1
|
Shi H, Li Y, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. How chloride salt mixtures affect the final gel properties of low-sodium myofibrillar protein: Underlining the perspective of gelation process. Meat Sci 2025; 221:109735. [PMID: 39721208 DOI: 10.1016/j.meatsci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to investigate the performance differences of low-sodium myofibrillar protein (MP) gels substituted by different chloride salt mixtures from the perspective of gelation process. The results revealed that low-sodium MP substituted by KCl/CaCl2 exhibited higher turbidity and particle size at 40 % substitution, and formed protein aggregates earlier at 53 °C. During the gelation process, KCl/CaCl2 increased the extent of cross-linking as the substitution level increased from 10 % to 40 %, which was prone to forming final gels with poor palatability. Microstructural and binarization results visually indicated that an irregular reticular structure composed of partial clusters formed when the temperature heated over 53 °C, and the cross-linked cluster blocks further shrunk from 53 °C to 73 °C. Rheological amplitude sweeps revealed that KCl/CaCl2-substitued MP displayed a faster fracture of the ductile structure, and this influenced the distribution of cluster blocks inside the network. The introduction of salt mixtures altered protein conformation, and more unordered structures were found in low-sodium MP containing CaCl2, rather than MP containing MgCl2. Additionally, Ca2+ ions increased the thermo-denatured temperature of MP, and extended the relaxation time of bound water at 53 °C, and Mg2+ ions slowed down the degree of liquid loss at 53 °C. As a result, the low-sodium MP containing CaCl2 exhibited a lower expansion of protein structure accompanied by the involvement of less proteins in gel formation and more liquid loss in the final gel.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongjie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi 276036, China
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia; German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Li N, Tan Z, Ma R, Song Y, Liu R, Zhao J, Qin N, Li Y, Liu X, Zhou D, Li D. Using multi-modal spectroscopy technology and microscopic analysis to explore the regulation of ultra-high pressure heat-assisted treatment on the texture of ready-to-eat shrimp during storage. Food Chem 2025; 464:141604. [PMID: 39396468 DOI: 10.1016/j.foodchem.2024.141604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
This study employed multi-modal spectroscopy technology and microscopic analysis to investigate the effects of various treatments on the texture of ready-to-eat (RTE) shrimps during storage. The results indicated that ultra-high pressure heat-assisted treatment (UHP-HAT) significantly improved the texture properties of RTE shrimps while simultaneously reducing the carbonyl and trichloroacetic acid-soluble properties associated with protein oxidative degradation. Furthermore, UHP-HAT resulted in a denser and more ordered protein structure, which contributed to an increased content of bound and immobile water. A partial least squares regression model for texture prediction was developed using data obtained from hyperspectral imaging, demonstrating a strong correlation between spectral information and texture parameters. Additionally, infrared imaging was utilized to elucidate the distribution of functional groups (OH, CO, CH) and carbonyl compounds within the proteins. Overall, the findings suggested that UHP-HAT could effectively delay the deterioration of texture by mitigating protein degradation.
Collapse
Affiliation(s)
- Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruida Ma
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yafang Song
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Rong Liu
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Jiaxin Zhao
- Liaoning General Fair Testing Co., Ltd., Shenyang 110000, China
| | - Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yahong Li
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Zhang R, Zhang W, Dong X, Woo MW, Quek SY. Modification of hempseed protein isolate using a novel two-stage method applying high-pressure homogenization coupled with high-intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2025; 112:107177. [PMID: 39608063 PMCID: PMC11634981 DOI: 10.1016/j.ultsonch.2024.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Hempseed protein isolate (HPI), a novel plant protein, possesses advantages as an alternative food protein from a nutritional and sustainable perspective. This study investigated HPI modification by examining the effects of high-pressure homogenization combined with high-intensity ultrasound (HPH + HIU) on the physicochemical and functionality of HPI. Firstly, the optimal homogenization pressure (180 MPa) was selected based on the solubility and particle size of HPI. Then, the effect of ultrasonic treatment time (2, 5, and 10 min) was studied at the optimal homogenization pressure. The results showed increased solubility of HPI after all treatments. Particularly, the HPH + HIU2min treatment had a synergistic effect that maximumly increased the solubility of HPI from 6.88 % to 22.89 % at neutral pH. This treatment significantly decreased the HPI's particle size, β-sheet and total sulfhydryl contents while maximizing the random coil level, intrinsic fluorescence intensity and surface hydrophobicity compared to the single HPH or HIU2min treatments. The protein structure was modified and unfolded, enhancing the water-protein and oil-protein interactions, as reflected in the increase in water and oil absorption, foaming and emulsifying properties. However, extending the ultrasonic time to 5 min for the HPH + HIU treatment increased protein particle size and weakened the functional properties of HPI. Further prolonging the ultrasonic time to 10 min partially loosened the protein aggregates and restored the functional properties of HPI to some extent. The findings indicate a promising application of HPH + HIU as an efficient way for HPI modification to facilitate its broader application in the food industry.
Collapse
Affiliation(s)
- Ruyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Dong
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
4
|
Liu X, Feng Y, Li R, Zhang H, Ren F, Liu J, Wang J. Comprehensive review of dysphagia and technological advances in dysphagia food. Food Res Int 2025; 199:115354. [PMID: 39658158 DOI: 10.1016/j.foodres.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
As the global population ages, dysphagia is becoming increasingly common among the elderly, posing serious risks such as choking, aspiration pneumonia, and even death. Leveraging advanced technologies to develop specialized food products for those with dysphagia not only serves the economic interests of the elderly food market but also significantly enhances the nutritional health and social satisfaction of this demographic. This review examines the causes and early symptoms of dysphagia, the development of texture-modified foods (TMFs), and the relevant regulations and standards. It also addresses the key factors influencing the swallowing of foods, focusing on rheology and tribology. Most texture-modified foods currently available do not provide an enjoyable eating experience for the elderly or those with dysphagia. The integration of artificial intelligence (AI) and mathematical modeling with food additive manufacturing technology appears promising for improving foods designed for the elderly and those with dysphagia. This paper highlights the critical benefits and potential applications of AI, mathematical modeling, and food additive manufacturing in creating dysphagia-friendly foods and provides a conceptual system for designing diets based on AI for dysphagic foods. AI and mathematical model-based food processing technology enable the food industry to achieve digitalization and large-scale customization, potentially revolutionizing the approach to dietary management in dysphagia.
Collapse
Affiliation(s)
- Xiao Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Yulin Feng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Ren Li
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China..
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China..
| | - Jie Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China..
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China..
| |
Collapse
|
5
|
Rodrigues SSQ, Leite A, Vasconcelos L, Teixeira A. Exploring the Nexus of Feeding and Processing: Implications for Meat Quality and Sensory Perception. Foods 2024; 13:3642. [PMID: 39594057 PMCID: PMC11593356 DOI: 10.3390/foods13223642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The intrinsic quality of meat is directly related to muscle and fat tissues. Factors such as the rate and extent of anaerobic glycolysis affect muscle pH, influencing the meat's color, water holding, and texture. Postmortem anomalies can result in deviations from this intrinsic quality. The animals' diet plays a crucial role in meat quality. Specific nutrients, such as proteins, vitamins, and minerals, affect meat's texture, flavor, and juiciness. Feeds rich in omega-3 fatty acids can improve the sensorial quality of meat. Meat processing and methods such as aging, marinating, and cooking affect the texture, flavor, and juiciness, which can be evaluated by specific equipment or trained or untrained consumers. This comprehensive review investigates the relationship between animal feeding practices and meat processing techniques and their combined impact on meat quality and sensory perception. By synthesizing recent research, we explore how various feeding protocols (including diet composition and feed additives) and processing methods shape meat products' nutritional value, texture, flavor profile, and overall consumer appeal. Understanding this nexus is crucial for optimizing meat quality while ensuring sustainability and safety in the food supply chain.
Collapse
Affiliation(s)
- Sandra S. Q. Rodrigues
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (A.T.)
| | | | | | | |
Collapse
|
6
|
Kang Z, Hou Q, Xu J. Research Progress and Teaching Exploration of Physical Processing Technology for Reduced-Salt Gel Meat Products. Foods 2024; 13:3606. [PMID: 39594022 PMCID: PMC11594212 DOI: 10.3390/foods13223606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Salt assumes a significant role in the production of meat gels. Excessive intake of salt adversely affects human health, and consumers' demand for reduced-salt meat products is escalating. This review primarily introduces the characteristics of the physical processing technology of reduced-salt gel meat products, such as the technology of ultrasonic, high-pressure processing, beating, plasma, and magnetic field, and its role in reduced-salt gel meat processing, and explores means to improve the teaching effect of the physical processing technology of reduced-salt gel meat products in the major of Food Science and Engineering. It was found that physical processing techniques, such as ultrasound, high-pressure processing, and beating, could enhance the solubility and processing performance of myofibrillar protein by improving the meat structure and protein conformation, increasing the interaction between proteins, water, and fat molecules, and enhancing the texture, water-holding capacity, and sensory quality of reduced-salt gel meat products. In the promotion and teaching of physical processing technology, it is necessary to strengthen interdisciplinary integration and scientific research activities according to the customs, laws and regulations of different countries and regions, combined with the development frontier of the technology, and develop reduced-salt gel meat products that meet local needs according to local conditions.
Collapse
Affiliation(s)
- Zhuangli Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Qin Hou
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Jingguo Xu
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| |
Collapse
|
7
|
Wang Y, Ma CM, Yang Y, Wang B, Liu XF, Wang Y, Bian X, Zhang G, Zhang N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res Int 2024; 195:114991. [PMID: 39277253 DOI: 10.1016/j.foodres.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.
Collapse
Affiliation(s)
- Yuan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
8
|
Liu D, Zhou M, Tan H, Xiong G, Wang L, Shi L, Li C, Wu W, Qiao Y. Metabolomics, volatolomics, and bioinformatics analyses of the effects of ultra-high pressure pretreatment on taste and flavour parameters of cured Culter alburnus. Food Chem 2024; 453:139649. [PMID: 38762947 DOI: 10.1016/j.foodchem.2024.139649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The effects of ultra-high pressure (UHP) pretreatment (50-250 MPa) on the fish curing were studied. UHP increased the overall volatile compound concentration of cured fish. Among 50-250 MPa five treatment groups, 150 MPa UHP group exhibited the highest total free amino acid content (294.34 mg/100 g) with that of the control group being 92.39 mg/100 g. The activity of cathepsin L was increased under 50-200 MPa UHP treatment (62.28-58.15 U/L), compared with that in the control group (53.80 U/L). UHP treatment resulted in a significant increase in small molecule compounds, especially the amino acid dipeptides and ATP metabolic products. Under UHP treatments, the bacterial phyla Actinobacteriota (1.04-5.25 %), Bacteroidota (0.20-4.47 %), and Deinococcota (0.00-0.05 %) exhibited an increased abundance, and they promoted taste and flavor formation. Our results indicated that UHP is a promising pretreatment method to improve taste and flavour in cured fish by affecting the microorganisms, cathepsin, and proteins.
Collapse
Affiliation(s)
- Dongyin Liu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mingzhu Zhou
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Hongyuan Tan
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, China.
| |
Collapse
|
9
|
Baek UB, Kim HY. Current Status of Non-Thermal Sterilization by Pet Food Raw Ingredients. Food Sci Anim Resour 2024; 44:967-987. [PMID: 39246541 PMCID: PMC11377211 DOI: 10.5851/kosfa.2024.e63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, as the concept of pet food that satisfies both nutritional needs and the five senses has evolved, so too has the demand for effective pet food non-thermal sterilization methods. Prominent non-thermal technologies include high-pressure processing, plasma, and radiation, which are favored for their ability to preserve nutrients, avoid residues, and minimize compositional changes, thereby maintaining quality and sensory properties. However, to assess their effectiveness on pet food, it is essential to optimize operational parameters such as pressure levels, plasma intensity, radiation dosage, and temperature. Further studies are needed to evaluate microbial sterilization efficacy and sensory attributes. This exploration is expected to lay the groundwork for preventing zoonotic diseases and improving the production of high-quality pet food.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
10
|
Man H, Sun P, Lin J, Ren X, Li D. Based on hydrogen and disulfide-mediated bonds, l-lysine and l-arginine enhanced the gel properties of low-salt mixed shrimp surimi (Antarctic krill and Pacific white shrimp). Food Chem 2024; 445:138735. [PMID: 38359572 DOI: 10.1016/j.foodchem.2024.138735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This study delved into the effects of l-lysine (Lys) and l-arginine (Arg) on the gel properties and intermolecular interactions of low-salt (NaCl, 1 g/100 g) mixed shrimp surimi (Antarctic krill and Pacific white shrimp). The addition of Lys and Arg improved the gel strength and water holding capacity of low-salt gels, which were superior to the properties of STPP and high-salt (NaCl, 2.25 g/100 g) gels. These results can be attributed to the role of Lys and Arg in enhancing hydrogen and disulfide bonds within the low-salt gel system, promoting the solubilization of myofibrillar proteins (MP) and consequently increasing the number of MP molecules participating in gel formation. Antarctic krill MP did not show gel-forming ability and exerted a diluting effect on low-salt mixed shrimp surimi gels. Molecular docking analysis indicated the stable binding of Lys and Arg to myosin.
Collapse
Affiliation(s)
- Hao Man
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Peizi Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Junxin Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiang Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Dongmei Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Espinales C, Baldeón M, Bravo C, Toledo H, Carballo J, Romero-Peña M, Cáceres PJ. Strategies for Healthier Meat Foods: An Overview. Prev Nutr Food Sci 2024; 29:18-30. [PMID: 38576885 PMCID: PMC10987382 DOI: 10.3746/pnf.2024.29.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024] Open
Abstract
Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.
Collapse
Affiliation(s)
- Cindy Espinales
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - María Baldeón
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Cinthya Bravo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Howard Toledo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - José Carballo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid 28040, Spain
| | - María Romero-Peña
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
- Saskatchewan Food Industry Development Centre (SFIDC), Saskatoon S7M 5V1, Canada
| | - Patricio J. Cáceres
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| |
Collapse
|
12
|
Sanah I, Kahina H, Fairouz D, Romeila B, Ghania Z, Zakaria K, Abdelghani B, Miguel Angel S, Samira B. Physicochemical properties and sensory profile of some breeds of rabbits in Algeria. FOOD SCI TECHNOL INT 2024:10820132241238790. [PMID: 38515337 DOI: 10.1177/10820132241238790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The objective of this study was to compare physicochemical traits and sensory profile of meat from rabbits of both sexes belonging to two genotypes, local population and new line (ITELV 2006) which exhibited better characteristics due to its genetic potential. A total of 60 rabbits at 90 days of age were used in the experiment. At slaughter, meat physicochemical and sensory characteristics were measured on Longissimus lumborum muscle. Differences related to genotype were found in most of the physicochemical characteristics studied like Cooking Losses (P < 0.001), Percentage of Released Water (P < 0.001), Myofibril Fragmentation Index (P < 0.001) and a* value (P < 0.001). However, in some of the traits, the differences were related to interaction of sex and genotype (S*G) as in the case of Cooking Losses (P < 0.001) and b* value (P < 0.01). Regarding SDS-PAGE analysis results, the comparison between two breeds has not shown any particular distinction in the myofibrillar and sarcoplasmic protein profiles in relation to the number and the intensity of bands. No significant differences in the sensory characteristics of the meat were noted (P > 0.05). Interestingly, no relevant differences were found between meat from male and female rabbits in all the variables studied (P > 0.05). It was concluded that meat quality was mainly affected by genotype. Thus, the new line exhibited good physicochemical characteristics compared to the local one. This study is the first to analyse and compare the physicochemical and sensory properties of Algerian rabbit meat.
Collapse
Affiliation(s)
- Ibtissem Sanah
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Hafid Kahina
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Djeghim Fairouz
- Équipe TEPA, Laboratoire de Nutrition et Technologie Alimentaire. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Bader Romeila
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Zitouni Ghania
- Institut Technique des Elevages (ITELV), Baba Ali, Birtouta, Alger, Algérie
| | - Khalfaoui Zakaria
- Institut Technique des Elevages (ITELV), Hamma Bouziane, Constantine, Algérie
| | - Boudjellal Abdelghani
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| | - Sentandreu Miguel Angel
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Severo Ochoa Center of Excellence, Paterna (Valencia), Spain
| | - Becila Samira
- Équipe Marqueurs biologiques de la qualité des viandes (MaQuaV), Laboratoire de Biotechnologie et Qualité des Aliments. Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (I.N.A.T.A-A), Université frères Mentouri Constantine 1, Route de Aïn El Bey, Algérie
| |
Collapse
|
13
|
Li Z, Lin L, Fu G, Guo Z, Zhang C. Insight on the emulsifying mechanisms of low-salt type emulsions stabilized by Maillard conjugates: Myofibrillar protein peptide-dextrin with different degrees of hydrolysis. Food Chem 2024; 433:137151. [PMID: 37661502 DOI: 10.1016/j.foodchem.2023.137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
In this study, we investigated the emulsifying properties and stabilisation mechanisms of low-salt type emulsions stabilised by MP-base conjugates prepared via the Maillard reaction between DX and MP peptides (MPP). Mild hydrolysis by Alcalase promoted a well-controlled Maillard reaction in dry conditions. Combining hydrolysis and Maillard reaction caused the dissociation and unfolding of highly aggregated MP structures; the ordered secondary structure was lost and the hydrophobic residue was exposed. The MPP-DX conjugates greatly improved the emulsifying ability and stability in the low-salt system; the resulting emulsion exhibited a small droplet size and homogeneous microstructure with desirable storage stability. Further, the glycation products were found to effectively suppress gravity-induced creaming. The MPP-DX glycoconjugate developed with 5% DG, exhibiting strongest flocculation and creaming stability, was determined as the optimal emulsifying agent for low-salt type emulsions. These findings provide a theoretical basis for developing low-salt meat products and/or emulsion-based foods.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Lin
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Gaofeng Fu
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chen Zhang
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
14
|
Liu T, Zheng J, Du J, He G. Food Processing and Nutrition Strategies for Improving the Health of Elderly People with Dysphagia: A Review of Recent Developments. Foods 2024; 13:215. [PMID: 38254516 PMCID: PMC10814519 DOI: 10.3390/foods13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Dysphagia, or swallowing difficulty, is a common morbidity affecting 10% to 33% of the elderly population. Individuals with dysphagia can experience appetite, reduction, weight loss, and malnutrition as well as even aspiration, dehydration, and long-term healthcare issues. However, current therapies to treat dysphagia can routinely cause discomfort and pain to patients. To prevent these risks, a non-traumatic and effective treatment of diet modification for safe chewing and swallowing is urgently needed for the elderly. This review mainly summarizes the chewing and swallowing changes in the elderly, as well as important risk factors and potential consequences of dysphagia. In addition, three texture-modified food processing strategies to prepare special foods for the aged, as well as the current statuses and future trends of such foods, are discussed. Nonthermal food technologies, gelation, and 3D printing techniques have been developed to prepare soft, moist, and palatable texture-modified foods for chewing and swallowing safety in elderly individuals. In addition, flavor enhancement and nutrition enrichment are also considered to compensate for the loss of sensory experience and nutrients. Given the trend of population aging, multidisciplinary cooperation for dysphagia management should be a top priority.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Jianheng Zheng
- Nutrilite Health Institute, Shanghai 200032, China; (J.Z.); (J.D.)
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200032, China; (J.Z.); (J.D.)
| | - Gengsheng He
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China;
| |
Collapse
|
15
|
Hu J, Yu B, Yuan C, Tao H, Wu Z, Dong D, Lu Y, Zhang Z, Cao Y, Zhao H, Cheng Y, Cui B. Influence of heat treatment before and/or after high-pressure homogenization on the structure and emulsification properties of soybean protein isolate. Int J Biol Macromol 2023; 253:127411. [PMID: 37838131 DOI: 10.1016/j.ijbiomac.2023.127411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
This study investigates the effects of heat treatment before high-pressure homogenization (HHPH) and heat treatment after high-pressure homogenization (HPHH) at different pressures (20, 60, and 100 MPa) on the structural and emulsification properties of soy protein isolate (SPI). The results indicate that HHPH treatment increases the surface hydrophobicity (H0) of the SPI, reduces β-fold and irregular curls, leading to the formation of soluble aggregates, increased adsorbed protein content, and subsequent improvements in emulsification activity index (EAI) and emulsion stability index (ESI). In contrast, the HPHH treatment promoted the exchange of SH/SS bonds between protein molecules and facilitated the interaction of basic peptides and β-subunits, leading to larger particle sizes of the soluble aggregates compared to the HHPH-treated samples. However, excessive aggregation in HPHH-treated aggregates leads to decreased H0 and adsorbed protein content, and increased interfacial tension, negatively affecting the emulsification properties. Compared to the HPHH treatment, HHPH treatment at homogenization pressures of 20 to 100 MPa increases EAI and ESI by 5.81-29.6 % and 5.31-25.9 %, respectively. These findings provide a fundamental basis for soybean protein manufacturers to employ appropriate processing procedures aimed at improving emulsification properties.
Collapse
Affiliation(s)
- Jiyong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanmin Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yungang Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Yunhui Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
16
|
Zhang X, Mao M, Zhang S, Wang Z, Liu S, Yang W, Gao Y, Jia R. Investigation of the changes in gelation properties of hydroxypropyl distarch phosphate-surimi gel under different gelation-freezing treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7877-7887. [PMID: 37467419 DOI: 10.1002/jsfa.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Frozen storage often leads to quality deterioration of surimi-based products. At present, most of the research focuses on improving the quality of surimi products by adding cryoprotectants, and there are few studies available on preparation technology. Therefore, the effects of different gelation-freezing treatments, high temperature heating-freezing treatment (HF), low temperature heating-high temperature heating-freezing treatment (LHF) and low temperature heating-freezing-high temperature heating treatment (LFH) on the quality changes of surimi gels containing hydroxypropyl distarch phosphate (HPDSP) during frozen storage were investigated. RESULTS With the extension of frozen storage time, the quality of surimi gel in all groups decreased, but the quality of surimi gel with HPDSP was better than that of surimi gel without HPDSP. Compared with HF and LHF, the change range of breaking force, hardness, gumminess, whiteness and disulfide bond content of HPDSP-surimi gel treated with LFH was the least during the frozen storage. In the reheating process of LFH, HPDSP could absorb the water lost during freezing. Therefore, the change in the transverse relaxation time of HPDSP-surimi gels treated with LFH was smaller, with more immobile water and less free water and P22 of 96.81% and P23 of 0% at 16 weeks. In addition, the breaking deformation, cohesiveness, resilience, springiness and protein composition of surimi gels with and without HPDSP treated with HF, LHF and LFH did not change significantly during frozen storage. CONCLUSION The combination of LFH and HPDSP could effectively reduce the quality change of surimi gel during frozen storage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinxin Zhang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Min Mao
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shutong Zhang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhufen Wang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Siqi Liu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Wenge Yang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yuanpei Gao
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Jia
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Li R, Fan X, Gao X, Zhou C. Injection of l-arginine or l-lysine before freezing delays the emulsifying and gelling properties deterioration of myofibrillar proteins of frozen porcine Longissimus lumborum muscle. Food Chem 2023; 427:136736. [PMID: 37393633 DOI: 10.1016/j.foodchem.2023.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the effects of injecting l-arginine and l-lysine solution before freezing and after thawing on the emulsifying and gelling properties of myofibrillar proteins (MPs) of frozen porcine longissimus dorsi. The results showed that the pre-freezing injections were more effective in alleviating the decrease in emulsifying properties of MPs compared with the post-thawing injections, as evidenced by higher emulsion creaming index, oil droplet size, interfacial absorptive protein amount, and viscoelasticity. Additionally, the pre-freezing injections could effectively mitigate the damage to the gelling properties of MPs, as evidenced by the formation of a homogeneous and compact gel network with stronger water retention, strength and chemical forces, as well as a higher proportion of non-flowing water, whereas the post-thawing injections could not. These results demonstrated that the injection of l-arginine and l-lysine solution before freezing could delay freezing-induced damage to the emulsifying and gelling properties of MPs, keeping the processing characteristics of frozen porcine.
Collapse
Affiliation(s)
- Rui Li
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xiaokang Fan
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
18
|
Han G, Zhao S, Liu Q, Xia X, Chen Q, Liu H, Kong B. High-intensity ultrasound combined with glycation enhances the thermal stability and in vitro digestion behaviors of myofibrillar protein aqueous solution. Int J Biol Macromol 2023; 251:126301. [PMID: 37573906 DOI: 10.1016/j.ijbiomac.2023.126301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
The low thermal stability of myofibrillar proteins (MPs) is a technological barrier to them being applied in beverage formulas. In this study, we investigated the effect of high-intensity ultrasound (HIU) pretreatment combined with glycation on the thermal stability, structural characteristics, and in vitro digestion behavior of MPs in water. The results indicated that HIU pretreatment combined with glycation significantly inhibited thermal aggregation and reduced the particle size of MPs compared to using either HIU or glycation treatments individually. The grafting of dextran (DX) shielded the sulfhydryl (-SH) and hydrophobic groups and inhibited disulfide bond cross-linking and hydrophobic association. Moreover, HIU pretreatment facilitated the shielding effect of glycation by destroying the filamentous myosin structure and exposing the internal -SH and hydrophobic groups as well as the grafting sites, maximally inhibiting thermal aggregation. In addition, the smaller protein particles and more flexible structure caused by HIU pretreatment combined with glycation increased their binding affinity toward protease. Overall, these findings can promote the technological development of modulating the MP structure-digestion for formulating novel meat protein-based products.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
19
|
Jeong HG, Kim J, Lee S, Jo K, Yong HI, Choi YS, Jung S. Differences in pork myosin solubility and structure with various chloride salts and their property of pork gel. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1065-1080. [PMID: 37969338 PMCID: PMC10640935 DOI: 10.5187/jast.2023.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 11/17/2023]
Abstract
The solubility and structure of myosin and the properties of pork gel with NaCl, KCl, CaCl2, and MgCl2 were investigated. Myofibrillar proteins (MPs) with phosphate were more solubilized with NaCl than with KCl (p < 0.05). CaCl2 and MgCl2 showed lower MP solubilities than those of NaCl and KCl (p < 0.05). The α-helix content of myosin was lower in KCl, CaCl2, and MgCl2 than in NaCl (p < 0.05). The pH of pork batter decreased in the order of KCl, NaCl, MgCl2, and CaCl2 (p < 0.05). The cooking yield of the pork gel manufactured with monovalent salts was higher than that of the pork gel manufactured with divalent salts (p < 0.05). The pork gel manufactured with KCl and MgCl2 showed lower hardness than that of the pork gel manufactured with NaCl. The solubility and structure of myosin were different with the different chloride salts and those led the different quality properties of pork gel. Therefore, the results of this study can be helpful for understanding the quality properties of low-slat meat products manufactured by replacing sodium chloride with different chloride salts.
Collapse
Affiliation(s)
- Hyun Gyung Jeong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jake Kim
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
20
|
Liu J, Yu Z, Xie W, Yang L, Zhang M, Li C, Shao JH. Effects of tetrasodium pyrophosphate coupled with soy protein isolate on the emulsion gel properties of oxidative myofibrillar protein. Food Chem 2023; 408:135208. [PMID: 36525730 DOI: 10.1016/j.foodchem.2022.135208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The effects of protein oxidation on the emulsion gel properties of myofibrillar protein (MP) in the presence of tetrasodium pyrophosphate (TSPP) and soybean protein isolate (SPI) were investigated from the perspective of interfacial protein interactions. The results showed that the emulsifying activity and emulsion stability of MP increased by 35.2 %-181.6 % with elevated H2O2 concentrations (1-20 mM), while the gel strength and water holding capacity of MP emulsions first increased to a maximum at 5 mM H2O2 and then decreased. TSPP and SPI further reinforced the effects caused by oxidation. The emulsifying properties of MP and its emulsion gel properties were closely related to surface hydrophobicity/hydrogen bonds/hydrophobic interactions and disulfide bonds among interfacial proteins, respectively. However, these correlations became difficult to define when TSPP and SPI were introduced. The study provides a theoretical basis for the strategy development to reduce protein oxidation damage on meat product quality.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ze Yu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenru Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lu Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyun Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
21
|
Jeong HG, Jo K, Lee S, Yong HI, Choi YS, Jung S. Characteristics of pork emulsion gel manufactured with hot-boned pork and winter mushroom powder without phosphate. Meat Sci 2023; 197:109070. [PMID: 36508862 DOI: 10.1016/j.meatsci.2022.109070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
This study investigated the physicochemical characteristics of pork emulsion gels manufactured from hot-boned (HB) pork and winter mushroom powder in the absence of phosphate. It was found that compared to cold-boned (CB) pork, HB pork had a higher pH and exhibited a higher myofibrillar protein solubility with a lower actomyosin content (P < 0.05). Four types of pork gels were prepared, namely CB pork without phosphate, CB pork with phosphate (CBP), HB pork without phosphate, and HB pork with winter mushroom powder but without phosphate (HBW). The total exuded fluid was comparable for the CBP and HBW gels on all storage days. In addition, the HB and HBW gels had similar springiness and cohesiveness properties to the CBP gel (P > 0.05). These results indicate that the quality of pork gels manufactured in the absence of phosphate can be improved by the use of HB pork and with the incorporation of winter mushroom powder.
Collapse
Affiliation(s)
- Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
22
|
Wang Q, Gu C, Wei R, Luan Y, Liu R, Ge Q, Yu H, Wu M. Enhanced gelling properties of myofibrillar protein by ultrasound-assisted thermal-induced gelation process: Give an insight into the mechanism. ULTRASONICS SONOCHEMISTRY 2023; 94:106349. [PMID: 36870098 PMCID: PMC9996090 DOI: 10.1016/j.ultsonch.2023.106349] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Effects of the incorporation of ultrasound with varied intensities (0-800 W) into the thermal-induced gelation process on the gelling properties of myofibrillar protein (MP) were explored. In comparison with single heating, ultrasound-assisted heating (<600 W) led to significant increases in gel strength (up to 17.9%) and water holding capacity (up to 32.7%). Moreover, moderate ultrasound treatment was conducive to the fabrication of compact and homogenous gel networks with small pores, which could effectively impair the fluidity of water and allow redundant water to be entrapped within the gel network. Electrophoresis revealed that the incorporation of ultrasound into the gelation process facilitated more proteins to get involved in the development of gel network. With the intensified ultrasound power, α-helix in the gels lowered pronouncedly with a simultaneous increment of β-sheet, β-turn, and random coil. Furthermore, hydrophobic interactions and disulfide bonds were reinforced by the ultrasound treatment, which was in support of the construction of preeminent MP gels.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chen Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ranran Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Luan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
23
|
Hilal A, Florowska A, Wroniak M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery-A Bibliometric Review. Gels 2023; 9:68. [PMID: 36661834 PMCID: PMC9857866 DOI: 10.3390/gels9010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein-polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | |
Collapse
|
24
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
25
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
26
|
Zhang Y, Bai G, Jin G, Wang Y, Wang J, Puolanne E, Cao J. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 64:3604-3622. [PMID: 36239320 DOI: 10.1080/10408398.2022.2133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Genpeng Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guofeng Jin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinpeng Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
27
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
28
|
Food protein aggregation and its application. Food Res Int 2022; 160:111725. [DOI: 10.1016/j.foodres.2022.111725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
|
29
|
Rajasekaran B, Singh A, Zhang B, Hong H, Benjakul S. Changes in emulsifying and physical properties of shrimp oil/soybean oil‐in‐water emulsion stabilized by fish myofibrillar protein during the storage. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| | - Bin Zhang
- College of Food Science and Pharmacy Zhejiang Ocean University
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University
| |
Collapse
|
30
|
Improved gelling and emulsifying properties of myofibrillar protein from frozen shrimp (Litopenaeus vannamei) by high-intensity ultrasound. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Wang K, Li Y, Zhang Y, Luo X, Sun J. Improving myofibrillar proteins solubility and thermostability in low-ionic strength solution: A review. Meat Sci 2022; 189:108822. [PMID: 35413661 DOI: 10.1016/j.meatsci.2022.108822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022]
Abstract
The development of myofibrillar proteins drinks (MPDs) can provide meat protein nutrition to specific groups of people. However, one major challenge is that myofibrillar proteins (MPs) are insoluble in solutions with a low ionic strength. Another functional constraint is the susceptibility of MPs to heat-induced aggregation. Currently, the primary approach used to improve the water solubility of MPs is to inhibit the assembly of myofilaments. Increasing the thermostability of MPs primarily inhibits the aggregation of myosin or oxidizes myosin to soluble substances. This review focuses on the description of several chemical and physical strategies, with an emphasis on the advantages, disadvantages, and recent progress. Under the myosin filament assembly process and the cross-linking aggregation mechanism, this summary helps improve our understanding of the solution and thermostability of MPs in low-ionic-strength solutions, thus providing new ideas to the development of MPDs.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Luo
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
32
|
The synergistic effects of myofibrillar protein enrichment and homogenization on the quality of cod protein gel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Fan S, Guo J, Wang X, Liu X, Chen Z, Zhou P. Effects of lipoxygenase/linoleic acid on the structural characteristics and aggregation behavior of pork myofibrillar protein under low salt concentration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Gao Y, Wang L, Qiu Y, Fan X, Zhang L, Yu Q. Valorization of Cattle Slaughtering Industry By-Products: Modification of the Functional Properties and Structural Characteristics of Cowhide Gelatin Induced by High Hydrostatic Pressure. Gels 2022; 8:gels8040243. [PMID: 35448144 PMCID: PMC9029605 DOI: 10.3390/gels8040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigates the effects of different pressures (200, 250, 300, 350, and 400 MPa) and durations (5, 10, 15, 20, and 25 min) on the functional properties, secondary structure, and intermolecular forces of cowhide gelatin. Our results show that high hydrostatic pressure significantly affected the two, three, and four-level structures of gelatin and caused the contents of the α-helix and β-turn to decrease by 68.86% and 78.58%, respectively (p < 0.05). In particular, the gelatin at 300 MPa for 15 min had the highest gel strength, emulsification, solubility, and foaming of all the treatment conditions under study. The analysis of the surface hydrophobicity, sulfhydryl content, zeta potential, and Raman spectroscopy shows that at a pressure of 300 MPa (15 min), the hydrogen bonds and hydrophobic interactions between collagen molecules are strongly destroyed, leading to changes in the tertiary and quaternary conformation of the protein and unfolding, with the electrostatic repulsion between protein particles making the decentralized state stable. In conclusion, moderate pressure and time can significantly improve the functional and structural properties of collagen, which provides theoretical support and guidance for realizing the high-value utilization of cowhide.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Correspondence: ; Tel.: +86-937-7631-201
| | | |
Collapse
|
35
|
Ku SK, Kim J, Kim SM, Yong HI, Kim BK, Choi YS. Combined Effects of Pressure cooking and Enzyme Treatment to Enhance
The Digestibility and Physicochemical Properties of Spreadable Liver Sausage. Food Sci Anim Resour 2022; 42:441-454. [PMID: 35611079 PMCID: PMC9108956 DOI: 10.5851/kosfa.2022.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to determine the effect of enzyme, guar gum, and pressure
processing on the digestibility and physicochemical properties of age-friendly
liver sausages. Liver sausages were manufactured by adding proteolytic enzyme
(Bromelain) and guar gum, and pressure-cooking (0.06 MPa), with the following
treatments: control, without proteolytic enzyme; T1, proteolytic enzyme; T2,
proteolytic enzyme and guar gum; T3, pressure-cooking; T4, proteolytic enzyme
and pressure-cooking; T5, proteolytic enzyme, guar gum, and pressure-cooking.
The pH was high in the enzyme- and pressure-processed groups. The
pressure-processed groups had lower apparent viscosity than other cooking
groups, and it decreased during enzyme treatment. Hardness was lower in the
enzyme- and pressure-processed groups than in the control, and the T4 was the
lowest. Digestibility was the highest in T4 at 82.58%, and there was no
significant difference with that in T5. The general cooking group with enzyme
and guar gum also showed higher digestibility than the control (77.50%).
As a result of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
the enzyme- and pressure-treated groups (T4, T5) were degraded more into
low-molecular-weight peptides (≤37 kDa) than the control and other
treatments. Viscoelasticity showed similar trends for viscous and elastic
moduli. Similarly, combined pressure processing and enzymatic treatment
decreased viscoelasticity, while guar gum increased elasticity but decreased
viscosity. Therefore, the tenderized physical properties and improved
digestibility by enzyme and pressurization treatment could be used to produce
age-friendly spreadable liver sausages.
Collapse
Affiliation(s)
- Su-Kyung Ku
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Jake Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Se-Myung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Bum-Keun
Kim, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9335, Fax: +82-63-219-9076, E-mail:
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang
Choi, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9387, Fax: +82-63-219-9076, E-mail:
| |
Collapse
|
36
|
Xie J, Li Y, Qu X, Kang Z. Effects of combined high pressure and temperature on solubility, foaming, and rheological properties of soy
11S
globulin. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing‐Jie Xie
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yan‐Ping Li
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Food Technologies Faculty Sumy National Agrarian University Sumy Ukraine
| | - Xiao‐Qing Qu
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Food Technologies Faculty Sumy National Agrarian University Sumy Ukraine
| | - Zhuang‐Li Kang
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
37
|
Ye T, Chen X, Zhu Y, Chen Z, Wang Y, Lin L, Zheng Z, Lu J. Freeze-Thawing Treatment as a Simple Way to Tune the Gel Property and Digestibility of Minced Meat from Red Swamp Crayfish (Procambarus clarkiix). Foods 2022; 11:foods11060837. [PMID: 35327260 PMCID: PMC8950141 DOI: 10.3390/foods11060837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
The effects of freezing methods, including rapid freezing (RF) or slow freezing (SF), combined with thawing methods, e.g., water immersing thawing (WT) or cold thawing (CT), on the meat yield, drip loss, gel properties, and digestive properties of meat detached from red swamp crayfish were investigated. RF greatly reduced the freezing time compared to SF, and the thawing time of frozen crayfish was obviously shortened by WT in comparison to CT. RF and CT improved the meat yield but increased the drip loss, probably as a result of the greater protein denaturation or degradation. A soft and flexible gel was obtained by SF-CT, while a hard one was achieved by RF-WT. An SEM analysis showed that SF resulted in rough and irregular microstructures with larger pore sizes. Freeze-thawing led to an increase in the β-sheet content at the expense of α-helix and variations in the microenvironment of tyrosine and tryptophan residues in protein molecules of the gels, which was more pronounced in the SF-CT group. Moreover, freeze-thawing could cause enhanced protein digestibility but reduce the antioxidant activity of gels. These findings underline the promise of the freezing-thawing treatment in tuning the gel-based meat products of crayfish.
Collapse
Affiliation(s)
- Tao Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yajun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
| | - Zhina Chen
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
- Correspondence:
| |
Collapse
|
38
|
Khalid W, Arshad MS, Aslam N, Majid Noor M, Siddeeg A, Abdul Rahim M, Zubair Khalid M, Ali A, Maqbool Z. Meat myofibril: Chemical composition, sources and its potential for cardiac layers and strong skeleton muscle. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2044847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Noman Aslam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Majid Noor
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | | | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, HN, China
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
39
|
Janardhanan R, Virseda P, Huerta-Leidenz N, Beriain MJ. Effect of high–hydrostatic pressure processing and sous-vide cooking on physicochemical traits of Biceps femoris veal patties. Meat Sci 2022; 188:108772. [DOI: 10.1016/j.meatsci.2022.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
|
40
|
Ye T, Zhu Y, Wang Y, Liu R, Lin L, Zheng Z, Lu J. Effect of high pressure shucking on the gel properties and in vitro digestibility of myofibrillar proteins from red swamp crayfish (Procambarus clarkii). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Zhao SM, Li Z, Li NN, Zhao YY, Kang ZL, Zhu MM, Ma HJ. Effects of high-pressure processing on the functional properties of pork batters containing Artemisia sphaerocephala krasch gum. J Food Sci 2021; 86:4946-4957. [PMID: 34653266 DOI: 10.1111/1750-3841.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Here, the effect of high-pressure conditions (0.1-400 MPa) on the water-loss, texture, gel strength, color, dynamic rheological property, and water migration of pork batters containing 0.1% (W/W) Artemisia sphaerocephala krasch gum (PB-AG) is studied. Results indicated that the cooking yield, water-holding capacity, texture, gel strength, L* values, and G' values increased with the increase in pressure (0.1-300 MPa) (p < 0.05). Dynamic rheological results (G') revealed that the thermal gelling ability of the PB-AG gel gradually increased with pressure (0.1-300 MPa). The minimum of T22 content was observed and the proportion of immobilized water decreased at 300 MPa by low-filed nuclear magnetic resonance. However, excessive high-pressure processing treatments (400 MPa) resulted in lower gel strength, WHC, texture, and G'. The scanning electron microscopy results shown that a denser network structure with small cavities was observed at 300 MPa. Therefore, moderate pressure treatment (≤300 MPa) may improve gelation properties of PB-AG gel, while excessive pressure treatment (400 MPa) may weaken the gelation properties. PRACTICAL APPLICATION: High-pressure processing combining Artemisia sphaerocephala krasch gum could enhance the gelation properties of pork batters. To do so, establishing knowledge on gelation properties of pork batters with Artemisia sphaerocephala krasch gum at different pressure levels treatment would be of paramount importance, because this contributes furnishing engineering data pertinent to the technical progress for the processing of emulsion-type meat with high quality.
Collapse
Affiliation(s)
- Sheng-Ming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Zhao Li
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Ning-Ning Li
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Yan-Yan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Zhuang-Li Kang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Ming-Ming Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Han-Jun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| |
Collapse
|
42
|
Wang Y, Bai Y, Ma F, Li K, Zhou H, Chen C. Combination treatment of high‐pressure and CaCl
2
for the reduction of sodium content in chicken meat batters: effects on physicochemical properties and sensory characteristics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Yan‐hong Bai
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Fei Ma
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Ke Li
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Hui Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Cong‐gui Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| |
Collapse
|
43
|
The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Ma Y, Wang R, Zhang T, Xu Y, Jiang S, Zhao Y. High Hydrostatic Pressure Treatment of Oysters ( Crassostrea gigas)-Impact on Physicochemical Properties, Texture Parameters, and Volatile Flavor Compounds. Molecules 2021; 26:molecules26195731. [PMID: 34641272 PMCID: PMC8510164 DOI: 10.3390/molecules26195731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
High hydrostatic pressure (HHP) treatment is a non-thermal processing technology, which is widely used in the food processing field at present. In this study, the effects of HHP treatment (100~500 MPa for 5 min) on the physicochemical properties, texture parameters, and volatile flavor compounds of oysters were investigated. The results showed that HHP treatment increased the water content while reducing the crude protein and ash content of the oyster. Texture parameters showed that HHP treatment improved the hardness, springiness, chewiness, and cohesiveness of oysters, compared with the control group. In addition, the saturated fatty acid (SFA) content was slightly increased after HHP treatment, while the difference in monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) content was not significant. Furthermore, HHP increased hexenoic aldehyde, 2,4-heptadienal, 1-octene-3-ol, and 2-octen-1-ol and decreased the contents of 3. 6-nadien-1-ol, 3-octanone, and 2-undecanone, suggesting that HHP might inhibit the fishiness of oyster and showed a positive effect on its flavor. Based on the above results, HHP improved the edible qualities such as texture properties and volatile flavor of oysters. This meets the requirements of consumers on the edible quality of seafood and provides new ideas for the development of seafood.
Collapse
Affiliation(s)
- Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
| | - Runfang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
| | - Tietao Zhang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China; (T.Z.); (Y.X.)
| | - Yunsheng Xu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China; (T.Z.); (Y.X.)
| | - Suisui Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.M.); (R.W.); (S.J.)
- Correspondence: ; Tel./Fax: +86-532-82032783
| |
Collapse
|
45
|
Liu Y, Sun Q, Wei S, Xia Q, Pan Y, Ji H, Deng C, Hao J, Liu S. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus). Food Chem 2021; 371:131046. [PMID: 34537614 DOI: 10.1016/j.foodchem.2021.131046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
To investigate the 3D printability of surimi from golden pompano, the rheological properties, protein molecular structure, and 3D printability of food inks from every step of surimi processing were measured, and their correlations were analysed. The results showed that surimi from chopping (surimi-C), chopping with salt (surimi-CS) and setting (surimi-S) were suitable for 3D printing, among which surimi-CS had the best shape fidelity. The clustering analysis of variables revealed that the yield stress and AF could be used as indexes to characterize extrusion and deposition behaviour of surimi, respectively. The accuracy of 3D printing was affected by the extrusion property of the food ink, which was controlled by the ionic bond content. The stability of 3D printing was affected by the self-supporting capacity of the food ink, which was controlled by the hydrogen bond and hydrophobic interaction contents. The results provided theoretical guidance for developing 3D printing of surimi ingredients.
Collapse
Affiliation(s)
- Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China.
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034,China
| | - Chujin Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Jiming Hao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034,China.
| |
Collapse
|
46
|
Liu H, Xu Y, Zu S, Wu X, Shi A, Zhang J, Wang Q, He N. Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods 2021; 10:1872. [PMID: 34441648 PMCID: PMC8393269 DOI: 10.3390/foods10081872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
In meat processing, changes in the myofibrillar protein (MP) structure can affect the quality of meat products. High hydrostatic pressure (HHP) has been widely utilized to change the conformational structure (secondary, tertiary and quaternary structure) of MP so as to improve the quality of meat products. However, a systematic summary of the relationship between the conformational structure (secondary and tertiary structure) changes in MP, gel properties and product quality under HHP is lacking. Hence, this review provides a comprehensive summary of the changes in the conformational structure and gel properties of MP under HHP and discusses the mechanism based on previous studies and recent progress. The relationship between the spatial structure of MP and meat texture under HHP is also explored. Finally, we discuss considerations regarding ways to make HHP an effective strategy in future meat manufacturing.
Collapse
Affiliation(s)
- Huipeng Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Shuyu Zu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| |
Collapse
|
47
|
Insight into the Effect of Ice Addition on the Gel Properties of Nemipterus virgatus Surimi Gel Combined with Water Migration. Foods 2021; 10:foods10081815. [PMID: 34441590 PMCID: PMC8392640 DOI: 10.3390/foods10081815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The effect of the amount of ice added (20–60%) on the gel properties and water migration of Nemipterus virgatus surimi gel obtained with two-stage heat treatment was studied. The gel strength and water-holding capability (WHC) of the surimi gel with 30% ice added were significantly higher than those of other treatment groups (p < 0.05). The addition of 30% ice was conducive to the increase of protein β-sheet proportion during heat treatment, exposing more reactive sulfhydryl groups. These promoted the combination of protein-protein through disulfide bonds and hydrophobic-hydrophobic interactions, forming an ordered three-dimensional gel network structure. Meanwhile, the increase in hydrogen bonds promoted the protein-water interaction. Low-field nuclear magnetic resonance analysis showed that more bound water was locked in the gel system, reducing the migration of immobile water to free water and finally showing better gel properties. When the amount of ice added was insufficient (20%), the gel structure lacked the support of immobile water, resulting in deterioration of gel strength. However, excessive addition of ice (>30%) was not conducive to the combination of protein-protein and protein-water, forming a large and rough gel structure, resulting in the migration of immobile water to free water and ultimately exhibited weak gel properties.
Collapse
|
48
|
Xiong Z, Shi T, Zhang W, Kong Y, Yuan L, Gao R. Improvement of gel properties of low salt surimi using low-dose l-arginine combined with oxidized caffeic acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Li Y, Kang Z, Sukmanov V, Ma H. Technological and functional properties of reduced‐salt pork batter incorporated with soy protein isolate after pressure treatment. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yan‐ping Li
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
- Food Technologies Faculty of Sumy National Agrarian University Sumy Ukraine
| | - Zhuang‐li Kang
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| | - Valerii Sukmanov
- Food Technologies Faculty of Sumy National Agrarian University Sumy Ukraine
| | - Hanjun Ma
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| |
Collapse
|
50
|
Li Z, Zheng Y, Sun Q, Wang J, Zheng B, Guo Z. Structural characteristics and emulsifying properties of myofibrillar protein-dextran conjugates induced by ultrasound Maillard reaction. ULTRASONICS SONOCHEMISTRY 2021; 72:105458. [PMID: 33453682 PMCID: PMC7810771 DOI: 10.1016/j.ultsonch.2020.105458] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 05/06/2023]
Abstract
In this study, we investigated the effect of the ultrasound-assisted Maillard reaction on the structural and emulsifying properties of myofibrillar protein (MP) and dextran (DX) conjugates with different molecular weights (40, 70 and 150 kDa). Compared with classical heating, mild and moderate ultrasound-assisted methods (100-200 W) could accelerate the later stage of the Maillard reaction, which increased the degree of graft (DG) and the content of advanced Maillard reaction products (MPRs). Structural analysis revealed conjugates obtained by Maillard reaction induced the loss of ordered secondary structures (α-helix, β-sheets) and red-shift of maximum emission wavelength of intrinsic fluorescence spectrum. The conjugate containing 40 kDa DX exhibited higher extent of Maillard reaction compared to those containing 70 kDa and 150 kDa DX under various treating methods. Moreover, the ultrasound-assisted Maillard reaction could effectively improve the emulsifying behaviors. 100 W ultrasound-induced conjugates grafted by 70 kDa DX produced the smallest emulsion size with optimum storage stability. Confocal laser scanning microscopy and analytical centrifugal analyzer further confirmed MP grafted by 70 kDa DX with the assistance of 100 W ultrasound field could produce the smallest and most homogeneous MP-base emulsion with no flocculation. Our study demonstrated that mild ultrasound treatment resulted in well-controlled Maillard reaction, and the related glycoconjugate grafted with 70 kDa DX showed the greatest improvements in emulsifying ability and stability. These findings provided a theoretical foundation for the development of emulsion-based foods with excellent characteristics.
Collapse
Affiliation(s)
- Zhiyu Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yimei Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Sun
- State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianyi Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|