1
|
Singh H, Singh R, Singh A, Singh H, Singh G, Kaur S, Singh B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Arch Physiol Biochem 2024; 130:616-641. [PMID: 37571852 DOI: 10.1080/13813455.2023.2243651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 08/13/2023]
Abstract
Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Arshdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harshbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
2
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
3
|
Naja F, Hasan H, Khadem SH, Buanq MA, Al-Mulla HK, Aljassmi AK, Faris ME. Adherence to the Mediterranean Diet and Its Association With Sleep Quality and Chronotype Among Youth: A Cross-Sectional Study. Front Nutr 2022; 8:805955. [PMID: 35127790 PMCID: PMC8808718 DOI: 10.3389/fnut.2021.805955] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Evidence indicates that many university students have poor adherence to a healthy diet accompanied by unhealthy lifestyle behaviors. Chrono-nutrition is an emerging field of research that examines the pattern of optimum daily activity in relation to the human's dietary patterns, and their reflections of variable health indicators such as sleep quality. However, there is a scarcity of research that examines the relationship between adherence to the healthy eating pattern, like the Mediterranean diet (MD), with sleep quality and chronotype among university students. Methods A cross-sectional study was conducted, and convenience sampling was used. Participants were assessed for adherence to the MD using the Mediterranean Diet Quality Index (KIDMED), for sleep quality using the Pittsburgh Sleep Quality Index (PSQI), and for chronotype using the Morningness-Eveningness questionnaire (MEQ). Results The study included 503 university students, most of them (81.5%) were females. Only 15.1 and 16.9% reported morningness chronotype and good sleep quality, respectively. About half of the students showed medium and high adherence to the KIMED. In-depth analysis revealed that students with good adherence to the MD were more likely to have a good sleep quality (OR = 0.35; 95%CI: 0.21–0.59; P < 0.001) even after adjustment for age and sex (OR = 0.36; 95%CI: 0.21–0.62; P < 0.001). The regression analysis also showed that those with good adherence to the MD had a significant association with better subjective sleep quality, less sleep latency, sleep disturbance, and daytime dysfunction even after adjustment for age and sex. Those with morningness chronotype had about a six-fold higher chance to have good adherence to the MD (OR = 5.67; 95%CI: 2.86–11.26; P < 0.001, respectively). Conclusions Good adherence to the healthy diet presented in the MD among university students is associated with morningness chronotype and with improved overall sleep quality and sleep components. Long-term, controlled intervention research works are warranted for more elaboration on the impact of chronotype and dietary habits on sleep quality and other important aspects such as mental health and academic achievement.
Collapse
|
4
|
Wang D, Jiang DM, Yu RR, Zhang LL, Liu YZ, Chen JX, Chen HC, Liu YP. The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tolerance. J Diabetes Res 2022; 2022:3780156. [PMID: 35712028 PMCID: PMC9197611 DOI: 10.1155/2022/3780156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
METHODS Male C57BL/6J mice were randomly divided into six different experimental groups (8 animals/group): (1) normal group (NOR), (2) normal control group (NC), (3) normal + exercise group (NE), (4) IGT group (IGT), (5) IGT control group (IC), and (6) IGT+ exercise group (IE).The exercise group received aerobic exercise for 8 weeks. After the intervention, a blood glucose meter was used to detect the level of glucose tolerance in the mouse's abdominal cavity; a biochemical kit was used to detect serum lipid metabolism indicators, malondialdehyde, and superoxide dismutase levels; the ELISA method was used to detect serum insulin and mouse gastrocnemius homogenate LDH, PDH, SDH, and CCO levels. Western blot method was used to detect the protein expression levels of NOX4, PGC-1α, and Mfn2 in the gastrocnemius muscle of mice. RESULTS (1) Mice with high-fat diet for 30 weeks showed impaired glucose tolerance, insulin resistance, and lipid metabolism disorders. The level of LDH, PDH, SDH, and CCO in the gastrocnemius homogenate of mice was reduced. The expressions of NOX4 protein were significantly upregulated, while the expressions of PGC-1α and Mfn2 proteins were significantly downregulated. (2) 8-week aerobic exercise improved the disorders of glucose and lipid metabolism in IGT mice and increased homogenized LDH, PDH, SDH, and CCO levels, and the expressions of NOX4, PGC-1α, and Mfn2 proteins in the gastrocnemius muscle of mice were reversed. It is speculated that aerobic exercise can accelerate energy metabolism. CONCLUSION (1) C57BL/6 mice were fed high fat for 30 weeks and successfully constructed a mouse model of reduced diabetes; the mice with reduced diabetes have impaired glucose tolerance, insulin resistance, and lipid metabolism disorders; (2) 8 weeks of aerobic exercise improve glucose tolerance, reduce glucose tolerance in mice, reduce insulin resistance, improve lipid metabolism disorders, and reduce oxidative stress; (3) 8-week aerobic exercise reduces skeletal muscle NOX4 expression and increases glucose tolerance; reduces the expression of LDH, PDH, SDH, and CCO in mouse skeletal muscle; increases the expression level of mitochondrial fusion protein 2 and PGC-1α; improves glucose tolerance; reduces energy metabolism of mouse skeletal muscle; reduces oxidative stress; and reduces insulin resistance. It is speculated that aerobic exercise can accelerate energy metabolism. This process may involve two aspects: firstly, increase the expression level of oxidative metabolism enzymes and promote the tricarboxylic acid cycle; secondly, increase the expression of Mfn2 and accelerate mitochondria fission or fusion to regulate energy metabolism, thereby reducing oxidative stress and insulin resistance.
Collapse
Affiliation(s)
- Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Dong-Mou Jiang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Rong-Rong Yu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Lin-Lin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yan-Zhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Jia-Xin Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Hai-Chun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| |
Collapse
|
5
|
Shen J, Zhang M, Zhao L, Mujumdar AS, Wang H. Schemes for enhanced antioxidant stability in frying meat: a review of frying process using single oil and blended oils. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34961384 DOI: 10.1080/10408398.2021.2019672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deep-fried meat products are widely popular. However, harmful compounds produced by various chemical reactions during frying have been shown to be detrimental to human health. It is of great necessity to raise practical suggestions for improving the oxidation problem of frying oils and frying conditions in some aspects. Vegetable oils are not as thermally stable as saturated fats, and blended oils have higher thermal stability than single oil. In this review, we discussed the oxidation problems frying oils and meats are subject to during frying, starting from the oil oxidation mechanism, the effects of different oils and fats on the quality of different fried meats under different conditions were concluded to alleviate the oxidation problem, to highlight the necessity of applying blended oils for frying, and effective antioxidants added to frying oils are also introduced, that would provide more convenient and practical options for obtaining higher quality of fried meat products and offer better understanding of the potential of blended frying oils for frying meat products.
Collapse
Affiliation(s)
- Ju Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- R&D Centre, Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Varghese S, Kannappan P, Kanakasabapathi D, Madathil S, Perumalsamy M. Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Jasenovec T, Radosinska D, Kollarova M, Balis P, Ferenczyova K, Kalocayova B, Bartekova M, Tothova L, Radosinska J. Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats. Molecules 2021; 26:4868. [PMID: 34443451 PMCID: PMC8401571 DOI: 10.3390/molecules26164868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is characterized by tissue oxidative damage and impaired microcirculation, as well as worsened erythrocyte properties. Measurements of erythrocyte deformability together with determination of nitric oxide (NO) production and osmotic resistance were used for the characterization of erythrocyte functionality in lean (control) and obese Zucker diabetic fatty (ZDF) rats of two age categories. Obese ZDF rats correspond to prediabetic (younger) and diabetic (older) animals. As antioxidants were suggested to protect erythrocytes, we also investigated the potential effect of quercetin (20 mg/kg/day for 6 weeks). Erythrocyte deformability was determined by the filtration method and NO production using DAF-2DA fluorescence. For erythrocyte osmotic resistance, we used hemolytic assay. Erythrocyte deformability and NO production deteriorated during aging-both were lower in older ZDF rats than in younger ones. Three-way ANOVA indicates improved erythrocyte deformability after quercetin treatment in older obese ZDF rats only, as it was not modified or deteriorated in both (lean and obese) younger and older lean animals. NO production by erythrocytes increased post treatment in all experimental groups. Our study indicates the potential benefit of quercetin treatment on erythrocyte properties in condition of diabetes mellitus. In addition, our results suggest potential age-dependency of quercetin effects in diabetes that deserve additional research.
Collapse
Affiliation(s)
- Tomas Jasenovec
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovakia; (T.J.); (M.K.); (M.B.)
| | - Dominika Radosinska
- Faculty of Medicine, Institute of Immunology, Comenius University in Bratislava, Odborarske Namestie 14, 811 08 Bratislava, Slovakia;
| | - Marta Kollarova
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovakia; (T.J.); (M.K.); (M.B.)
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (P.B.); (K.F.); (B.K.)
| | - Kristina Ferenczyova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (P.B.); (K.F.); (B.K.)
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (P.B.); (K.F.); (B.K.)
| | - Monika Bartekova
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovakia; (T.J.); (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (P.B.); (K.F.); (B.K.)
| | - Lubomira Tothova
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Jana Radosinska
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, Sasinkova 2, 813 72 Bratislava, Slovakia; (T.J.); (M.K.); (M.B.)
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (P.B.); (K.F.); (B.K.)
| |
Collapse
|
8
|
Milenkovic T, Bozhinovska N, Macut D, Bjekic-Macut J, Rahelic D, Velija Asimi Z, Burekovic A. Mediterranean Diet and Type 2 Diabetes Mellitus: A Perpetual Inspiration for the Scientific World. A Review. Nutrients 2021; 13:1307. [PMID: 33920947 PMCID: PMC8071242 DOI: 10.3390/nu13041307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
For the past 80 years, the effect of the Mediterranean diet on overall health has been a constant topic of interest among medical and scientific researchers. Parallel with the persistent global rise of cases of type 2 diabetes, many studies conducted in the past 20 years have shown the benefits of the Mediterranean lifestyle for people with, or at risk of developing, type 2 diabetes mellitus. However, despite the large body of evidence, concerns exist amongst scientists regarding the reliability of the data related to this topic. This review offers a glimpse of the onset of the Mediterranean diet and follows its significant impact on the prevention and treatment of type 2 diabetes. There is a constant rise in type 2 diabetes cases on the Balkan Peninsula and North Macedonia in particular. Having in mind that North Macedonia, as well as most of the countries on the Balkans have low to middle income, there is a need for a certain affordable dietary pattern to ameliorate the rise in diabetes incidence, as well as improve the glycemic control. We did a review based on the available literature regarding Mediterranean diet and people with or at risk of developing type 2 diabetes mellitus, its effects on glycemic control, lipid profile and metabolic outcome.
Collapse
Affiliation(s)
- Tatjana Milenkovic
- Diabetes and Metabolic Diseases, University Clinic of Endocrinology, 1000 Skopje, North Macedonia
- Medical Faculty, University “St. Cyril and Methodius”, 1000 Skopje, North Macedonia
| | - Nadica Bozhinovska
- Department of Endocrinology, Private Clinical Hospital “Acibadem Sistina”, 1000 Skopje, North Macedonia;
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelica Bjekic-Macut
- Department of Endocrinology, CHC Bezanijska Kosa, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dario Rahelic
- “Vuk Vrhovac” University Clinic for Diabetes, Endocrinology and Metabolic Diseases, “Merkur” Univeristy Hospital, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zelija Velija Asimi
- Sarajevo Medical School, SSST University, 71210 Sarajevo, Bosnia and Herzegovina;
- Outpatient Clinic “Altamedica-Beta”, Zmaja od Bosne 7, 71000 Sarajevo, Bosnia and Herzegovina
| | - Azra Burekovic
- Faculty of Medicine, Sarajevo University, 71000 Sarajevo, Bosnia and Herzegovina;
- Department of Endocrinology and Diabetes, Clinical Center of Sarajevo University, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
9
|
Yan W, Lin G, Zhang R, Liang Z, Wu W. Studies on the bioactivities and molecular mechanism of antioxidant peptides by 3D-QSAR, in vitro evaluation and molecular dynamic simulations. Food Funct 2021; 11:3043-3052. [PMID: 32190865 DOI: 10.1039/c9fo03018b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two novel effective antioxidative tripeptides GWY and QWY were designed based on 3D-QSAR models. Their activities were confirmed by an improved TEAC assay. The experimental results showed that GWY and QWY possessed good antioxidant activity, equaling 3.32 mM TE and 2.97 mM TE respectively. This indicated that 3D-QSAR models possessed significant predictive capacity for drug design. In addition, molecular docking and molecular dynamics simulation were applied to reveal the potential molecular mechanism of antioxidant peptides. The result showed that GWY and QWY could enhance the stability of Keap1 by interacting with the key residues Arg415, Arg483, Arg380 and Ser555 in the active sites. Interestingly, the key residues were exactly the binding site of Nrf2 in the active pocket of Keap1. Thus, GWY and QWY could compete with Nrf2 for binding to Keap1. This demonstrated that the new tripeptides might have the ability to activate the signaling pathway Keap1-Nrf2-ARE and improve the antioxidant defense system of the body as well.
Collapse
Affiliation(s)
- Wenli Yan
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Guimei Lin
- School of Pharmacy, Shandong University, Jinan, 250012, People's Republic of China
| | - Rong Zhang
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Zhen Liang
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Wenjuan Wu
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
10
|
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
Collapse
Affiliation(s)
- Pengju Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xingyun Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Álvarez-Almazán S, Filisola-Villaseñor JG, Alemán-González-Duhart D, Tamay-Cach F, Mendieta-Wejebe JE. Current molecular aspects in the development and treatment of diabetes. J Physiol Biochem 2020; 76:13-35. [PMID: 31925679 DOI: 10.1007/s13105-019-00717-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) leads to microvascular, macrovascular, and neurological complications. Less is understood about the mechanisms of this disease that give rise to weak bones. The many molecular mechanisms proposed to explain the damage caused by chronic hyperglycemia are organ and tissue dependent. Since all the different treatments for DM involve therapeutic activity combined with side effects and each patient represents a unique condition, there is no generalized therapy. The alterations stemming from hyperglycemia affect metabolism, osmotic pressure, oxidative stress, and inflammation. In part, hemodynamic modifications are linked to the osmotic potential of the excess of carbohydrates implicated in the disease. The change in osmotic balance increases as the disease progresses because hyperglycemia becomes chronic. The aim of the current contribution is to provide an updated overview of the molecular mechanisms that participate in the development and treatment of diabetes.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.,Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México
| | - Jessica Georgina Filisola-Villaseñor
- Laboratorio 2, Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Diana Alemán-González-Duhart
- Centro Interdisciplinario de Ciencias de la Salud-Unidad Santo Tomás, Instituto Politécnico Nacional, Av. de los Maestros s/n, Casco de Santo Tomás, 11340, Ciudad de México, México
| | - Feliciano Tamay-Cach
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, 11340, Ciudad de México, México.
| |
Collapse
|
12
|
Nagpal R, Shively CA, Register TC, Craft S, Yadav H. Gut microbiome-Mediterranean diet interactions in improving host health. F1000Res 2019; 8:699. [PMID: 32704349 PMCID: PMC7359750 DOI: 10.12688/f1000research.18992.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota plays a fundamental role in host health and disease. Host diet is one of the most significant modulators of the gut microbial community and its metabolic activities. Evidence demonstrates that dietary patterns such as the 'Western diet' and perturbations in gut microbiome (dysbiosis) have strong associations with a wide range of human diseases, including obesity, metabolic syndrome, type-2 diabetes and cardiovascular diseases. However, consumption of Mediterranean-style diets is considered healthy and associated with the prevention of cardiovascular and metabolic diseases, colorectal cancers and many other diseases. Such beneficial effects of the Mediterranean diet might be attributed to high proportion of fibers, mono- and poly-unsaturated fatty acids, antioxidants and polyphenols. Concurrent literature has demonstrated beneficial modulation of the gut microbiome following a Mediterranean-style diet in humans as well as in experimental animal models such as rodents. We recently demonstrated similar positive changes in the gut microbiome of non-human primates consuming a Mediterranean-style diet for long term (30 months). Therefore, it is rational to speculate that this positive modulation of the gut microbiome diversity, composition and function is one of the main factors intermediating the health effects of Mediterranean diet on the host. The present perspective discusses the evidences that the Mediterranean diet induces gut microbiome modulation in rodents, non-human primates and human subjects, and discusses the potential role of gut microbiota and microbial metabolites as one of the fundamental catalysts intermediating various beneficial health effects of Mediterranean diet on the host.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Division of Internal Medicine - Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Carol A. Shively
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Thomas C. Register
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Hariom Yadav
- Division of Internal Medicine - Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
13
|
Karim N, Rahman A, Chanudom L, Thongsom M, Tangpong J. Mangosteen Vinegar Rind from Garcinia mangostana Prevents High-Fat Diet and Streptozotocin-Induced Type II Diabetes Nephropathy and Apoptosis. J Food Sci 2019; 84:1208-1215. [PMID: 31012974 DOI: 10.1111/1750-3841.14511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Type II diabetes (T2D) nephropathy, a major cause of end-stage kidney disease, progresses and develops from oxidative stress. Natural polyphenols can protect the kidney from diabetic nephropathy exerting antioxidant activities. The present approach enumerates the reno-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR, a phenolic aqueous extract) against high-fat diet (5 g/day up to five weeks)-/streptozotocin (single ip, dose 30 mg/kgBW)-induced T2D nephropathy of albino mice. In vitro total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity, and α-amylase inhibition activity as antidiabetic assay of MVR were performed. In vivo mice body weight, oral glucose, and maltose tolerance test, metabolic parameters (plasma glucose, insulin level, omeostasis model assessment-estimated insulin resistance), biochemical parameters (kidney hypertrophy, blood urea nitrogen, creatinine), oxidative stress parameters (malondialdehyde, superoxide dismutase, catalase) were estimated in an intervention study. Additionally, renal morphology and early apoptosis were observed following the H & E staining and TUNEL assay of the tissue frozen section. We found that the aqueous extract of MVR possesses potent in vitro antioxidative and antidiabetic activities. Animal intervention results showed that MVR 100, 200 mg/kgBW, and Glibenclamide 60 mg/kgBW treatments significantly improved (P < 0.05) the abovementioned parameters compared to the diabetic control group. Furthermore, treatments also significantly restored (P < 0.05) kidney histological alterations and reduced cellular apoptosis compared to the diabetic control group. These findings concluded that MVR treatments significantly modulated the glucose intolerance, metabolic alterations, and oxidative stress-induced pathological alterations and cellular apoptosis of diabetic kidney. PRACTICAL APPLICATION: Garcinia mangostana, a polyphenol rich natural product, is obtained from the tropical rain forest area of Southeast Asian countries and processes diverse biological activities including antioxidant, anti-proliferative, anti-inflammatory, anti-carcinogenic, and so on. This research first time focuses on the nephro-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR) from the mangosteen fruit pericarp. Our study provides the efficient data to prove the beneficial effect of MVR as a dietary supplement for the prevention and management of diabetic nephropathy.
Collapse
Affiliation(s)
- Naymul Karim
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| | - Atiar Rahman
- Dept. of Biochemistry and Molecular Biology, Univ. of Chittagong, Chittagong, 80280, Bangladesh
| | - Lanchakon Chanudom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Montakarn Thongsom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| |
Collapse
|
14
|
Algso MAS, Kivrak A, Konus M, Yilmaz C, Kurt-Kizildoğan A. Synthesis and biological evaluation of novel benzothiophene derivatives. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1523-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Peng BY, Dubey NK, Mishra VK, Tsai FC, Dubey R, Deng WP, Wei HJ. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res 2018; 2018:7806435. [PMID: 30046616 PMCID: PMC6036791 DOI: 10.1155/2018/7806435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.
Collapse
Affiliation(s)
- Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala, India
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei City 110, Taiwan
| | - Rajni Dubey
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
16
|
Menezes CDA, de Oliveira Garcia FA, de Barros Viana GS, Pinheiro PG, Felipe CFB, de Albuquerque TR, Moreira AC, Santos ES, Cavalcante MR, Garcia TR, Silva TF, Coutinho HDM, de Menezes IRA. Murraya paniculata (L.) (Orange Jasmine): Potential Nutraceuticals with Ameliorative Effect in Alloxan-Induced Diabetic Rats. Phytother Res 2017; 31:1747-1756. [PMID: 28840616 DOI: 10.1002/ptr.5903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 11/07/2022]
Abstract
Orange jasmine, Murraya paniculata (Rutaceae), is a plant from India widely used in folk medicine as antinociceptive, antiinflammatory, and antioxidant. Although oral hypoglycemic agents and insulin are the mainstays of treatment of diabetes mellitus (DM), there is a significant demand for new natural products to reduce the development of diabetic complications. Alloxan-induced diabetic rats were treated for 60 days with a hydroalcoholic extract of M. paniculata (MPE), at doses of 100, 200, and 400 mg/kg. MPE decreased glycemia and also cholesterol and triglyceride levels, starting 1 week after treatments, as compared with the same group before treatments. Glucose values were reduced toward normality after 1 week of treatment. MPE hypoglycemic effects were potentiated by glibenclamide and metformin. MPE also decreased fructosamine and glycated hemoglobin values. MPE reduced diabetes-induced morphological alterations of the kidney, pancreas, and liver. MPE acts similarly to glibenclamide and metformin, and its glucose-lowering action is partly a consequence of ATP-sensitive K+ channel inhibition. MPE may be a potential therapeutic alternative for the treatment of diabetes and its complications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cicero Diego Almino Menezes
- Pharmacology and Molecular Chemistry Laboratory, Department of Chemical Biology, Regional University of Cariri, Cel Antonio luis 1161, Pimenta, CEP 63105-000, Crato, Ceara, Brazil
| | | | | | | | | | - Thaís Rodrigues de Albuquerque
- Pharmacology and Molecular Chemistry Laboratory, Department of Chemical Biology, Regional University of Cariri, Cel Antonio luis 1161, Pimenta, CEP 63105-000, Crato, Ceara, Brazil
| | - Alisson Cordeiro Moreira
- Faculdade de Medicina Estácio de Juazeiro do, Norte-Estácio-FMJ, 63180-000, Juazeiro do Norte, CE, Brazil
| | - Enaide Soares Santos
- Pharmacology and Molecular Chemistry Laboratory, Department of Chemical Biology, Regional University of Cariri, Cel Antonio luis 1161, Pimenta, CEP 63105-000, Crato, Ceara, Brazil.,Faculdade de Medicina Estácio de Juazeiro do, Norte-Estácio-FMJ, 63180-000, Juazeiro do Norte, CE, Brazil
| | | | - Tatiana Rodrigues Garcia
- Faculdade de Medicina Estácio de Juazeiro do, Norte-Estácio-FMJ, 63180-000, Juazeiro do Norte, CE, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Microbiology and Biology Molecular Laboratory, Department of Chemical Biology, Regional University of Cariri, Cel Antonio luis 1161, Pimenta, CEP 63105-000, Crato, Ceara, Brazil
| | - Irwin Rose Alencar de Menezes
- Pharmacology and Molecular Chemistry Laboratory, Department of Chemical Biology, Regional University of Cariri, Cel Antonio luis 1161, Pimenta, CEP 63105-000, Crato, Ceara, Brazil
| |
Collapse
|
17
|
Abstract
Epidemiological and clinical studies suggest that the additive/synergistic effects of several bioactive compounds are responsible for the health benefits of rice. Among the leading contenders are phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocotrienols, tocopherols, λ-oryzanol, and phytic acid, which all possess strong antioxidant activities in vitro. In this review, data related to health effects of rice antioxidants using cultured cells, rodents and humans models are first summarized. The evidence is strong that consumption of rice tocotrienols translates into improved health outcomes. Current research, however, does not strongly support the health-promoting effects of rice tocopherols and phenolic acids. The crucial limitations in studies using rice flavonoids, anthocyanins, proanthocyanidins, λ-oryzanol and phytic acid appear to be the appropriateness of the substance tested (i.e., purity), and the scarcity of animal and human interventions. In a second part, rice antioxidants are reviewed with an emphasis on their composition and contents. Taking into account the bioavailability of these compounds, it is evident that a number of factors affect the antioxidant composition of rice, making it difficult to estimate dietary intake. Before harvest, factors including soil type, atmospheric CO2, chemical inputs, temperature, and degree of ripening are important. After harvest, rice is subjected to processing methods that include drying, parboiling, storage, irradiation, milling, stabilization, soaking, germination, fermentation, boiling, steaming, roasting, baking, and extrusion. Quantitative knowledge about the effects of these processes is summarized in this review. Surprisingly, a high level of agreement was found among study results, which could be useful in manipulating the growing and processing techniques of rice grains to facilitate efficient and safe consumption of antioxidant compounds.
Collapse
Affiliation(s)
- Piebiep Goufo
- a Universidade de Trás os Montes e Alto Douro (UTAD) , Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB) , Vila Real , Portugal
| | - Henrique Trindade
- a Universidade de Trás os Montes e Alto Douro (UTAD) , Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB) , Vila Real , Portugal
| |
Collapse
|
18
|
|
19
|
Malaguarnera G, Bertino G, Chisari G, Motta M, Vecchio M, Vacante M, Caraci F, Greco C, Drago F, Nunnari G, Malaguarnera M. Silybin supplementation during HCV therapy with pegylated interferon-α plus ribavirin reduces depression and anxiety and increases work ability. BMC Psychiatry 2016; 16:398. [PMID: 27842532 PMCID: PMC5109776 DOI: 10.1186/s12888-016-1115-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatitis C virus infection and interferon treatment are often associated with anxiety, depressive symptoms and poor health-related quality of life. To evaluate the Silybin-vitamin E-phospholipids complex effect on work ability and whether health related factors (anxiety and depression) were associated with work ability in subjects with chronic hepatitis C treated with Pegylated-Interferon-α2b (Peg-IFN) and Ribavirin (RBV). METHODS Thirty-one patients (Group A) with chronic hepatitis and other 31 subjects in Group B were recruited in a randomized, prospective, placebo controlled, double blind clinical trial. Group A received 1.5 mg/kg per week of Peg-IFN plus RBV and placebo, while Group B received the same dosage of Peg-IFN plus RBV plus association of Silybin 94 mg + vitamin E 30 mg + phospholipids 194 mg in pills for 12 months. All subjects underwent to laboratory exams and questionnaires to evaluate depression (Beck Depression Inventory - BDI), anxiety (State-trait anxiety inventory - STAI) and work ability (Work ability Index - WAI). RESULTS The comparison between group A and group B showed significant differences after 6 months in ALT (P < 0.001), and viremia (P < 0.05), after 12 months in ALT (P < 0.001), and AST (P < 0.001), at follow up in AST (P < 0.05), and ALT (P < 0.001). Significant difference were observed after 1 month in WAI (p < 0.001) and BDI (P < 0.05), after 6 months in WAI (P < 0.05) and STAI (P < 0.05), after 12 months and at follow up in WAI, STAI and BDI (p < 0.01). CONCLUSIONS The supplementation with Silybin-vitamin E -phospholipids complex increased work ability and reduced depression and anxiety in patients treated with Peg-IFN and RBV. TRIAL REGISTRATION NCT01957319 , First received: September 25, 2013. Last updated: September 30, 2013 (retrospectively registered).
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Research Center "The Great Senescence", University of Catania, Catania, Italy. .,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Gaetano Bertino
- Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Giuseppe Chisari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Motta
- Research Center “The Great Senescence”, University of Catania, Catania, Italy ,Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- U.O.C Physical Medicine and Rehabilitation, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy
| | - Marco Vacante
- Research Center “The Great Senescence”, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy ,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Carmela Greco
- Research Center “The Great Senescence”, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Nunnari
- Department of Experimental and Clinical Medicine, University of Catania, Catania, Italy
| | - Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, Catania, Italy ,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Uchegbu NN, Ishiwu CN. Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia. Food Sci Nutr 2016; 4:772-7. [PMID: 27625782 PMCID: PMC5011386 DOI: 10.1002/fsn3.343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 11/18/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022] Open
Abstract
This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan-induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28°C). The total phenolic, 1,1,diphenyl-2-picrylhy-drazyl free radical (DPPH) scavenging, the inhibition of α-amylase and α-glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectrophotometrically. The total phenolic and DPPH scavenging activity increased by 30% and 63%, respectively, after germinating pigeon pea. Also after germination there was an increase in the inhibitory potential of pigeon pea extract against α-glucosidase compared with the nongerminated pigeon pea extract. There was a significant increase (P < 0.05) in fasting blood glucose level of alloxan-induced rats. Consumption of germinated pigeon pea extract gave rise to a reduced fasting blood glucose level in diabetic rats. On administration of germinated pigeon pea extract, LPO reduced drastically but there was an increase in the level of GSH. This study concluded that intake of germinated pigeon pea is a good dietary supplement for controlling hyperglycemia and LPO.
Collapse
Affiliation(s)
- Nneka N. Uchegbu
- Department of Food TechnologyInstitute of Management and TechnologyEnuguNigeria
| | - Charles N. Ishiwu
- Department of Food Science and TechnologyNnamdi Azikiwe UniversityAwkaNigeria
| |
Collapse
|
21
|
Raffaele M, Li Volti G, Barbagallo IA, Vanella L. Therapeutic Efficacy of Stem Cells Transplantation in Diabetes: Role of Heme Oxygenase. Front Cell Dev Biol 2016; 4:80. [PMID: 27547752 PMCID: PMC4974271 DOI: 10.3389/fcell.2016.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022] Open
Abstract
The growing data obtained from in vivo studies and clinical trials demonstrated the benefit of adult stem cells transplantation in diabetes; although an important limit is represented by their survival after the transplant. To this regard, recent reports suggest that genetic manipulation of stem cells prior to transplantation can lead to enhanced survival and better engraftment. The following review proposes to stimulate interest in the role of heme oxygenase-1 over-expression on transplantation of stem cells in diabetes, focusing on the clinical potential of heme oxygenase protein and activity to restore tissue damage and/or to improve the immunomodulatory properties of transplanted stem cells.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, University of Catania Catania, Italy
| | - Giovanni Li Volti
- Department Biomedical and Biotechnological Science, University of Catania Catania, Italy
| | | | - Luca Vanella
- Department of Drug Science, University of Catania Catania, Italy
| |
Collapse
|
22
|
|
23
|
Palmeri R, Monteleone JI, Spagna G, Restuccia C, Raffaele M, Vanella L, Li Volti G, Barbagallo I. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis. Front Pharmacol 2016; 7:143. [PMID: 27303302 PMCID: PMC4885843 DOI: 10.3389/fphar.2016.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis.
Collapse
Affiliation(s)
- Rosa Palmeri
- Department of Agricultural, Food and Environment, University of CataniaCatania, Italy
| | - Julieta I. Monteleone
- Department of Agricultural, Food and Environment, University of CataniaCatania, Italy
| | - Giovanni Spagna
- Department of Agricultural, Food and Environment, University of CataniaCatania, Italy
| | - Cristina Restuccia
- Department of Agricultural, Food and Environment, University of CataniaCatania, Italy
| | - Marco Raffaele
- Biochemistry Section, Department of Drug Sciences, University of CataniaCatania, Italy
| | - Luca Vanella
- Biochemistry Section, Department of Drug Sciences, University of CataniaCatania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
- Euro-Mediterranean Institute of Science and TechnologyPalermo, Italy
| | - Ignazio Barbagallo
- Biochemistry Section, Department of Drug Sciences, University of CataniaCatania, Italy
- Euro-Mediterranean Institute of Science and TechnologyPalermo, Italy
| |
Collapse
|
24
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
25
|
Mazzone G, Russo N, Toscano M. Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives: Computational insights. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
González-Muniesa P, Garcia-Gerique L, Quintero P, Arriaza S, Lopez-Pascual A, Martinez JA. Effects of Hyperoxia on Oxygen-Related Inflammation with a Focus on Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:8957827. [PMID: 26697142 PMCID: PMC4678090 DOI: 10.1155/2016/8957827] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Several studies have shown a pathological oxygenation (hypoxia/hyperoxia) on the adipose tissue in obese subjects. Additionally, the excess of body weight is often accompanied by a state of chronic low-degree inflammation. The inflammation phenomenon is a complex biological response mounted by tissues to combat injurious stimuli in order to maintain cell homeostasis. Furthermore, it is believed that the abnormal oxygen partial pressure occurring in adipose tissue is involved in triggering inflammatory processes. In this context, oxygen is used in modern medicine as a treatment for several diseases with inflammatory components. Thus, hyperbaric oxygenation has demonstrated beneficial effects, apart from improving local tissue oxygenation, on promoting angiogenesis, wound healing, providing neuroprotection, facilitating glucose uptake, appetite, and others. Nevertheless, an excessive hyperoxia exposure can lead to deleterious effects such as oxidative stress, pulmonary edema, and maybe inflammation. Interestingly, some of these favorable outcomes occur under high and low oxygen concentrations. Hereby, we review a potential therapeutic approach to the management of obesity as well as the oxygen-related inflammation accompanying expanded adipose tissue, based on elevated oxygen concentrations. To conclude, we highlight at the end of this review some areas that need further clarification.
Collapse
Affiliation(s)
- Pedro González-Muniesa
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Laura Garcia-Gerique
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Pablo Quintero
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Suyen Arriaza
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Lopez-Pascual
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - J. Alfredo Martinez
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| |
Collapse
|
27
|
Barbagallo I, Parenti R, Zappalà A, Vanella L, Tibullo D, Pepe F, Onni T, Li Volti G. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma. Acta Histochem 2015; 117:705-11. [PMID: 26493719 DOI: 10.1016/j.acthis.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.
Collapse
Affiliation(s)
- Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy; EuroMediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139 Palermo, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Daniele Tibullo
- Division of Hematology, AOU "Policlinico-Vittorio Emauele", University of Catania, Via Santa Sofia 78, 95125 Catania, Italy
| | - Francesco Pepe
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Via Andrea Doria 6, 95125 Italy
| | - Toniangelo Onni
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Via Andrea Doria 6, 95125 Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy; EuroMediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139 Palermo, Italy.
| |
Collapse
|
28
|
Malaguarnera G, Gagliano C, Salomone S, Giordano M, Bucolo C, Pappalardo A, Drago F, Caraci F, Avitabile T, Motta M. Folate status in type 2 diabetic patients with and without retinopathy. Clin Ophthalmol 2015; 9:1437-42. [PMID: 26300625 PMCID: PMC4536839 DOI: 10.2147/opth.s77538] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Folate deficiency is associated with cardiovascular disease, megaloblastic anemia, and with hyperhomocysteinemia. This study has been undertaken to investigate the role of folate status during the progression of the diabetic retinopathy. Methods We measured the plasma levels of homocysteine, folic acid, and red cell folate in 70 diabetic type 2 patients with nonproliferative diabetic retinopathy (NPDR), 65 with proliferative diabetic retinopathy (PDR), 96 without diabetic retinopathy, and 80 healthy subjects used as a control group. Results We found higher plasma levels of homocysteine in the NPDR group compared to the control group (P<0.001) and in the PDR group compared to control group (P<0.001) and NPDR group (P<0.01). The severity of diabetic retinopathy was associated with lower folic acid and red cell folate levels, and a significant difference was observed between PDR and NPDR groups (P<0.05). Conclusion The folate status could play a role in the development and progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Caterina Gagliano
- Department of Ophthalmology, University of Catania, Catania, Italy ; Neurovisual Science Technology (NEST), Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Giordano
- Gerontology and Bone Metabolic Disease Section, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy ; IRCCS Association Oasi Maria S.S.-Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | | | - Massimo Motta
- Department of Medical and Paediatric Sciences, University of Catania, Italy
| |
Collapse
|
29
|
Oxidative stress markers at birth: Analyses of a neonatal population. Acta Histochem 2015; 117:486-91. [PMID: 25747735 DOI: 10.1016/j.acthis.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/22/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
In order to further understand neonatal stress and, thus, control it efficaciously, there is a need for more information on the manifestations of stress at the molecular level in the newborn, with particular regard to oxidants, and anti-oxidant and anti-stress mechanisms, including mitochondrial heat shock protein-chaperones such as Hsp60. We investigated patterns of anti-oxidants, biomarkers of oxidative stress, and Hsp60 levels in sera from newborns and found significant associations between glutathione (GSH) levels and gestational age, delivery modality, and lipid hydroperoxydes (LOOH) level. LOOH levels and spontaneous (vaginal) delivery were independently associated with increased GSH levels when these were above the median. Hsp60 and LOOH levels were positively correlated whereas Hsp60 and GSH levels were inversely correlated in spontaneously delivered newborns; in contrast, Hsp60 and GSH levels were positively correlated in newborns delivered by cesarea. Our results point to new directions in the search for definite patterns of GSH, LOOH, and Hsp60 in the newborn's serum that might have functional and diagnostic significance and that could help in the monitoring of newborn health during and after delivery. In addition, the data provide a starting basis for investigating the precise roles and interplay of GSH and Hsp60 in the maintenance of an optimal redox balance at birth to cope with the stress inherent to delivery, and also for investigating the predictive value of any given pattern of GSH, LOOH, and Hsp60 at birth with regard to health status and risk of disease in adult life.
Collapse
|
30
|
Penu R, Litescu SC, Eremia SAV, Vasilescu I, Radu GL, Giardi MT, Pezzotti G, Rea G. Application of an optimized electrochemical sensor for monitoring astaxanthin antioxidant properties against lipoperoxidation. NEW J CHEM 2015. [DOI: 10.1039/c5nj00457h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reports the first renewable electrochemical sensor that is able to provide reliablein vitroinformation on carotenoid antioxidant properties by mimicking their natural position and orientation in the cellular membrane.
Collapse
Affiliation(s)
- Ramona Penu
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
- Faculty of Applied Chemistry and Materials Science
| | - Simona Carmen Litescu
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
| | - Sandra A. V. Eremia
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
| | - Ioana Vasilescu
- National Institute of Research and Development for Biological Sciences
- Centre of Bioanalisys
- Bucharest
- Romania
| | - Gabriel-Lucian Radu
- Faculty of Applied Chemistry and Materials Science
- University Politehnica Bucharest
- Bucharest
- Romania
| | - Maria Teresa Giardi
- Italian National Research Council
- Institute of Crystallography Departments of Agrofood and Molecular Design
- CNR 00015 Monterotondo Scalo
- Rome
- Italy
| | | | - Giuseppina Rea
- Italian National Research Council
- Institute of Crystallography Departments of Agrofood and Molecular Design
- CNR 00015 Monterotondo Scalo
- Rome
- Italy
| |
Collapse
|
31
|
Gomes IBS, Porto ML, Santos MCLFS, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids Health Dis 2014; 13:184. [PMID: 25481305 PMCID: PMC4271322 DOI: 10.1186/1476-511x-13-184] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the major causes of end-stage renal disease in diabetic patients. Increasing evidence from studies in the rodents has suggested that this disease is associated with increased oxidative stress due to hyperglycemia. In the present study, we evaluated the renoprotective, anti-oxidative and anti-apoptotic effects of the flavonoid quercetin in C57BL/6J model of DN. Methods DN was induced by streptozotocin (STZ, 100 mg/kg/day, for 3 days) in adult C57BL/6J mice. Six weeks later, mice were divided into the following groups: diabetic mice treated with quercetin (DQ, 10 mg/kg/day, 4 weeks), diabetic mice treated with vehicle (DV) or non-treated non-diabetic (ND) mice. Results Quercetin treatment caused a reduction in polyuria (~45%) and glycemia (~35%), abolished the hypertriglyceridemia and had significant effects on renal function including, decreased proteinuria and high plasma levels of uric acid, urea and creatinine, which were accompanied by beneficial effects on the structural changes of the kidney including glomerulosclerosis. Flow cytometry showed a decrease in oxidative stress and apoptosis in DN mice. Conclusion Taken together, these data show that quercetin effectively attenuated STZ-induced cytotoxicity in renal tissue. This study provides convincing experimental evidence and perspectives on the renoprotective effects of quercetin in diabetic mice and outlines a novel therapeutic strategy for this flavonoid in the treatment of DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elisardo C Vasquez
- Department of Physiological Sciences, Laboratory of Translational Physiology, Health Sciences Center, UFES, Vitoria, Brazil.
| |
Collapse
|
32
|
Bozhkov AI, Nikitchenko YV. Thermogenesis and longevity in mammals. Thyroxin model of accelerated aging. Exp Gerontol 2014; 60:173-82. [PMID: 25446982 DOI: 10.1016/j.exger.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/18/2023]
Abstract
Development of experimental models of life span regulation is an important goal of modern gerontology. We proposed a thyroxin model of accelerated aging. Male Wistar rats at the age of 17 months received thyroxin in drinking water at a concentration of 6 mg/L for 2 months as a model of induced hyperthyroidism (IH). Administration of thyroxin resulted in a decrease in life span and a 2°C increase in body temperature that was accompanied by a 2 fold increase in thyroxin level and a 40% increase in triiodothyronine in blood serum. Induced hyperthyroidism can be used as a model of accelerated aging. We also found that thyroxin administration acts as uncoupler of oxidative phosphorylation as treatment was accompanied by an increase in the generation of superoxide radicals by 50%. Antioxidant enzyme activity remained unchanged (glutathione peroxidase, glutathione reductase mitochondrial) or was reduced (glutathione-S-transferase by 1.7 times) as compared with the control. The activity of glucose-6-transferase was increased by 2.8 times as compared with control, and malate dehydrogenase activity in liver increased by 6.8 times. Induced hyperthyroidism in rats resulted in distinct epigenotype which was accompanied by a decrease in life span.
Collapse
Affiliation(s)
- A I Bozhkov
- Research Institute of Biology, V.N. Karazin Kharkov National University, 61022 Kharkov, Ukraine.
| | - Yu V Nikitchenko
- Research Institute of Biology, V.N. Karazin Kharkov National University, 61022 Kharkov, Ukraine
| |
Collapse
|
33
|
Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and health: food effects on gut microbiota and disease control. Int J Mol Sci 2014; 15:11678-99. [PMID: 24987952 PMCID: PMC4139807 DOI: 10.3390/ijms150711678] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet (MD) is considered one of the healthiest dietary models. Many of the characteristic components of the MD have functional features with positive effects on health and wellness. The MD adherence, calculated through various computational scores, can lead to a reduction of the incidence of major diseases (e.g., cancers, metabolic and cardiovascular syndromes, neurodegenerative diseases, type 2 diabetes and allergy). Furthermore, eating habits are the main significant determinants of the microbial multiplicity of the gut, and dietary components influence both microbial populations and their metabolic activities from the early stages of life. For this purpose, we present a study proposal relying on the generation of individual gut microbiota maps from MD-aware children/adolescents. The maps, based on meta-omics approaches, may be considered as new tools, acting as a systems biology-based proof of evidence to evaluate MD effects on gut microbiota homeostasis. Data integration of food metabotypes and gut microbiota “enterotypes” may allow one to interpret MD adherence and its effects on health in a new way, employable for the design of targeted diets and nutraceutical interventions in childcare and clinical management of food-related diseases, whose onset has been significantly shifted early in life.
Collapse
Affiliation(s)
- Federica Del Chierico
- Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| | - Pamela Vernocchi
- Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| | - Lorenza Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, Rome 400165, Italy.
| |
Collapse
|
34
|
Malaguarnera G, Gagliano C, Giordano M, Salomone S, Vacante M, Bucolo C, Caraci F, Reibaldi M, Drago F, Avitabile T, Motta M. Homocysteine serum levels in diabetic patients with non proliferative, proliferative and without retinopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191497. [PMID: 24877066 PMCID: PMC4022262 DOI: 10.1155/2014/191497] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/06/2014] [Indexed: 12/12/2022]
Abstract
Homocysteine has been associated with extracellular matrix changes. The diabetic retinopathy is a neurovascular complication of diabetes mellitus and it is the leading cause of vision loss among working adults worldwide. In this study, we evaluate the role of homocysteine in diabetic retinopathy analyzing the plasma levels of homocysteine in 63 diabetic type 2 patients with nonproliferative retinopathy (NPDR), 62 patients with proliferative diabetic retinopathy (PDR), 50 healthy subjects used as control group, and 75 randomly selected patients.
Collapse
Affiliation(s)
- Giulia Malaguarnera
- International Ph.D. programme in Neuropharmacology, University of Catania, 95123 Catania, Italy
| | - Caterina Gagliano
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Maria Giordano
- Research Center “The Great Senescence”, University of Catania, 95125 Catania, Italy
| | - Salvatore Salomone
- International Ph.D. programme in Neuropharmacology, University of Catania, 95123 Catania, Italy
- Section of Pharmacology and Biochemistry, Department of Clinical and Molecular Biomedicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Marco Vacante
- Research Center “The Great Senescence”, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- International Ph.D. programme in Neuropharmacology, University of Catania, 95123 Catania, Italy
- Section of Pharmacology and Biochemistry, Department of Clinical and Molecular Biomedicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Filippo Caraci
- International Ph.D. programme in Neuropharmacology, University of Catania, 95123 Catania, Italy
- IRCCS, Oasi Maria S.S.-Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124 Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- International Ph.D. programme in Neuropharmacology, University of Catania, 95123 Catania, Italy
- Section of Pharmacology and Biochemistry, Department of Clinical and Molecular Biomedicine, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Massimo Motta
- Research Center “The Great Senescence”, University of Catania, 95125 Catania, Italy
| |
Collapse
|