nutritional properties of these products.
Collapse
Affiliation(s)
- Geany Targino de Souza Pedrosa
- Laboratory of Microbial Processes in Foods, Dept. of Food Engineering, Technology Center, Federal Univ. of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rayssa Julliane de Carvalho
- Laboratory of Microbial Processes in Foods, Dept. of Food Engineering, Technology Center, Federal Univ. of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daniel Berdejo
- Depto. de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Inst. Agroalimentario de Aragón-IA2 (Univ. de Zaragoza-CITA), Zaragoza, Spain
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences Center, Federal Univ. of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Pagán
- Depto. de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Inst. Agroalimentario de Aragón-IA2 (Univ. de Zaragoza-CITA), Zaragoza, Spain
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Dept. of Food Engineering, Technology Center, Federal Univ. of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
36
|
Liao H, Zhong K, Hu X, Liao X. Effect of high pressure carbon dioxide on alkaline phosphatase activity and quality characteristics of raw bovine milk. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Illera A, Sanz M, Trigueros E, Beltrán S, Melgosa R. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wen-qiong W, Xiao-feng Z. Optimization of transglutaminase (TG) immobilization on the surface of polyethersulfone ultrafiltration membrane and its characteristics in a membrane reactor. J Biotechnol 2018; 287:41-51. [DOI: 10.1016/j.jbiotec.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022]
|
39
|
Howlader MS, Rai N, Todd French W. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. BIORESOURCE TECHNOLOGY 2018; 267:743-755. [PMID: 30064900 DOI: 10.1016/j.biortech.2018.07.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Lipid extraction directly from the wet oleaginous microorganisms for biodiesel production is preferred as it reduces the energy input for traditional processes which require extensive drying of the biomass prior to the extraction. The high water content (≥80% on cell dry weight) in the wet biomass hinders the extraction efficiency due to the mass transfer limitation. This limitation can be overcome by pretreating wet biomass prior to the lipid extraction using pressurized gas that can be used alone or combined with other pretreatments to disrupt the cell wall. In this review, an extensive discussion on different pretreatments and the subsequent lipid extraction using these pretreatments is presented. Furthermore, a detailed account of the cell disruption using pressurized gas (e.g., CO2) treatment for microbial cell lysing is also presented. Finally, a new technique on lipid extraction directly from wet biomass using the combination of pressurized CO2 and microwave pretreatment is proposed.
Collapse
Affiliation(s)
- Md Shamim Howlader
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States; Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, United States
| | - William Todd French
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
40
|
Torabian G, Bahramian B, Zambon A, Spilimbergo S, Adil Q, Schindeler A, Valtchev P, Dehghani F. A hybrid process for increasing the shelf life of elderberry juice. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Nanoemulsions of Mentha piperita L. essential oil in combination with mild heat, pulsed electric fields (PEF) and high hydrostatic pressure (HHP) as an alternative to inactivate Escherichia coli O157: H7 in fruit juices. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Inactivation, Aggregation and Conformational Changes of Polyphenol Oxidase from Quince ( Cydonia oblonga Miller) Juice Subjected to Thermal and High-Pressure Carbon Dioxide Treatment. Molecules 2018; 23:molecules23071743. [PMID: 30018206 PMCID: PMC6099494 DOI: 10.3390/molecules23071743] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/03/2022] Open
Abstract
Polyphenol oxidase (PPO) causes the browning reaction in fruits and vegetables and deteriorates the quality. Thermal treatment for enzyme inactivation may result in defects as opposed to high pressure CO2 (HPCD) processing. In this study, the changes in activity, dissociation, aggregation and conformation of purified PPO from thermal and HPCD treated juice were investigated. HPCD exhibited inactivation of PPO at 55–65 °C whereas thermal processing alone at the same temperature resulted in PPO still showing activity. Under thermal treatment at 25 and 65 °C, the browning degree was higher (0.39 and 0.24) than for HPCD-treated juice (0.23 and 0.12). Fluorescence and circular dichroism spectral results indicated that HPCD induced large decreases in intensities, revealing a rearrangement of the secondary structure and destruction of the native configuration of the PPO molecule. The particle size distribution (PSD) pattern revealed structural modification leading to initial dissociation and subsequent aggregation of PPO after HPCD treatment. Polyacrylamide gel electrophoresis (PAGE) analysis exhibited that molecular size of protein was 40 kDa. In conclusion, the HPCD method was found to be more effective than thermal treatment to inactivate PPO. Structural modifications provided better insights into the phenomena of activation and inactivation of PPO.
Collapse
|
43
|
Wang G, Ma F, Chen X, Han Y, Wang H, Xu X, Zhou G. Transcriptome Analysis of the Global Response of Pseudomonas fragi NMC25 to Modified Atmosphere Packaging Stress. Front Microbiol 2018; 9:1277. [PMID: 29942299 PMCID: PMC6004401 DOI: 10.3389/fmicb.2018.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas fragi is usually isolated from chilled meats in relation to their spoilage, while many studies have shown that the application of modified atmosphere packaging (MAP) inhibits the spoilage potential of P. fragi. The effects of MAP on P. fragi NMC25 metabolism were determined in the present study by exposing this organism to different air conditions and comparing the resulting transcriptome profiles. We found 559 differentially expressed genes by RNA-seq, and the results revealed that MAP decreases the expression of genes involved in the electron transport chain (nuoAB), resulting in an inhibition of aerobic respiration. Meanwhile, MAP also induced the downregulation of genes responsible for ATP-binding cassette transporters, flagellar and type I fimbrial proteins, and DNA replication and repair, which may further influence nutrient uptake, motility, and growth. In addition, NMC25 cells modified their pathways for energy production, amino acid synthesis, membrane lipid composition, and other metabolic patterns to adapt to MAP. These data show that P. fragi NMC25 survives under MAP but reduces part of its metabolism related to its spoilage ability.
Collapse
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaojing Chen
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanqing Han
- Jiangsu Province Physical and Chemical Testing Center, Nanjing, China
| | - Huhu Wang
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Omar AM, Tengku Norsalwani T, Asmah M, Badrulhisham Z, Easa AM, Omar FM, Hossain MS, Zuknik M, Nik Norulaini N. Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Evaluation of HPCD batch treatments on enzyme inactivation kinetics and selected quality characteristics of cloudy juice from Golden delicious apples. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Khan MK, Ahmad K, Hassan S, Imran M, Ahmad N, Xu C. Effect of novel technologies on polyphenols during food processing. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Zhao L, Qin X, Wang Y, Ling J, Shi W, Pang S, Liao X. CO 2 -assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Liu S, Liu Y, Luo S, Dong A, Liu M, Ji H, Gao J, Hao J. Molecular dynamics simulation of the interaction between dense-phase carbon dioxide and the myosin heavy chain. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Guo M, Liu S, Ismail M, Farid MM, Ji H, Mao W, Gao J, Li C. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide. Food Chem 2017; 227:219-226. [DOI: 10.1016/j.foodchem.2017.01.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
|
50
|
Amaral GV, Silva EK, Cavalcanti RN, Cappato LP, Guimaraes JT, Alvarenga VO, Esmerino EA, Portela JB, Sant’ Ana AS, Freitas MQ, Silva MC, Raices RS, Meireles MAA, Cruz AG. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|