1
|
Liu H, Fan H, Teng X, Sun T, Zhang S, Wang N, Zhang X, Liu T, Zhang Y, Wang D. Exploring novel antioxidant cyclic peptides in corn protein hydrolysate: Preparation, identification and molecular docking analysis. Food Chem 2024; 464:141747. [PMID: 39454442 DOI: 10.1016/j.foodchem.2024.141747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Antioxidant cyclic peptides were successfully identified from a corn protein hydrolysate. Hydrolysate by Alcalase + Flavourzyme showed the highest cyclic peptide purity (48.36 ± 1.81 %) and higher antioxidant activities compared with other hydrolysate. The success of peptide cyclization in hydrolysate was demonstrated by thermogravimetric analysis and thin-layer chromatography (TLC) analysis. Thermogravimetric analysis showed that the thermal stability of hydrolysate after cyclization was significantly increased, which was related to the formation of cyclic peptides. Peptides with molecular weight less than 1000 Da accounted for more than 80 % in hydrolysate after cyclization. After separation using gel silica chromatography and semi-preparative reverse phase high performance liquid chromatography (RP-HPLC), 22 novel antioxidant cyclic peptides were identified by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) and orbitrap-tandem mass spectrometry (Orbitrap-MS/MS). Synthetic cyclic peptides with the same sequence were synthesized and characterized for their antioxidant activity. Molecular docking suggested that the free radical molecules could bind with the cyclic backbone and side chain of cyclic peptides through hydrogen bonding, hydrophobic interaction as well as electrostatic interaction. This study has important implications for the high-value utilization of corn protein and new cyclic peptides drugs or functional food development.
Collapse
Affiliation(s)
- Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Xu Teng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-efficiency Utilization of By-products of Jilin Province, Changchun 130118, China
| | - Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Xu Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China.
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-efficiency Utilization of By-products of Jilin Province, Changchun 130118, China.
| |
Collapse
|
2
|
Jeong Y, Kwak HS, Lim M, Kim YJ, Lee Y. Validation of Optimization Methods for Sensory Characteristics Using Rate-All-That-Apply and Intensity Scales: A Case Study of Apple Juice. Foods 2024; 13:2853. [PMID: 39272617 PMCID: PMC11394975 DOI: 10.3390/foods13172853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Preference mapping (PM), which integrates consumer and descriptive analysis (DA) data to identify attributes that drive consumer liking, is widely employed for product optimization. However, a limited group of trained panelists cannot fully represent the diverse consumer population or reliably predict market acceptance. Consequently, numerous studies have explored consumer-based methodologies as potential replacements for DA; however, their efficacy for product optimization remains limited. Therefore, this study was conducted to explore the potential of optimizing products using two consumer-based profiling techniques as alternatives to DA in external preference mapping (EPM). Overall, 8 trained panelists profiled 12 sensory attributes of 7 commercial apple juices, whereas 160 consumers assessed the same attributes using a 5-point rate-all-that-apply (RATA) scale and a 10 cm intensity scale (IS). Danzart's response surface ideal modeling was employed to identify optimal products using DA, RATA, and IS through barycenter calculations, focusing on three products from the original consumer test located around the group ideal point. Overall, the ideal products of the group and their sensory characteristics were successfully identified using DA, RATA, and IS. Regarding sensory intensities, high concordance was observed between DA and RATA (Rv = 0.92) and between DA and IS (Rv = 0.91). Overall liking and preference scores for products mixed at the optimal ratio for each method showed no significant differences in preference among the ideal products identified using DA, RATA, and IS. This study suggests that both RATA and IS are viable alternatives to DA in EPM for identifying ideal sensory profiles.
Collapse
Affiliation(s)
- Yoojin Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Han Sub Kwak
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55465, Republic of Korea
- KFRI School, University of Science and Technology, Wanju-gun 55465, Republic of Korea
| | - Manyoel Lim
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55465, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Youngseung Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Dezaki FS, Narimani T, Ghanadian M, Bidram E, Poursina F. Antimicrobial and antibiofilm effects of cyclic dipeptide-rich fraction from Lactobacillus plantarum loaded on graphene oxide nanosheets. Front Microbiol 2024; 15:1391039. [PMID: 39286346 PMCID: PMC11402667 DOI: 10.3389/fmicb.2024.1391039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction One effective method to combat bacterial infections is by using bacteria itself as a weapon. Lactobacillus is a type of fermenting bacterium that has probiotic properties and has demonstrated antimicrobial benefits against other bacteria. Cyclodipeptides (CDPs), present in the supernatant of Lactobacillus, possess several antimicrobial properties. Methods In this study, the CDP fraction was isolated from the supernatant of Lactobacillus plantarum (L. plantarum). This fraction was then loaded onto graphene oxide nanosheets (GO NSs). The study assessed the substance's ability to inhibit bacterial growth by using the minimum inhibitory concentration (MIC) method on A. baumannii and S. aureus strains that were obtained from clinical samples. To determine the substance's impact on biofilm formation, the microtiter plate method was used. Moreover, the checkerboard technique was employed to explore the potential synergistic effects of these two substances. Results and discussion According to the study, the minimum inhibitory concentration (MIC) of the desired compound was found to be 1.25 mg/mL against S. aureus and 2.5 mg/mL against A. baumannii. Furthermore, at a concentration of 10 mg/mL, the compound prevented 81.6% (p < 0.01) of biofilm production in A. baumannii, while at a concentration of 1.25 mg/mL, it prevented 47.5% (p < 0.05) of biofilm production in S. aureus. The study also explored the synergistic properties of two compounds using the checkerboard method. Conclusion In general, we found that GO NSs possess antimicrobial properties and enhance cyclodipeptides' activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Farid Shirmardi Dezaki
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Biosensor Research Center (BRC), Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Ottosson F, Russo F, Abrahamsson A, MacSween N, Courraud J, Skogstrand K, Melander O, Ericson U, Orho-Melander M, Cohen AS, Grove J, Mortensen PB, Hougaard DM, Ernst M. Unraveling the metabolomic architecture of autism in a large Danish population-based cohort. BMC Med 2024; 22:302. [PMID: 39026322 PMCID: PMC11264881 DOI: 10.1186/s12916-024-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The prevalence of autism in Denmark has been increasing, reaching 1.65% among 10-year-old children, and similar trends are seen elsewhere. Although there are several factors associated with autism, including genetic, environmental, and prenatal factors, the molecular etiology of autism is largely unknown. Here, we use untargeted metabolomics to characterize the neonatal metabolome from dried blood spots collected shortly after birth. METHODS We analyze the metabolomic profiles of a subset of a large Danish population-based cohort (iPSYCH2015) consisting of over 1400 newborns, who later are diagnosed with autism and matching controls and in two Swedish population-based cohorts comprising over 7000 adult participants. Mass spectrometry analysis was performed by a timsTOF Pro operated in QTOF mode, using data-dependent acquisition. By applying an untargeted metabolomics approach, we could reproducibly measure over 800 metabolite features. RESULTS We detected underlying molecular perturbations across several metabolite classes that precede autism. In particular, the cyclic dipeptide cyclo-leucine-proline (FDR-adjusted p = 0.003) and the carnitine-related 5-aminovaleric acid betaine (5-AVAB) (FDR-adjusted p = 0.03), were associated with an increased probability for autism, independently of known prenatal and genetic risk factors. Analysis of genetic and dietary data in adults revealed that 5-AVAB was associated with increased habitual dietary intake of dairy (FDR-adjusted p < 0.05) and with variants near SLC22A4 and SLC22A5 (p < 5.0e - 8), coding for a transmembrane carnitine transporter protein involved in controlling intracellular carnitine levels. CONCLUSIONS Cyclo-leucine-proline and 5-AVAB are associated with future diagnosis of autism in Danish neonates, both representing novel early biomarkers for autism. 5-AVAB is potentially modifiable and may influence carnitine homeostasis.
Collapse
Affiliation(s)
- Filip Ottosson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Anna Abrahamsson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nadia MacSween
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Julie Courraud
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, ZografouAthens, Greece
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528, Athens, Greece
| | - Kristin Skogstrand
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ulrika Ericson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Arieh S Cohen
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Testcenter Denmark, Statens Serum Institut, Copenhagen, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- NCRR - National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- CIRRAU - Centre for Integrated Registerbased Research at Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
| |
Collapse
|
5
|
Streule S, Freimüller Leischtfeld S, Chatelain K, Miescher Schwenninger S. Effect of Pod Storage and Drying Temperature on Fermentation Dynamics and Final Bean Quality of Cacao Nacional in Ecuador. Foods 2024; 13:1536. [PMID: 38790837 PMCID: PMC11121351 DOI: 10.3390/foods13101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The impact of pod storage (PS) and two drying temperatures of fermented cocoa beans was investigated in Ecuador. Therefore, four variations were simultaneously carried out three times at two locations, independently: 0, 3, and 5 days of PS, dried at 60 °C and 0 days of PS, dried at 80 °C. Pod weight during storage, pulp content, pH, temperature, microbial counts, total free amino acids, protein profiles, sugars, organic acids, cut-test, fermentation index, and sensory profiles were analyzed. Minor differences in fermentation dynamics and bean quality were found between variations with and without PS. A rather accelerated fermentation with pod-stored beans was observed (e.g., faster color change, slightly lower pH in cotyledon after 48 h), along with a significantly higher maximal temperature during 24-42 h (43.1 ± 3.2 °C compared to 39.2 ± 2.0 °C without PS). More well-fermented beans were reached with PS (52.3 ± 22.6%) than without (62.7 ± 9.2%). Differences during fermentation were observed between the locations (e.g., pH, acids, sugars), but sensory evaluation indicated that the impact of location was mitigated with PS. Drying at 80 °C showed no adverse effects, as evidenced by the results of the cut-test and fermentation index. However, sensory evaluations revealed significant differences between 80 °C and 60 °C, with the former exhibiting more bitter and astringent cocoa liquor.
Collapse
Affiliation(s)
| | | | | | - Susanne Miescher Schwenninger
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, 8820 Wädenswil, Switzerland; (S.S.); (S.F.L.); (K.C.)
| |
Collapse
|
6
|
Bai H, Wang S, Wang ZM, Zhu LL, Yan HB, Wang YB, Wang XY, Peng L, Liu JZ. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Res Int 2024; 184:114262. [PMID: 38609241 DOI: 10.1016/j.foodres.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.
Collapse
Affiliation(s)
- Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin-Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd., Liaocheng, Shandong 252300, China
| |
Collapse
|
7
|
Narasimman V, Ramachandran S. Purification, structural characterization, and neuroprotective effect of 3,6-diisobutyl-2,5-piperazinedione from Halomonas pacifica CARE-V15 against okadaic acid-induced neurotoxicity in zebrafish model. J Biochem Mol Toxicol 2024; 38:e23708. [PMID: 38597299 DOI: 10.1002/jbt.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Vignesh Narasimman
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| | - Saravanan Ramachandran
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
8
|
Liu X, Li K, Yu J, Ma C, Che Q, Zhu T, Li D, Pfeifer BA, Zhang G. Cyclo-diphenylalanine production in Aspergillus nidulans through stepwise metabolic engineering. Metab Eng 2024; 82:147-156. [PMID: 38382797 DOI: 10.1016/j.ymben.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Kang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jing Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Department for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States.
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Department for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China; Lab of Marine Medicinal Resources Discovery, Marine Biomedical Research Institute of Qingdao, Qingdao, 266075, China.
| |
Collapse
|
9
|
Kang SO, Kwak MK. Antimicrobial Cyclic Dipeptides from Japanese Quail ( Coturnix japonica) Eggs Supplemented with Probiotic Lactobacillus plantarum. J Microbiol Biotechnol 2024; 34:314-329. [PMID: 38111307 PMCID: PMC10940788 DOI: 10.4014/jmb.2311.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl DL-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro). The Q9 fraction, containing cis-cyclo(L-Leu-L-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(L-Leu-L-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.
Collapse
Affiliation(s)
- Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of Bio-Convergence, and Institute of Food and Nutrition Science, Eulji University, Seongnam 13135, Republic of Korea
| |
Collapse
|
10
|
Sullivan RC, Nottage S, Makinwa F, Oruna-Concha MJ, Fagan CC, Parker JK. Characterisation of Cooked Cheese Flavour: Non-Volatile Components. Foods 2023; 12:3749. [PMID: 37893642 PMCID: PMC10606102 DOI: 10.3390/foods12203749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
This work examined the role of selected non-volatile compounds in cooked cheese flavour, both as tastants and as precursors of aroma generation in the Maillard reaction. The effect of cooking on the concentration of selected non-volatile compounds (organic acids, sugars, amino acids, γ-glutamyl dipeptides, and diketopiperazines) in six cheeses (mature Cheddar, mozzarella, Parmesan, and mild Cheddar (low, medium, and high fat)) was determined. Sugars, amino acids, and γ-glutamyl dipeptides were extracted and analysed by LC, whereas diketopiperazines were extracted by solid-phase extraction and analysed by GC-MS. Sugars, amino acids, and γ-glutamyl dipeptides decreased in concentration during cooking, whereas diketopiperazines and some organic acids increased in concentration. Diketopiperazines were above the taste threshold in some cooked cheeses and below the threshold in uncooked cheeses. The role of fat content in cooked cheese flavour is discussed. Furthermore, γ-glutamyl dipeptide concentration increased during 24 months of ageing in low, medium, and high-fat Cheddars, with similar levels of γ-glutamyl dipeptide detected in aged low and high-fat Cheddars. This work will give valuable insight for the dairy industry to inform the development of cheeses, especially low-fat variants, for use in cooked foods.
Collapse
Affiliation(s)
- Rosa C. Sullivan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK (F.M.); (M.J.O.-C.)
- Synergy Flavours Ltd., Hillbottom Road, Sands Industrial Estate, High Wycombe HP12 4HJ, UK
| | - Samantha Nottage
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK (F.M.); (M.J.O.-C.)
| | - Fiyinfolu Makinwa
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK (F.M.); (M.J.O.-C.)
| | - Maria Jose Oruna-Concha
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK (F.M.); (M.J.O.-C.)
| | - Colette C. Fagan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK (F.M.); (M.J.O.-C.)
| | - Jane K. Parker
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK (F.M.); (M.J.O.-C.)
| |
Collapse
|
11
|
Porras-García E, Fernández-Espada Calderón I, Gavala-González J, Fernández-García JC. Potential neuroprotective effects of fermented foods and beverages in old age: a systematic review. Front Nutr 2023; 10:1170841. [PMID: 37396132 PMCID: PMC10313410 DOI: 10.3389/fnut.2023.1170841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Numerous articles have recently studied the involvement of the gut microbiota in neurological diseases. Aging is associated with changes in the microbiome, which implies a reduction in microbial biodiversity among other changes. Considering that the consumption of a fermented-food diet improves intestinal permeability and barrier function, it seems of interest to study its participation in the prevention of neurodegenerative diseases. This article reviews existing studies to establish whether the consumption of fermented foods and fermented beverages prevents or ameliorates neurodegenerative decline in old age. Methods The protocol used was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Details of the protocol for this systematic review are registered on PROSPERO (CRD42021250921). Results Out of 465 articles identified in the Pubmed, Scopus, and Cochrane Library databases, a total of 29 that examined the relationship of the consumption of fermented products with cognitive impairment in old people were selected (22 cohort, 4 case-control, and 3 cross-sectional studies). The results suggest that low-to-moderate alcohol consumption and daily intake of coffee, soy products, and fermented-food diets in general are associated with a lower risk of dementia and Alzheimer's disease. Conclusion Daily consumption of fermented foods and beverages, either alone or as part of a diet, has neuroprotective effects and slows cognitive decline in old people. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=250921, identifier: CRD42021250921.
Collapse
Affiliation(s)
- Elena Porras-García
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | | | - Juan Gavala-González
- Department of Physical Education and Sports, University of Seville, Seville, Spain
| | - José Carlos Fernández-García
- Department of Didactics of Languages, Arts and Sport, University of Malaga, Andalucía-Tech, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| |
Collapse
|
12
|
Zheng X, Nie W, Xu J, Zhang H, Liang X, Chen Z. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res Int 2022; 162:112024. [PMID: 36461308 DOI: 10.1016/j.foodres.2022.112024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Fungal infection and/or spoilage are major concerns of crop and food security worldwide, prompting the developments and application of various antimicrobial agents. In this study, nine strains of lactic acid bacteria (LAB) with antifungal activities were isolated from the traditional Chinese fermented wort of Meigui rice vinegar, where fungi coexist. The cell-free supernatant (CFS) of Lacticaseibacillus paracasei ZX1231 exhibited significant inhibitory activities against Aspergillus niger, Penicillium citrinum, Penicillium polonicum, Zygosaccharomyces rouxii, Talaromyces rubrifaciens, and Candida albicans. Among the four cyclic dipeptides (CDPs) uncovered from the CFS, cyclo(Phe-Leu) and cyclo(Anthranily-Pro) were found in the family Lactobacillaceae for the first time, which inhibited the C. albicans filamentation by targeting upon RAS1-cAMP-PKA pathway. CFS antifungal activities were optimally combined with a bacterial nanocellulose (BNC) matrix to prepare the active quality packaging CFS-BNC films. The challenge tests confirmed that CFS-BNC films significantly inhibited the fungi growth and thus prolonged the shelf life of bread, beef, cheese and soy sauce. L. paracasei ZX1231, its CFS, and the CFS-BNC film may have extensive applications in food preservation and food packaging.
Collapse
|
13
|
André A, Casty B, Ullrich L, Chetschik I. Use of molecular networking to identify 2,5-diketopiperazines in chocolates as potential markers of bean variety. Heliyon 2022; 8:e10770. [PMID: 36193528 PMCID: PMC9525904 DOI: 10.1016/j.heliyon.2022.e10770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
2,5-diketopiperazines are cyclic dipeptides found, among others, in chocolate. Although those compounds are contributing greatly to its pleasant bitterness, they can also be seen as interesting markers of cocoa beans processing. To evaluate the influence of bean variety and processing technology on the quantity of 2,5-diketopiperazines formed in chocolates, HPLC-MS/MS analyses were conducted, and a molecular network was built with the MS2 data. This approach eases the identification of 2,5-diketopiperazines within complex datasets and allows to visualize the chemical diversity of all samples. Using this methodology, 33 dark chocolates were analysed. 18 different diketopiperazine were identified and quantified. Among them, cyclo(L-ile-L-val), cyclo(L-leu-L-ile) and cyclo(L-phe-L-phe) were, to the best of our knowledge, detected for the first time in chocolate. The molecular network allows the clear visualization of differences between samples. The principal component analysis revealed the clustering of small batch chocolate samples according to bean variety, suggesting that bean genotype has a strong influence on the 2,5-diketopiperazines content of bean-to-bar chocolates, regardless of the degree of roasting or the technological process used by the small producers. The presence of two unique diastereoisomers in the classical chocolates bought in the supermarket indicates that the beans have probably undergone a more intense heat treatment. This study proposes the use of 2,5-diketopiperazines as potential markers of cocoa beans variety, as well as an indicator of post-harvest processing and processing technology, and highlights the potential of the molecular networks in the field of food and drink innovation as a promising tool to understand the complex chemistry of flavours.
Collapse
Affiliation(s)
- Amandine André
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, ILGI Institute of Food and Beverage Innovation, Research Group Food Chemistry, 8820, Wädenswil, Switzerland
| | - Bettina Casty
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, ILGI Institute of Food and Beverage Innovation, Research Group Food Chemistry, 8820, Wädenswil, Switzerland
| | - Lisa Ullrich
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, ILGI Institute of Food and Beverage Innovation, Research Group Food Chemistry, 8820, Wädenswil, Switzerland
| | - Irene Chetschik
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, ILGI Institute of Food and Beverage Innovation, Research Group Food Chemistry, 8820, Wädenswil, Switzerland
| |
Collapse
|
14
|
Wang Y, Pan L, Li L, Cao R, Zheng Q, Xu Z, Wu CJ, Zhu H. Glycosylation increases the anti-QS as well as anti-biofilm and anti-adhesion ability of the cyclo (L-Trp-L-Ser) against Pseudomonas aeruginosa. Eur J Med Chem 2022; 238:114457. [DOI: 10.1016/j.ejmech.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
15
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|
16
|
Zhang QY, Han SC, Huang RP, Jiang MY, Yan CY, Li XY, Zhan YJ, Li XM, Li YF, Kurihara H, Tan RR, Li WX, He RR. Cyclo(-Phe-Phe) alleviates chick embryo liver injury via activating the Nrf2 pathway. Food Funct 2022; 13:6962-6974. [PMID: 35678194 DOI: 10.1039/d2fo00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive reactive oxygen species (ROS) accumulation is involved in the pathogenesis of liver fibrosis and damage, specifically in the developing embryo that is extremely sensitive to oxidative stress. Herein, a liver injury model in chick embryo was established by using 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH), which was used to investigate the effect of cyclo(-Phe-Phe) (CPP), a natural dipeptide found in foods and beverages. The results showed that CPP significantly alleviated AAPH-induced liver pathological damage, hepatic dysfunction and inhibited the excessive production of ROS in both chick embryo liver and HepG2 cells. Additionally, CPP increased the antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as elevated the level of glutathione (GSH), suggesting that CPP combating liver injury probably depends on its antioxidant capability. Mechanistically, CPP upregulated the mRNA and protein expression of heme oxyense-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1) in vivo and in vitro, along with promoting the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) while inhibiting its degradation through binding with Kelch-like ECH-associated protein 1 (Keap1). In conclusion, this study proposes a potential peptide drug for the treatment of hepatic damage induced by oxidative stress and also unravels its mechanism of action.
Collapse
Affiliation(s)
- Qiong-Yi Zhang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China. .,Perfect (Guangdong) Commodity Co., LTD, Zhongshan 528451, China
| | - Shao-Cong Han
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Rong-Ping Huang
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Man-Ya Jiang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Xi-You Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Yu-Jiao Zhan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan 528451, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China. .,Perfect (Guangdong) Commodity Co., LTD, Zhongshan 528451, China
| | - Rui-Rong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Wei-Xi Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Abdelaziz R, Tartor YH, Barakat AB, El-Didamony G, El-Samadony HA, Amer SA, Gado MM. Streptomyces coeruleorubidus as a potential biocontrol agent for Newcastle disease virus. BMC Vet Res 2022; 18:241. [PMID: 35751117 PMCID: PMC9229119 DOI: 10.1186/s12917-022-03349-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Newcastle disease virus (NDV) is a severe disease that affects domestic and wild birds. Controlled antibiotics derived from probiotics have been examined as prospective solutions for preserving seroconversion in NDV-vaccinated fowl. In this study, the secondary metabolite “telomycin” was extracted from Streptomyces coeruleorubidus (S. coeruleorubidus) isolated from Egypt's cultivated soil. The structure of telomycin was determined by the elucidation of spectroscopic analysis, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectra, and comparison with the literature. The antiviral activity of the secondary metabolite was tested by checking its effect on NDV hemagglutination activity (HA). Moreover, HA of NDV was tested after inoculation of NDV (control) and a combination of telomycin and NDV in 10- days- specific pathogen-free embryonated chicken eggs (SPF-ECE) daily candling. Histopathological examination was performed for chorioallantoic membranes and liver of SPF-ECE. Results S. coeruleorubidus secondary metabolite “telomycin” showed complete hemagglutination inhibition (HI) activity of NDV strain (MN635617) with log106 infectivity titers (EID50/mL). The HA of NDV strain was 8 log2 and 9 log2 with 0.5% and 0.75% of chicken RBCs, respectively. Preserved structures of chorioallantoic-membranes (CAM) with dilated capillary networks were observed in the treated group inoculated with telomycin and NDV. Histological changes in SPF-ECE liver were examined after inoculation in ova to further characterize the telomycin effect. Telomycin and NDV mixture inoculated group showed preserved cytoarchitecture of hepatocytes with the presence of perivascular foci of lymphocytes. The group that was inoculated with telomycin alone showed normal histology of hepatic acini, central veins, and portal triads. Conclusion S. coeruleorubidus telomycin is a promising bioactive agent that might be a biological weapon against a deadly chicken NDV that costs farmers a lot of money. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03349-7.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed B Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Gamal El-Didamony
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanaa A El-Samadony
- Department of Poultry, Dokki, Agriculture Research Center, Animal Health Research Institute, Giza, 44511, Egypt
| | - Shimaa A Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Marwa M Gado
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
18
|
Karakama S, Suzuki S, Kino K. One-pot synthesis of 2,5-diketopiperazine with high titer and versatility using adenylation enzyme. Appl Microbiol Biotechnol 2022; 106:4469-4479. [PMID: 35687158 DOI: 10.1007/s00253-022-12004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
2,5-Diketopiperazine (DKP) is a cyclic peptide composed of two amino acids and has been recently reported to exhibit various biological activities. DKPs have been synthesized using various methods. In chemical synthesis, a multi-step reaction requiring purification and racemization is problematic. Although enzymatic synthesis can overcome these problems, there has been no example of a general-purpose synthesis of DKPs with high titers. Therefore, we propose a chemoenzymatic method that can synthesize DKPs in a general-purpose manner with high efficiency under mild conditions. The adenylation domain of tyrocidine synthetase A (TycA-A) catalyzes the adenylation reaction of amino acids, and various amides can be synthesized by a nucleophilic substitution reaction with any amine. On the other hand, DKPs can be produced via intramolecular cyclization reactions from dipeptide esters. Based on these observations, we expected a one-pot synthesis of DKPs via dipeptide ester synthesis by TycA-A and cyclization reactions. This method enabled the synthesis of more than 128 types of DKPs without racemization. Importantly, the intramolecular cyclization reaction proceeded largely depending on the pH. In particular, the cyclization reaction proceeded well in the pH range of 6.5-9.5. Based on these results, we constructed a bioreactor with pH-stat for purified enzyme reaction; cyclo(L-Trp-L-Pro) was produced at 4.07 mM by controlling the reaction pH over time using this reactor. The DKPs obtained using this method will provide deeper insights into their structures and functions in future studies. KEY POINTS: • Adenylation enzyme enabled one-pot synthesis of arbitrary 2,5-diketopiperazine. • Little or no racemization occurred during 2,5-diketopiperazine synthesis. • Bioreactor with pH-stat for purified enzymes improved the reaction rate.
Collapse
Affiliation(s)
- Shota Karakama
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Shin Suzuki
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
19
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
20
|
Wang CY, Liu XH, Zheng YY, Ning XY, Zhang YH, Fu XM, Li X, Shao CL, Wang CY. 2,5-Diketopiperazines From a Sponge-Derived Fungus Aspergillus sclerotiorum. Front Microbiol 2022; 13:808532. [PMID: 35668768 PMCID: PMC9164150 DOI: 10.3389/fmicb.2022.808532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Three new 2,5-diketopiperazines, speramide C (1), 3,21-epi-taichunamide F (2), and 2-epi-amoenamide C (3), along with four known analogs (4-7), were obtained from the sponge-derived fungus Aspergillus sclerotiorum GDST-2013-0501 collected from the South China Sea. The chemical structures of new compounds were elucidated by analyzing NMR and MS spectroscopy data, and their absolute configurations were determined by electronic circular dichroism (ECD) calculations. Compound 1 represents the first prenylated indole alkaloid with an ethylene oxide ring at the isopentenyl side chain. Compound 4 displayed DNA topoisomerase I inhibitory activity and antibacterial activity against Staphylococcus epidermidis. The low cytotoxic or non-cytotoxic compound 4 displayed DNA topoisomerase I inhibitory activity, which could provide a starting point for the development of antitumor agents.
Collapse
Affiliation(s)
- Chao-Yi Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Han Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yao-Yao Zheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xing-Yan Ning
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya-Hui Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Kong YS, Ren HY, Liu R, da Silva RR, Aksenov AA, Melnik AV, Zhao M, Le MM, Ren ZW, Xu FQ, Yan XW, Yu LJ, Zhou Y, Xie ZW, Li DX, Wan XC, Long YH, Xu ZZ, Ling TJ. Microbial and Nonvolatile Chemical Diversities of Chinese Dark Teas Are Differed by Latitude and Pile Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5701-5714. [PMID: 35502792 DOI: 10.1021/acs.jafc.2c01005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial β diversity, as well as the nonvolatile chemical α and β diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending. A large number of metabolites sharing between CDTs and fungi were discovered by Feature-based Molecular Networking (FBMN) on the Global Natural Products Social Molecular Networking (GNPS) web platform. These molecules, such as prenylated cyclic dipeptides and B-vitamins, are functionally important for nutrition, biofunctions, and flavor. Molecular networking has revealed patterns in metabolite profiles on a chemical family level in addition to individual structures.
Collapse
Affiliation(s)
- Ya-Shuai Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- School of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, P. R. China
| | - Hong-Yu Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Alexander A Aksenov
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming 100191, Yunnan, P. R. China
| | - Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, P. R. China
| | - Xiao-Wei Yan
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, P. R. China
| | - Li-Jun Yu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Da-Xiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and College of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
22
|
Poonia BK, Sidhu A, Sharma AB. Cyclo(l-proline-l-serine) Dipeptide Suppresses Seed Borne Fungal Pathogens of Rice: Altered Cellular Membrane Integrity of Fungal Hyphae and Seed Quality Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2160-2168. [PMID: 35142498 DOI: 10.1021/acs.jafc.1c07659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Five proline-containing diketopiperazines (Pro-DKPs) produced by antagonistic microorganisms as secondary metabolites were selected and synthesized under laboratory conditions. Out of five synthesized Pro-DKPs, cyclo(l-Pro-l-Ser) (DKP-6) revealed the best inhibition of fungal pathogens (Fusarium verticillioides and Fusarium fujikuroi) of rice under in vitro conditions with effective doses lower than standard fungicide carbendazim. DKP-6 induced stress on the fungal cell membrane integrity, which was revealed by calcofluor white and propidium iodide assays, endorsed by ultra-microscopic details and soluble protein leakage assays. In vivo seed treatment of infested rice seeds with DKP-6 at 2000 μg/mL for 10 h of seed treatment inflicted best reduction in seed rot and seedling blight with respect to control and carbendazim. Significant enhancement in seedling quality parameters were also observed. The work presented the strong influence of cyclo(l-Pro-l-Ser) as a mycocidal seed treatment agent better than synthetic toxic fungicides for rice.
Collapse
Affiliation(s)
| | - Anjali Sidhu
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Anju Bala Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
23
|
Insight into structural description of novel 1,4-Diacetyl-3,6-bis(phenylmethyl)-2,5-piperazinedione: synthesis, NMR, IR, Raman, X-ray, Hirshfeld surface, DFT and docking on breast cancer resistance protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Mishra B, Mishra AK, Kumar S, Mandal SK, NSV L, Kumar V, Baek KH, Mohanta YK. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2021; 12:12. [PMID: 35050134 PMCID: PMC8778586 DOI: 10.3390/metabo12010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Sanjay Kumar
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India;
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Lakshmayya NSV
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| |
Collapse
|
25
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
26
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Li DD, Wang Y, Kim EL, Hong J, Jung JH. Neuroprotective Effect of Cyclo-(L-Pro-L-Phe) Isolated from the Jellyfish-Derived Fungus Aspergillus flavus. Mar Drugs 2021; 19:md19080417. [PMID: 34436256 PMCID: PMC8401322 DOI: 10.3390/md19080417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) expression has been implicated in pathological states such as cancer, inflammation, diabetes, and neurodegeneration. We isolated natural PPAR agonists—eight 2,5-diketopiperazines—from the jellyfish-derived fungus Aspergillus flavus. Cyclo-(L-Pro-L-Phe) was the most potent PPAR-γ activator among the eight 2,5-DKPs identified. Cyclo-(L-Pro-L-Phe) activated PPAR-γ in Ac2F rat liver cells and SH-SY5Y human neuroblastoma cells. The neuroprotective effect of this partial PPAR-γ agonist was examined using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase release, and the Hoechst 33342 staining assay in SH-SY5Y cells. Our findings revealed that cyclo-(L-Pro-L-Phe) reduced hydrogen peroxide-induced apoptosis as well as the generation of reactive oxygen species. Rhodamine 123 staining and western blotting revealed that cyclo-(L-Pro-L-Phe) prevented the loss of mitochondrial membrane potential and inhibited the activation of mitochondria-related apoptotic proteins, such as caspase 3 and poly (ADP-ribose) polymerase. Moreover, cyclo-(L-Pro-L-Phe) inhibited the activation and translocation of nuclear factor-kappa B. Thus, the partial PPAR-γ agonist cyclo-(L-Pro-L-Phe) demonstrated potential neuroprotective activity against oxidative stress-induced neurodegeneration in SH-SY5Y cells.
Collapse
Affiliation(s)
- Dan-dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.-d.L.); (Y.W.); (E.L.K.)
- Correspondence:
| |
Collapse
|
28
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
29
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
30
|
Fractionation platform for target identification using off-line directed two-dimensional chromatography, mass spectrometry and nuclear magnetic resonance. Anal Chim Acta 2021; 1142:28-37. [PMID: 33280701 DOI: 10.1016/j.aca.2020.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022]
Abstract
The unambiguous identification of unknown compounds is of utmost importance in the field of metabolomics. However, current identification workflows often suffer from error-sensitive methodologies, which may lead to incorrect structure annotations of small molecules. Therefore, we have developed a comprehensive identification workflow including two highly complementary techniques, i.e. liquid chromatography (LC) combined with mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), and used it to identify five taste-related retention time and m/z features in soy sauce. An off-line directed two-dimensional separation was performed in order to purify the features prior to the identification. Fractions collected during the first dimension separation (reversed phase low pH) were evaluated for the presence of remaining impurities next to the features of interest. Based on the separation between the feature and impurities, the most orthogonal second dimension chromatography (hydrophilic interaction chromatography or reversed phase high pH) was selected for further purification. Unknown compounds down to tens of micromolar concentrations were tentatively annotated by MS and structurally confirmed by MS and NMR. The mass (0.4-4.2 μg) and purity of the isolated compounds were sufficient for the acquisition of one and two-dimensional NMR spectra. The use of a directed two-dimensional chromatography allowed for a fractionation that was tailored to each feature and remaining impurities. This makes the fractionation more widely applicable to different sample matrices than one-dimensional or fixed two-dimensional chromatography. Five proline-based 2,5-diketopiperazines were successfully identified in soy sauce. These cyclic dipeptides might contribute to taste by giving a bitter flavour or indirectly enhancing umami flavour.
Collapse
|
31
|
Ecarma MJY, Nolden AA. A review of the flavor profile of metal salts: understanding the complexity of metallic sensation. Chem Senses 2021; 46:6366361. [PMID: 34498058 DOI: 10.1093/chemse/bjab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oral sensation of metallic is a complex experience. Much of our current understanding of metallic sensation is from the investigation of metal salts, which elicit diverse sensations, including taste, smell, and chemesthetic sensations, and therefore meet the definition of a flavor rather than a taste. Due to the involvement of multiple chemosensory systems, it can be challenging to define and characterize metallic sensation. Here, we provide a comprehensive review of the psychophysical studies quantifying and characterizing metallic sensation, focusing on metal salts. We examine the factors that impact perception, including anion complex, concentration, nasal occlusion, and pH. In addition, we summarize the receptors thought to be involved in the perception of metallic sensation (i.e., TRPV1, T1R3, TRPA1, and T2R7) either as a result of in vitro assays or from studies in knock-out mice. By enhancing our scientific understanding of metallic sensation and its transduction pathways, it has the potential to improve food and pharmaceuticals, help identify suppression or masking strategies, and improve the ability to characterize individual differences in metallic sensation. It also has the potential to translate to clinical populations by addressing the disparities in knowledge and treatment options for individuals suffering from metallic taste disorder (i.e., phantom taste or "metal mouth"). Future psychophysical studies investigating the sensory perception of metal salts should include a range of compounds and diverse food matrices, coupled with modern sensory methods, which will help to provide a more comprehensive understanding of metallic sensation.
Collapse
Affiliation(s)
- Michelle J Y Ecarma
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alissa A Nolden
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
32
|
Valverde García D, Pérez Esteve É, Barat Baviera JM. Changes in cocoa properties induced by the alkalization process: A review. Compr Rev Food Sci Food Saf 2020; 19:2200-2221. [DOI: 10.1111/1541-4337.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Damián Valverde García
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| | - Édgar Pérez Esteve
- Departamento de Tecnología de AlimentosUniversitat Politècnica de València Valencia Spain
| | | |
Collapse
|
33
|
Bioactive Potential of Extracts of Labrenzia aggregata Strain USBA 371, a Halophilic Bacterium Isolated from a Terrestrial Source. Molecules 2020; 25:molecules25112546. [PMID: 32486092 PMCID: PMC7321072 DOI: 10.3390/molecules25112546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies revealed the potential of Labrenzia aggregata USBA 371 to produce cytotoxic metabolites. This study explores its metabolic diversity and compounds involved in its cytotoxic activity. Extracts from the extracellular fraction of strain USBA 371 showed high levels of cytotoxic activity associated with the production of diketopiperazines (DKPs). We purified two compounds and a mixture of two other compounds from this fraction. Their structures were characterized by 1D and 2D nuclear magnetic resonance (NMR). The purified compounds were evaluated for additional cytotoxic activities. Compound 1 (cyclo (l-Pro-l-Tyr)) showed cytotoxicity to the following cancer cell lines: breast cancer 4T1 (IC50 57.09 ± 2.11 µM), 4T1H17 (IC50 40.38 ± 1.94), MCF-7 (IC50 87.74 ± 2.32 µM), murine melanoma B16 (IC50 80.87 ± 3.67), human uterus sarcoma MES-SA/Dx5 P-pg (−) (IC50 291.32 ± 5.64) and MES-SA/Dx5 P-pg (+) (IC50 225.28 ± 1.23), and murine colon MCA 38 (IC50 29.85 ± 1.55). In order to elucidate the biosynthetic route of the production of DKPs and other secondary metabolites, we sequenced the genome of L. aggregata USBA 371. We found no evidence for biosynthetic pathways associated with cyclodipeptide synthases (CDPSs) or non-ribosomal peptides (NRPS), but based on proteogenomic analysis we suggest that they are produced by proteolytic enzymes. This is the first report in which the cytotoxic effect of cyclo (l-Pro-l-Tyr) produced by an organism of the genus Labrenzia has been evaluated against several cancer cell lines.
Collapse
|
34
|
Schmeda-Hirschmann G, de Andrade JP, Jiménez-Aspee F, Mieres-Castro D. A cyclic dipeptide from the Chilean hazelnut cotyledons (Gevuina avellana Mol., Proteaceae). Sci Rep 2020; 10:7070. [PMID: 32341441 PMCID: PMC7184718 DOI: 10.1038/s41598-020-63983-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
The Chilean hazelnut (Gevuina avellana Mol., Proteaceae) is a southern South American nut consumed as a snack and included in different preparations of traditional Chilean cuisine. Recently we described the fatty acid profile, oxylipins, phenolic compounds, as well as the antioxidant capacity. The main compounds of the phenolic-enriched extract were only tentatively identified by spectrometric means. In the present work, we describe the isolation and full characterization of a cyclic dipeptide cyclo(Arg-Trp) and other compounds from the phenolic enriched extracts of the G. avellana cotyledons. Compounds were isolated by means of counter-current chromatography and structures were established by spectroscopic and spectrometric methods. This is the first report on small peptides in G. avellana and adds evidence on the possible beneficial effects of this nut in human health.
Collapse
Affiliation(s)
- Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, Chile.
| | - Jean Paulo de Andrade
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, Chile
- Núcleo Científico Multidisciplinario, Dirección de Investigación, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Felipe Jiménez-Aspee
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Daniel Mieres-Castro
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, Chile
| |
Collapse
|
35
|
Goethals S, Rombouts C, Hemeryck LY, Van Meulebroek L, Van Hecke T, Vossen E, Van Camp J, De Smet S, Vanhaecke L. Untargeted Metabolomics to Reveal Red versus White Meat-Associated Gut Metabolites in a Prudent and Western Dietary Context. Mol Nutr Food Res 2020; 64:e2000070. [PMID: 32324972 DOI: 10.1002/mnfr.202000070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Indexed: 11/08/2022]
Abstract
SCOPE To improve understanding of the epidemiological link between red and processed meat consumption and chronic diseases, more insight into the formation of metabolites during meat digestion is warranted. METHODS AND RESULTS Untargeted mass-spectrometry-based metabolomics is applied to explore the impact of red and processed meat consumption (compared to chicken), combined with a prudent or Western dietary pattern. A pig feeding study (n = 32), as a sentinel for humans, is conducted in a 2 × 2 factorial design for 4 weeks. The luminal content of the small intestine and colon are collected to determine their metabolic fingerprints. Seventy-six metabolites (38 in the small intestine, 32 in the colon, and 6 in both intestinal compartments) contributing to the distinct gut metabolic profiles of pigs fed either chicken or red and processed meat are (tentatively) identified. Consumption of red and processed meat results in higher levels of short- and medium-chain acylcarnitines and 3-dehydroxycarnitine, irrespective of dietary context, whereas long-chain acylcarnitines and monoacylglycerols are associated with the red and processed Western diet. CONCLUSION The identification of red and processed meat-associated gut metabolites in this study contributes to the understanding of meat digestion in a complex but controlled dietary context and its potential health effects.
Collapse
Affiliation(s)
- Sophie Goethals
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, 9820, Belgium.,Laboratory of Animal Nutrition and Animal Product Quality, Ghent University, Ghent, 9000, Belgium.,Research Group Food Chemistry and Human Nutrition, Ghent University, Ghent, 9000, Belgium
| | - Caroline Rombouts
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, 9820, Belgium.,Laboratory of Cell Biology and Histology, Antwerp University, Wilrijk, 2610, Belgium
| | | | | | - Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University, Ghent, 9000, Belgium
| | - Els Vossen
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University, Ghent, 9000, Belgium
| | - John Van Camp
- Research Group Food Chemistry and Human Nutrition, Ghent University, Ghent, 9000, Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University, Ghent, 9000, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, 9820, Belgium.,Institute for Global Food Security, Queen's University, Belfast, Ireland, BT9 5DL, UK
| |
Collapse
|
36
|
Ziganshin MA, Larionov RA, Gerasimov AV, Ziganshina SA, Klimovitskii AE, Khayarov KR, Mukhametzyanov TA, Gorbatchuk VV. Thermally induced cyclization of L -isoleucyl- L -alanine in solid state: Effect of dipeptide structure on reaction temperature and self-assembly. J Pept Sci 2019; 25:e3177. [PMID: 31317614 DOI: 10.1002/psc.3177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
Thermal treatment of short-chain oligopeptides is able to initiate the process of their self-assembly with the formation of organic nanostructures with unique properties. On the other hand, heating can lead to a chemical reaction with the formation of new substances with specific properties and ability to form structures with different morphology. Therefore, in order to have a desired process, researcher needs to find its temperature range. In the present work, cyclization of L -isoleucyl-L -alanine dipeptide in the solid state upon heating was studied. Kinetic parameters of this reaction were estimated within the approaches of the nonisothermal kinetics. The correlation between side chain structure of dipeptides and temperature of their cyclization in the solid state was found for the first time. This correlation may be used to predict the temperature, at which dipeptide self-assembly changes to chemical reaction. The differences in self-assembly of linear and cyclic dipeptides were demonstrated using atomic force microscopy. The effect of dipeptide concentration in a source solution and an organic solvent used on self-assembly of dipeptides was shown. The new information obtained on the thermal properties and self-assembly of linear and cyclic forms of L -isoleucyl-L -alanine may be useful for the design of new nanomaterials based on oligopeptides, as well as for the synthesis of cyclic oligopeptides.
Collapse
Affiliation(s)
- Marat A Ziganshin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| | - Radik A Larionov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| | | | - Sufia A Ziganshina
- Zavoisky Physical-Technical Institute of FRC Kazan Scientific Center of RAS, Kazan, Russia
| | | | - Khasan R Khayarov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| | | | - Valery V Gorbatchuk
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| |
Collapse
|
37
|
Fu Y, Zhang Y, Soladoye OP, Aluko RE. Maillard reaction products derived from food protein-derived peptides: insights into flavor and bioactivity. Crit Rev Food Sci Nutr 2019; 60:3429-3442. [PMID: 31738577 DOI: 10.1080/10408398.2019.1691500] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food protein-derived peptides serve as food ingredients that can influence flavor and bioactivity of foods. The Maillard reaction plays a crucial role in food processing and storage, and generates a wide range of Maillard reaction products (MRPs) that contribute to flavor and bioactivity of foods. Even though the reactions between proteins and carbohydrates have been extensively investigated, the modifications of food protein-derived peptides and the subsequent impacts on flavor and bioactivity of foods have not been fully elucidated. In this review, the flavor and bioactive properties of food-derived peptides are reviewed. The formation mechanisms with respect to MRPs generated from food protein-derived peptides have been discussed. The state-of-the-art studies on impacts of the Maillard reaction on flavor and bioactivity of food protein-derived peptides are also discussed. In addition, some potential negative effects of MRPs are described.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta, Canada
| | - Rotimi E Aluko
- College of Food Science, Southwest University, Chongqing, China.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Misiura M, Miltyk W. Proline-containing peptides-New insight and implications: A Review. Biofactors 2019; 45:857-866. [PMID: 31430415 DOI: 10.1002/biof.1554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The family of regulatory proline-containing peptides (PCPs), also known as glyprolines, exhibit significant biological activity. The group of glyprolines includes Gly-Pro (GP), Pro-Gly-Pro (PGP), cyclic Gly-Pro (cGP), as well as PGP derivatives, for example, N-acetylated PGP (N-a-PGP) and N-methylated PGP (N-m-PGP). PCPs are engaged in various biological processes including the proinflammatory neutrophil chemoattraction in lung diseases, inflammatory bowel diseases or ischemic stroke. Glyprolines have been also postulated to play an important role as atheroprotective and anticoagulant agents, exhibit neuroprotective effects in Parkinson's disease, as well as regulate insulin-like growth factor (IGF) homeostasis. It was also noticed that PCPs inhibit proliferation and migration of keratinocytes in wound healing, protection of the gastric mucosa and stimulation of its regeneration. The regulatory glyprolines are derived from endogenous and exogenous sources. Most PCPs are derived from collagen or diet protein degradation. Recently, great interest is concentrated on short proline-rich oligopeptides derived from IGF-1 degradation. The mechanism of PCPs biological activity is not fully explained. It involves receptor-mediated mechanisms, for example, N-a-PGP acts as CXCR1/2 receptor ligand, whereas cGP regulates IGF-1 bioavailability by modifying the IGF-1 binding to the IGF-1 binding protein-3. PGP has been observed to interact with collagen-specific receptors. The data suggest a promising role of PGP as a target of various diseases therapy. This review is focused on the effect of PCPs on metabolic processes in different tissues and the molecular mechanism of their action as an approach to pharmacotherapy of PCPs-dependent diseases.
Collapse
Affiliation(s)
- Magdalena Misiura
- Department of Pharmaceutical Analysis and Bioanalysis, Medical University of Bialystok, Białystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis and Bioanalysis, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
39
|
Bhattacharya D, Lai TK, Saha A, Selvin J, Mukherjee J. Structural elucidation and antimicrobial activity of a diketopiperazine isolated from a Bacillus sp. associated with the marine sponge Spongia officinalis. Nat Prod Res 2019; 35:2315-2323. [PMID: 31583909 DOI: 10.1080/14786419.2019.1672684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A diketopiperazine (3S, 6S)-3,6-diisobutylpiperazine-2,5-dione was isolated from a sponge-associated microbe for the first time and characterized by FTIR, HRESI-MS, 1H, 13C NMR and 2D NMR. The source is novel for this compound. Single crystal XRD of this diketopiperazine obtained as a natural product was analysed for the first time and its melting point was determined to be 262 °C. MICs of this cyclic dipeptide against Escherichia coli and Staphylococcus aureus subsp. aureus were 16 µg mL-1 and 22 µg mL-1 respectively, the first report of antibacterial activity of this diketopiperazine.Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2019.1672684.
Collapse
Affiliation(s)
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Evening College , Kolkata , India
| | - Amit Saha
- Department of Chemistry, Jadavpur University , Kolkata , India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University , Puducherry , India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University , Kolkata , India
| |
Collapse
|
40
|
Low DY, Lefèvre‐Arbogast S, González‐Domínguez R, Urpi‐Sarda M, Micheau P, Petera M, Centeno D, Durand S, Pujos‐Guillot E, Korosi A, Lucassen PJ, Aigner L, Proust‐Lima C, Hejblum BP, Helmer C, Andres‐Lacueva C, Thuret S, Samieri C, Manach C. Diet-Related Metabolites Associated with Cognitive Decline Revealed by Untargeted Metabolomics in a Prospective Cohort. Mol Nutr Food Res 2019; 63:e1900177. [PMID: 31218777 PMCID: PMC6790579 DOI: 10.1002/mnfr.201900177] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/24/2019] [Indexed: 12/21/2022]
Abstract
SCOPE Untargeted metabolomics may reveal preventive targets in cognitive aging, including within the food metabolome. METHODS AND RESULTS A case-control study nested in the prospective Three-City study includes participants aged ≥65 years and initially free of dementia. A total of 209 cases of cognitive decline and 209 controls (matched for age, gender, education) with slower cognitive decline over up to 12 years are contrasted. Using untargeted metabolomics and bootstrap-enhanced penalized regression, a baseline serum signature of 22 metabolites associated with subsequent cognitive decline is identified. The signature includes three coffee metabolites, a biomarker of citrus intake, a cocoa metabolite, two metabolites putatively derived from fish and wine, three medium-chain acylcarnitines, glycodeoxycholic acid, lysoPC(18:3), trimethyllysine, glucose, cortisol, creatinine, and arginine. Adding the 22 metabolites to a reference predictive model for cognitive decline (conditioned on age, gender, education and including ApoE-ε4, diabetes, BMI, and number of medications) substantially increases the predictive performance: cross-validated Area Under the Receiver Operating Curve = 75% [95% CI 70-80%] compared to 62% [95% CI 56-67%]. CONCLUSIONS The untargeted metabolomics study supports a protective role of specific foods (e.g., coffee, cocoa, fish) and various alterations in the endogenous metabolism responsive to diet in cognitive aging.
Collapse
Affiliation(s)
- Dorrain Yanwen Low
- Human Nutrition UnitINRA, Université Clermont AuvergneF‐63000Clermont‐FerrandFrance
| | - Sophie Lefèvre‐Arbogast
- Bordeaux Population Health Research CenterInserm, University of BordeauxUMR 1219F‐33000BordeauxFrance
| | - Raúl González‐Domínguez
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIUniversity of BarcelonaAv Joan XXIII 27–3108028BarcelonaSpain
| | - Mireia Urpi‐Sarda
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIUniversity of BarcelonaAv Joan XXIII 27–3108028BarcelonaSpain
| | - Pierre Micheau
- Human Nutrition UnitINRA, Université Clermont AuvergneF‐63000Clermont‐FerrandFrance
| | - Melanie Petera
- Université Clermont AuvergneINRA, UNH, Plateforme d'Exploration du MétabolismeMetaboHUB ClermontF‐63000Clermont‐FerrandFrance
| | - Delphine Centeno
- Université Clermont AuvergneINRA, UNH, Plateforme d'Exploration du MétabolismeMetaboHUB ClermontF‐63000Clermont‐FerrandFrance
| | - Stephanie Durand
- Université Clermont AuvergneINRA, UNH, Plateforme d'Exploration du MétabolismeMetaboHUB ClermontF‐63000Clermont‐FerrandFrance
| | - Estelle Pujos‐Guillot
- Université Clermont AuvergneINRA, UNH, Plateforme d'Exploration du MétabolismeMetaboHUB ClermontF‐63000Clermont‐FerrandFrance
| | - Aniko Korosi
- Brain Plasticity Group, SILS‐CNSUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, SILS‐CNSUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg5020Austria
| | - Cécile Proust‐Lima
- Bordeaux Population Health Research CenterInserm, University of BordeauxUMR 1219F‐33000BordeauxFrance
| | | | - Catherine Helmer
- Bordeaux Population Health Research CenterInserm, University of BordeauxUMR 1219F‐33000BordeauxFrance
| | - Cristina Andres‐Lacueva
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIUniversity of BarcelonaAv Joan XXIII 27–3108028BarcelonaSpain
| | - Sandrine Thuret
- Department of Basic and Clinical NeuroscienceMaurice Wohl Neuroscience InstituteInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 9NUUK
| | - Cécilia Samieri
- Bordeaux Population Health Research CenterInserm, University of BordeauxUMR 1219F‐33000BordeauxFrance
| | - Claudine Manach
- Human Nutrition UnitINRA, Université Clermont AuvergneF‐63000Clermont‐FerrandFrance
| |
Collapse
|
41
|
Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review. Adv Pharm Bull 2019; 9:335-347. [PMID: 31592430 PMCID: PMC6773942 DOI: 10.15171/apb.2019.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Antibiotic therapy is among the most important treatments against infectious diseases and has tremendously improved effects on public health. Nowadays, development in using this treatment has led us to the emergence and enhancement of drug-resistant pathogens which can result in some problems including treatment failure, increased mortality as well as treatment costs, reduced infection control efficiency, and spread of resistant pathogens from hospital to community. Therefore, many researches have tried to find new alternative approaches to control and prevent this problem. This study, has been revealed some possible and effective approaches such as using farming practice, natural antibiotics, nano-antibiotics, lactic acid bacteria, bacteriocin, cyclopeptid, bacteriophage, synthetic biology and predatory bacteria as alternatives for traditional antibiotics to prevent or reduce the emergence of drug resistant bacteria.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Alizadeh
- Department of Clinical Sciences (Surgery), Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
42
|
Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Res Int 2019; 121:217-228. [PMID: 31108743 DOI: 10.1016/j.foodres.2019.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 11/21/2022]
Abstract
2,5-diketopiperazines (DKPs) are cyclic dipeptides responsible for the specific bitter taste of cocoa formed during roasting. The 2,5-diketopiperazine and peptide composition of four different cocoa bean samples from different origins were studied using LC-MS techniques. 34 diketopiperazines were identified, of which 10 are newly reported in cocoa. Their formation was followed during two different roasting time-series using a zero-order and an alternative Prout-Tompkins solid-state kinetic models. The activation energies of diketopiperazine formation showed a distribution close to normal with individual values depending on the nature of the substituents. The relative concentrations of the DKPs were correlated with their putative peptide precursors in unroasted cocoa bean samples. The results showed a significant positive correlation, indicating that oligopeptides formed in cocoa bean fermentation are taste-precursors for bitter tasting diketopiperazines. Unexpectedly, for most diketopiperazines, a single major peptide precursor could be suggested.
Collapse
|
43
|
Ágoston K. Nojirimycin Based 2,5-Diketopiperazines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1557688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Károly Ágoston
- Institute of Organic Chemistry, RCNS-HAS Magyar, Tudósok Körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
44
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
45
|
Chen C, Ye Y, Wang R, Zhang Y, Wu C, Debnath SC, Ma Z, Wang J, Wu M. Streptomyces nigra sp. nov. Is a Novel Actinobacterium Isolated From Mangrove Soil and Exerts a Potent Antitumor Activity in Vitro. Front Microbiol 2018; 9:1587. [PMID: 30072967 PMCID: PMC6058180 DOI: 10.3389/fmicb.2018.01587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022] Open
Abstract
A new bacterial strain, designated 452T, was isolated from the rhizosphere soil of the mangrove Avicennia marina in China. As determined, its cell wall peptidoglycan contained LL-diaminopimelic acid; MK-9(H8) and MK-9(H6) were the major isoprenoid quinones; and iso-C16:0 (31.3%), anteiso-C15:0 (16.9%), and iso-C15:0 (12.5%) were the major cellular fatty acids (>10.0%). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 452T formed a distinct lineage in the clade of the genus Streptomyces, and was closely related to S. coerulescens DSM 40146T (99.6% sequence identity), S. bellus DSM 40185T (99.5%), and S. coeruleorubidus DSM 41172T (99.3%). The DNA-DNA relatedness between strain 452T and these type strains ranged between 29.3 and 42.3%. Based on the phenotypic, chemotaxonomic, and phylogenetic features, the strain 452T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces nigra sp. nov. is proposed. The type strain is 452T (=KCTC 39960T = MCCC 1K03346T). Further, strain 452T extracts exhibited a pronounced antitumor activity against human cancer cell lines A549, HCT-116, and HepG2, but not against normal human colon cells CCD-18Co. Active substances in the fermentation broth of strain 452T were isolated by bioassay-guided analysis, and then purified using a macroporous resin, silica gel, sephadex LX-20 column, and semi-preparative high-performance liquid chromatography (HPLC). Eight proline-containing diketopiperazines, namely, cyclo(Pro-Ala), cyclo(Pro-Gly), cyclo(Pro-Phe), cyclo(Pro-Met), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Pro-Tyr), and cyclo(L-Leu-trans-4-hydroxy-L-Pro), were identified by electrospray ionization mass spectrometry (MS) and nuclear magnetic resonance (NMR). The compounds displayed different levels of cytotoxicity. The highest cytotoxicity was exhibited by cyclo(Pro-Ala) and cyclo(Pro-Met) against A549 cells, and cyclo(Phe-Pro) and cyclo(Pro-Ala) against HCT-116 cells, with average IC50 values equal to 18.5, 27.3, 32.3, and 47.6 μg/mL, respectively. The diversity of diketopiperazines and other chemicals produced by 452T was further investigated using gas chromatography (GC)-MS and liquid chromatography (LC)-MS. The analysis revealed 16 types of metabolites with antitumor activity and 16 other types of diketopiperazines. Hence, extracts of the newly identified strain may be used a starting material for the development of antitumor agents.
Collapse
Affiliation(s)
- Can Chen
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Yanghui Ye
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Ruijun Wang
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Yinglao Zhang
- Biomedical Research Program, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen Wu
- Institute of Hydraulic and Marine Engineering, School of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Sanjit C Debnath
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Zhongjun Ma
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Jidong Wang
- Department of New Drug Screening, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, China
| | - Min Wu
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Abstract
The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
47
|
Ashigai H, Mizutani M, Taniguchi Y, Matsukura Y, Nakashima K, Ikeshima E, Yajima H. Roasted Barley Extract (Mugi-cha) Containing Cyclo(d-Phe-l-Pro) Prevents Lowering of the Cutaneous Blood Flow and Skin Temperature under Air Conditioning: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5901-5906. [PMID: 29792425 DOI: 10.1021/acs.jafc.8b02485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Roasted barley extract (RBE), also known as mugi-cha, is a well-known healthy non-caffeinated beverage, and its health functionality has been widely reported. Our previous clinical study showed that RBE affects the cutaneous blood flow and skin temperature after cold-water immersion and that cyclo(d-Phe-l-Pro) is responsible for its effect. In this study, we investigated whether cyclo(d-Phe-l-Pro)-containing RBE prevents the decrease in the cutaneous blood flow and skin temperature. Subjects remained in the air-conditioned room while ingesting RBE or a placebo. We measured the cutaneous blood flow and skin temperature. We evaluated the effect of RBE administration by two-way repeated measures analysis of variance. A total of 15 subjects were enrolled. The change in cutaneous blood flow in the RBE and placebo groups was -0.79 ± 0.38 and -2.03 ± 0.35 mL min-1 100 g-1, respectively ( p value of 0.041). The change in the skin temperature in the RBE and placebo groups was -1.85 ± 0.35 and -3.02 ± 0.30 °C, respectively ( p value of <0.001). We also did subclass analysis with cold-feeling subjects. For the seven subjects who had cold sensation, the change in the cutaneous blood flow in the RBE and placebo groups was -0.48 ± 0.58 and -2.56 ± 0.48 mL min-1 100 g-1, respectively ( p value of 0.008). The change in the skin temperature in the RBE and placebo groups was -1.46 ± 0.74 and -2.89 ± 0.39 °C, respectively ( p value of 0.009). Thus, RBE containing cyclo(d-Phe-l-Pro) prevents the decrease in the cutaneous blood flow and skin temperature under air conditioning.
Collapse
Affiliation(s)
- Hiroshi Ashigai
- Research Laboratories for Health Science and Food Technologies , Kirin Company, Limited , 1-17-1 Namamugi , Tsurumi, Yokohama , Kanagawa 230-8628 , Japan
| | - Mai Mizutani
- Research Laboratories for Health Science and Food Technologies , Kirin Company, Limited , 1-17-1 Namamugi , Tsurumi, Yokohama , Kanagawa 230-8628 , Japan
| | - Yoshimasa Taniguchi
- Development Division, Research Laboratories for Health Science and Food Research , Kirin Company, Limited , 1-13-5 Fukuura , Kanazawa, Yokohama , Kanagawa 236-0004 , Japan
| | - Yasuko Matsukura
- Development Division, Research Laboratories for Health Science and Food Research , Kirin Company, Limited , 1-13-5 Fukuura , Kanazawa, Yokohama , Kanagawa 236-0004 , Japan
| | - Keiko Nakashima
- Research Laboratories for Health Science and Food Technologies , Kirin Company Limited , 1-17-1 Namamugi , Tsurumi, Yokohama , Kanagawa 230-8628 , Japan
| | - Emiko Ikeshima
- Development Division, Research Laboratories for Health Science and Food Research , Kirin Company, Limited , 1-13-5 Fukuura , Kanazawa, Yokohama , Kanagawa 236-0004 , Japan
| | - Hiroaki Yajima
- Research and Development Division, Research and Development Planning Department , Kirin Company Limited , 4-10-2 Nakano , Nakano, Tokyo , Tokyo 164-0001 , Japan
| |
Collapse
|
48
|
Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Kolar B, Kouba M, López-Alonso M, López Puente S, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wallace RJ, Wester P, Lundebye AK, Nebbia C, Renshaw D, Innocenti ML, Gropp J. Safety and efficacy of Bacillus subtilis KCCM 10673P and Aspergillus oryzae KCTC 10258BP when used as a technological feed additive for all animal species. EFSA J 2018; 16:e05275. [PMID: 32625912 PMCID: PMC7009617 DOI: 10.2903/j.efsa.2018.5275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The additive consists of single strains of Bacillus subtilis and Aspergillus oryzae, to be used in combination as a technological additive (proposed functional group: Substances for the reduction of anti‐nutritional factors) in feed materials for all animal species. An opinion on the two microorganisms was published previously. At this time, the safety of the B. subtilis strain for target animals, consumers, users and the environment was established, but no conclusions could be draw on the safety of the strain of A. oryzae for the target species and consumers or on the efficacy of the additive in reducing anti‐nutritional factors. This opinion considers new information intended to address the identified deficiencies in the previous opinion. An extensive analytical search for secondary metabolites was made of the A. oryzae component of the additive and 15 metabolites were detected and quantified. Of the 15 metabolites, 13 occurred in ng/g additive concentrations and were considered not to be of concern. The remaining two compounds, cyclic dipeptides (2,5‐diketopiperazines), were detected at concentrations up to 1.5 mg/kg. Both have been identified in a wide range of foods and beverages and there appears to be no reports of adverse reactions to such cyclic dipeptides in processed food. Consequently, none of the metabolites detected were considered likely to cause adverse effects in target animals fed treated feed material or in consumers of products derived from such animals. Data from the analysis of 18 batches of soybean before and after treatment with the two strains were presented in support of the efficacy of the additive. Two classes of anti‐nutritional factors were considered; oligosaccharides of the raffinose series and trypsin inhibitor. The microbial strains in combination were able to substantially reduce the concentration of oligosaccharides and trypsin inhibitor naturally present in soybean. Other feed materials were not considered.
Collapse
|
49
|
Kwak MK, Liu R, Kang SO. Antimicrobial activity of cyclic dipeptides produced by Lactobacillus plantarum LBP-K10 against multidrug-resistant bacteria, pathogenic fungi, and influenza A virus. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Nilov DK, Yashina KI, Gushchina IV, Zakharenko AL, Sukhanova MV, Lavrik OI, Švedas VK. 2,5-Diketopiperazines: A New Class of Poly(ADP-ribose)polymerase Inhibitors. BIOCHEMISTRY (MOSCOW) 2018; 83:152-158. [DOI: 10.1134/s0006297918020074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|