1
|
Zhang J, Yang P, Zeng Q, Zhang Y, Zhao Y, Wang L, Li Y, Wang Z, Wang Q. Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis. Microbiol Res 2024; 292:127979. [PMID: 39674004 DOI: 10.1016/j.micres.2024.127979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process. Regulatory pathways of biofilm formation have been studied in Bacillus subtilis, of which Spo0A∼P is a master transcriptional regulator, which is transcriptionally activated by itself in biofilm formation. Previous studies have shown that Spo0A∼P transcript regulation controls biofilm formation, where MecA binds ClpC to inhibit Spo0A∼P-dependent transcription without triggering degradation. It remains unclear whether McsB and ClpC regulate biofilm formation together and share a similar non-proteolytic mechanism like MecA/ClpC complex. In this study, we characterized McsB and ClpC as negative regulators of biofilm formation and matrix gene eps expression. Our genetic and morphological evidence further indicates that McsB and ClpC inhibit eps expression by decreasing the spo0A and sinI expression, leading to the release of SinR, a known repressor of eps transcription. Given that the spo0A and sinI expression is transcriptionally activated by Spo0A∼P in biofilm formation, we next demonstrate that McsB interacts with Spo0A directly by bacterial two-hybrid system and Glutathione transferase pull-down experiments. Additionally, we present that McsB forms a complex with ClpC to dampen biofilm formation in vivo. Finally, we show that YwlE acts as a positive regulator of biofilm formation, counteracting the function of McsB. These findings suggest that McsB, ClpC, and YwlE play vital roles in the transition to biofilm formation in Bacillus subtilis, providing new insights into the regulatory mechanisms underlying biofilm development and sharing a similar non-proteolytic mechanism in biofilm formation as MecA/ClpC complex.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Panlei Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qingchao Zeng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yiwei Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanan Zhao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liwei Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Li
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Wu F, Wang H, Lin Y, Qu Z, Zheng B, Feng S, Li X. 2-Heptanol inhibits Botrytis cinerea by accelerating amino acid metabolism and retarding membrane transport. FRONTIERS IN PLANT SCIENCE 2024; 15:1400164. [PMID: 38887459 PMCID: PMC11180792 DOI: 10.3389/fpls.2024.1400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
During the postharvest storage of tomatoes, they are susceptible to infection by Botrytis cinerea, leading to significant economic losses. This study evaluated the antifungal potential of 2-heptanol (2-HE), a volatile biogenic compound, against B. cinerea and explored the underlying antifungal mechanism. The results indicated that 2-HE effectively suppressed the growth of B. cinerea mycelia both in vivo and in vitro and stimulated the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in tomatoes. Furthermore, 2-HE reduced spore viability, compromised membrane integrity, and resulted in increased levels of extracellular nucleic acids, protein content, and membrane lipid peroxidation. Transcriptomic analysis revealed that 2-HE disrupted the membrane transport system and enhanced amino acid metabolism, which led to intracellular nutrient depletion and subsequent B. cinerea cell death. Additionally, the 2-HE treatment did not negatively impact the appearance or quality of the tomatoes. In conclusion, the findings of this study offer insights into the use of 2-HE as a biocontrol agent in food and agricultural applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Shun Feng
- School of Tropical Agriculture and Forest, National Key Laboratory of Tropcial Crop Breeding, Hainan University, Haikou, China
| | - Xinguo Li
- School of Tropical Agriculture and Forest, National Key Laboratory of Tropcial Crop Breeding, Hainan University, Haikou, China
| |
Collapse
|
3
|
Guo Z, Ni Y, Gao H, Ding G, Zeng Y. A dual-branch selective attention capsule network for classifying kiwifruit soft rot with hyperspectral images. Sci Rep 2024; 14:10664. [PMID: 38724603 PMCID: PMC11082204 DOI: 10.1038/s41598-024-61425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Kiwifruit soft rot is highly contagious and causes serious economic loss. Therefore, early detection and elimination of soft rot are important for postharvest treatment and storage of kiwifruit. This study aims to accurately detect kiwifruit soft rot based on hyperspectral images by using a deep learning approach for image classification. A dual-branch selective attention capsule network (DBSACaps) was proposed to improve the classification accuracy. The network uses two branches to separately extract the spectral and spatial features so as to reduce their mutual interference, followed by fusion of the two features through the attention mechanism. Capsule network was used instead of convolutional neural networks to extract the features and complete the classification. Compared with existing methods, the proposed method exhibited the best classification performance on the kiwifruit soft rot dataset, with an overall accuracy of 97.08% and a 97.83% accuracy for soft rot. Our results confirm that potential soft rot of kiwifruit can be detected using hyperspectral images, which may contribute to the construction of smart agriculture.
Collapse
Affiliation(s)
- Zhiqiang Guo
- School of Information Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yingfang Ni
- School of Information Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Hongsheng Gao
- School of Information Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Gang Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Lai D, Wang D, Shao X, Qin J, Zhuang Q, Xu H, Xiao W. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of osthole on Penicillium choerospondiatis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105749. [PMID: 38225092 DOI: 10.1016/j.pestbp.2023.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Blue mold induced by Penicillium choerospondiatis is a primary cause of growth and postharvest losses in the fruit of Phyllanthus emblica. There is an urgent need to explore novel and safe fungicides to control this disease. Here, we demonstrated osthole, a natural coumarin compound isolated from Cnidium monnieri, exhibited a strong inhibitory effect on mycelia growth, conidial germination rate and germ tube length of P. choerospondiatis, and effectively suppressed the blue mold development in postharvest fruit of P. emblica. The median effective concentration of osthole was 9.86 mg/L. Osthole treatment resulted in cellular structural disruption, reactive oxygen species (ROS) accumulation, and induced autophagic vacuoles containing cytoplasmic components in fungal cells. Transcriptome analysis revealed that osthole treatment led to the differentially expressed genes mainly enriched in the cell wall synthesis, TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation. Moreover, osthole treatment led to increase genes expression involved in peroxisome, autophagy and endocytosis. Particularly, the autophagy pathway related genes (PcATG1, PcATG3, PcATG15, PcATG27, PcYPT7 and PcSEC18) were prominently up-regulated by osthole. Summarily, these results revealed the potential antifungal mechanism of osthole against P. choerospondiatis. Osthole has potentials to develop as a natural antifungal agent for controlling blue mold disease in postharvest fruits.
Collapse
Affiliation(s)
- Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Delin Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jian Qin
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Qingli Zhuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
5
|
Huang K, Sun X, Li X, Huang X, Sun Z, Li W, Wang J, Tian D, Lin C, Wu X, Miao C, Li Y, Xu P, Fan T, Zhu S, Li N, Zeng L, Liu J, Sui Y. Pathogenic fungi shape the fungal community, network complexity, and pathogenesis in kiwifruit. Microb Biotechnol 2023; 16:2264-2277. [PMID: 37750437 PMCID: PMC10686113 DOI: 10.1111/1751-7915.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Kiwifruit decay caused by endophytic fungi is affected by exogenous pathogens that trigger changes in fungal community composition and interact with the endophytic fungal community. Four fungal pathogens of kiwifruit were identified. These were Aspergillus japonicus, Aspergillus flavus, Botryosphaeria dothidea, and Penicillium oxalicum. Except for P. oxalicum, the remaining three species represent newly described pathogens of kiwifruit. All four fungal species caused disease and decay in mature kiwifruit. Results of the fungal community analysis indicated that three pathogens that A. japonicus, A. flavus and P. oxalicum were the most dominant, however, other fungal species that did not cause disease symptoms were also present. Positive interactions between fungal species were found in asymptomatic, symptomatic, and infected kiwifruit. The ability of all four pathogens to infect kiwifruit was confirmed in an inoculation experiment. The presence of any one of the four identified pathogens accelerated decay development and limited the postharvest longevity of harvested kiwifruit. Results of the study identified and confirmed the ability of four fungal species to infect and cause decay in harvested kiwifruit. Changes in the structure and composition of the kiwifruit microbiome during the decay process were also characterized. This provides a foundation for the further study of the microbiome of kiwifruit and their involvement in postharvest diseases.
Collapse
Affiliation(s)
- Ke Huang
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
| | - Xiangcheng Sun
- West China Biopharm Research Institute, West China Hospital, Sichuan UniversitySichuanChina
| | - Xiaojiao Li
- School of Biotechnology and BioengineeringWest Yunnan UniversityLincangChina
| | | | | | - Wenhua Li
- Yantai Lvyun Biotechnology Co., LtdYantaiChina
| | - Junkui Wang
- Yantai Lvyun Biotechnology Co., LtdYantaiChina
| | - Dawei Tian
- Yantai Lvyun Biotechnology Co., LtdYantaiChina
| | | | - Xuehong Wu
- Department of Plant Pathology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Cailing Miao
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Yujing Li
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Panpan Xu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Tianyu Fan
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Shuxin Zhu
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Na Li
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
| | - Li Zeng
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
| | - Jia Liu
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
| | - Yuan Sui
- College of Landscape Architecture and Life Science/Institute of Special PlantsChongqing University of Arts & SciencesChongqingChina
| |
Collapse
|
6
|
Haghbin N, Bakhshipour A, Zareiforoush H, Mousanejad S. Non-destructive pre-symptomatic detection of gray mold infection in kiwifruit using hyperspectral data and chemometrics. PLANT METHODS 2023; 19:53. [PMID: 37268945 PMCID: PMC10236597 DOI: 10.1186/s13007-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Application of hyperspectral imaging (HSI) and data analysis algorithms was investigated for early and non-destructive detection of Botrytis cinerea infection. Hyperspectral images were collected from laboratory-based contaminated and non-contaminated fruits at different day intervals. The spectral wavelengths of 450 nm to 900 nm were pretreated by applying moving window smoothing (MWS), standard normal variates (SNV), multiplicative scatter correction (MSC), Savitzky-Golay 1st derivative, and Savitzky-Golay 2nd derivative algorithms. In addition, three different wavelength selection algorithms, namely; competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and successive projection algorithm (SPA), were executed on the spectra to invoke the most informative wavelengths. The linear discriminant analysis (LDA), developed with SNV-filtered spectral data, was the most accurate classifier to differentiate the contaminated and non-contaminated kiwifruits with accuracies of 96.67% and 96.00% in the cross-validation and evaluation stages, respectively. The system was able to detect infected samples before the appearance of disease symptoms. Results also showed that the gray-mold infection significantly influenced the kiwifruits' firmness, soluble solid content (SSC), and titratable acidity (TA) attributes. Moreover, the Savitzky-Golay 1st derivative-CARS-PLSR model obtained the highest prediction rate for kiwifruit firmness, SSC, and TA with the determination coefficient (R2) values of 0.9879, 0.9644, 0.9797, respectively, in calibration stage. The corresponding cross-validation R2 values were equal to 0.9722, 0.9317, 0.9500 for firmness, SSC, and TA, respectively. HSI and chemometric analysis demonstrated a high potential for rapid and non-destructive assessments of fungal-infected kiwifruits during storage.
Collapse
Affiliation(s)
- Najmeh Haghbin
- Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Adel Bakhshipour
- Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Hemad Zareiforoush
- Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Sedigheh Mousanejad
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
Li W, Long Y, Yin X, Wang W, Zhang R, Mo F, Zhang Z, Chen T, Chen J, Wang B, Chen X. Antifungal activity and mechanism of tetramycin against Alternaria alternata, the soft rot causing fungi in kiwifruit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105409. [PMID: 37105636 DOI: 10.1016/j.pestbp.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Kiwifruit rot caused by the fungus Alternaria alternata occurs in many countries, leading to considerable losses during kiwifruit production. In this study, we evaluated the antifungal activity and mechanism of tetramycin against kiwifruit soft rot caused by Alternaria alternata. Tetramycin exerted antifungal effects through the suppression of mycelial growth, conidial germination, and the pathogenicity of A. alternata. Scanning electron microscopic observations revealed that tetramycin destroyed the mycelial structure, causing the mycelia to twist, shrink, and even break. Furthermore, transmission electron microscopy revealed that tetramycin caused severe plasmolysis and a decrease in cell inclusions, and the cell wall appeared thinner with blurred boundaries. In addition, tetramycin destroyed cell membrane integrity, resulting in the leakage of cellular components such as nucleic acids and proteins in mycelial suspensions. Moreover, tetramycin also caused cell wall lysis by enhancing the activities of chitinase and β-1,3-glucanase and inducing the overexpression of related chitinase gene (Chit) and β-1,3-glucanase gene (β-1,3-glu) in A. alternata. In field trials, tetramycin not only decreased the incidence of kiwifruit rot but also create a beneficial living space for kiwifruit growth. Overall, this study indicated that the application of tetramycin could serve as an alternative measure for the management of kiwifruit rot.
Collapse
Affiliation(s)
- Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China; Teaching Experiment Farm, Guizhou University, Guiyang 550025, China.
| | - Xianhui Yin
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Rongquan Zhang
- Management Committee of Eastern Agricultural Industrial Park of Shuicheng County, Liupanshui 553000, China
| | - Feixu Mo
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Monitoring Botrytis cinerea Infection in Kiwifruit Using Electronic Nose and Machine Learning Techniques. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Pan H, Zhong C, Wang Z, Deng L, Li W, Zhao J, Long CA, Li L. Biocontrol Ability and Action Mechanism of Meyerozyma guilliermondii 37 on Soft Rot Control of Postharvest Kiwifruit. Microorganisms 2022; 10:microorganisms10112143. [PMID: 36363735 PMCID: PMC9695699 DOI: 10.3390/microorganisms10112143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Postharvest soft rot of kiwifruit has resulted in substantial market losses, yet there were few antagonistic yeasts reported to control the disease. This study screened 1113 yeast strains for potential antagonistic yeast to control soft rot of kiwifruit caused by Botryosphaeria dothidea and Diaporthe actinidiae, and strain 37 was selected to evaluate the control efficacy and mechanisms, which was identified as Meyerozyma guilliermondii via molecular biological identification. Our results showed that M. guilliermondii 37 effectively reduced pathogen spore germination rate to 28.52% and decay incidence of inoculated kiwifruit to 42.11% maximumly, whereas cell-free supernatant lacked antifungal activity, implying that M. guilliermondii 37 didn’t produce direct antifungal compounds against the two pathogens. In addition, M. guilliermondii 37 adhered tenaciously to the pathogens’ mycelium and colonized rapidly in kiwifruit flesh. Moreover, yeast strain 37 induced kiwifruit resistance by elevating the defense-related enzyme activity, increasing the antioxidant substances content, and suppressing the cell wall-degrading enzyme activity. Gene expression was consistent with the corresponding enzyme activity. Further postharvest yeast immersion treatment significantly reduced natural decay to 35.69% while maintaining soft-ripe quality. These results indicated that M. guilliermondii 37 might serve as a biocontrol agent against postharvest soft rot in kiwifruit.
Collapse
Affiliation(s)
- Hui Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zupeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenyi Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Juan Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-an Long
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (C.-a.L.); (L.L.)
| | - Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.-a.L.); (L.L.)
| |
Collapse
|
10
|
Li L, Pan H, Deng L, Qian G, Wang Z, Li W, Zhong C. The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit post-harvest rot. Front Microbiol 2022; 13:988633. [PMID: 36118196 PMCID: PMC9471003 DOI: 10.3389/fmicb.2022.988633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Post-harvest rot causes enormous economic loss to the global kiwifruit industry. Currently, there are no effective fungicides to combat the disease. It is unclear whether silver nanoparticles (AgNPs) are effective in controlling post-harvest rot and, if so, what the underlying antifungal mechanism is. Our results indicated that 75 ppm AgNPs effectively inhibited the mycelial growth and spore germination of four kiwifruit rot pathogens: Alternaria alternata, Pestalotiopsis microspora, Diaporthe actinidiae, and Botryosphaeria dothidea. Additionally, AgNPs increased the permeability of mycelium’s cell membrane, indicating the leakage of intracellular substance. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that AgNPs induced pathogen hypha shrinkage and distortion, as well as vacuolation in hypha cells, implying that AgNPs caused cellular and organelle structural degradation. The transcriptome sequencing of mycelium treated with AgNPs (24 h / 48 h) was performed on the Illumina Hiseq 4000 sequencing (RNA-Seq) platform. For the time points of 24 h and 48 h, AgNPs treatment resulted in 1,178 and 1,461 differentially expressed genes (DEGs) of A. alternata, 517 and 91 DEGs of P. microspora, 1,287 and 65 DEGs of D. actinidiae, 239 and 55 DEGs of B. dothidea, respectively. The DEGs were found to be involved in “catalytic activity,” “small molecule binding,” “metal ion binding,” “transporter activity,” “cellular component organization,” “protein metabolic process,” “carbohydrate metabolic process,” and “establishment of localization.” Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis also revealed that “carbohydrate metabolism,” “amino acid metabolism,” “energy metabolism,” and “xenobiotics biodegradation and metabolism” of “metabolism processes” were the most highly enriched pathways for these DEGs in four pathogens, with “cellular processes” being particularly enriched for B. dothidea. Furthermore, quantitative polymerase chain reactions (qPCRs) were used to validate the RNA-seq results. It was also confirmed that AgNPs could significantly reduce the symptoms of kiwifruit rot without leaving any Ag+ residue on the peel and flesh of kiwifruit. Our findings contributed to a better understanding of the antifungal effect and molecular mechanisms of AgNPs against pathogens causing kiwifruit post-harvest rot, as well as a new perspective on the application of this novel antifungal alternative to fruit disease control.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Hui Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lei Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zupeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenyi Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Caihong Zhong,
| |
Collapse
|
11
|
Duan B, Du H, Zhang W, Wang J, Cai Z, Shen Y, Huang T, Yuan J, Gan Z, Chen J, Zhu L. An Antifungal Role of Hydrogen Sulfide on Botryosphaeria Dothidea and Amino Acid Metabolism Involved in Disease Resistance Induced in Postharvest Kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:888647. [PMID: 35783925 PMCID: PMC9244146 DOI: 10.3389/fpls.2022.888647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Botryosphaeria dothidea is a major pathogen responsible for postharvest kiwifruit soft rot. This study aimed to determine the influence of hydrogen sulfide (H2S) on postharvest resistance to kiwifruit soft rot and the antifungal role of H2S against B. dothidea. The results indicated that H2S (20 μl L-1) restricted the lesion area following inoculation with B. dothidea. H2S enhanced the production of shikimic acid, tyrosine, tryptophan, and phenylalanine while also increasing the total phenols, flavonoids, and lignin. H2S upregulated the expression of AcDHQS, AcSDH, AcSK, AcPAL, AcCAD, and AcCHS. Additionally, sodium hydrosulfide (NaHS)-released H2S inhibited mycelial growth. NaHS concentrations of 20 and 40 mmol L-1 significantly decreased the mycelial weight and malondialdehyde content (MDA) content while increasing cell membrane conductivity and membrane leakage. The results indicate that H2S induces resistance in kiwifruit via a microbicidal role and amino acid metabolism involved in postharvest kiwifruit disease resistance.
Collapse
Affiliation(s)
- Bing Duan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zhang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhipeng Cai
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yonggen Shen
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tenghuan Huang
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yuan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zengyu Gan
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Liqin Zhu
- College of Food Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Leng J, Dai Y, Qiu D, Zou Y, Wu X. Utilization of the antagonistic yeast, Wickerhamomyces anomalus, combined with UV-C to manage postharvest rot of potato tubers caused by Alternaria tenuissima. Int J Food Microbiol 2022; 377:109782. [DOI: 10.1016/j.ijfoodmicro.2022.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
|
13
|
Ali MA, Luo J, Ahmed T, Zhang J, Xie T, Dai D, Jiang J, Zhu J, Hassan S, Alorabi JA, Li B, An Q. Pseudomonas bijieensis Strain XL17 within the P. corrugata Subgroup Producing 2,4-Diacetylphloroglucinol and Lipopeptides Controls Bacterial Canker and Gray Mold Pathogens of Kiwifruit. Microorganisms 2022; 10:425. [PMID: 35208879 PMCID: PMC8878242 DOI: 10.3390/microorganisms10020425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Kiwifruit worldwide suffers from the devastating diseases of bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) and gray mold caused by Botrytis cinerea. Here, an endophytic bacterium XL17 isolated from a rape crown gall was screened out for its potent antagonistic activities against Psa and B. cinerea. Strain XL17 and its cell-free culture filtrate (CF) inhibited the growth of Psa and B. cinerea, Psa-associated leaf necrosis, and B. cinerea-associated kiwifruit necrosis. Electron microscopy showed that XL17 CF could damage the cell structures of Psa and B. cinerea. Genome-based taxonomy revealed that strain XL17 belongs to Pseudomonas bijieensis within the P. corrugata subgroup of the P. fluorescens species complex. Among the P. corrugata subgroup containing 31 genomospecies, the presence of the phl operon responsible for the biosynthesis of the phenolic polyketide 2,4-diacetylphloroglucinol (DAPG) and the absence of the lipopeptide/quorum sensing island can serve as the genetic marker for the determination of a plant-protection life style. HPLC detected DAPG in extracts from XL17 CF. MALDI-TOF-MS analysis revealed that strain XL17 produced cyclic lipopeptides of the viscosin family and orfamide family. Together, phenotypic, genomic, and metabolic analyses identified that P. bijieensis XL17 producing DAPG and cyclic lipopeptides can be used to control bacterial canker and gray mold pathogens of kiwifruit.
Collapse
Affiliation(s)
- Md. Arshad Ali
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Jiannan Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Ting Xie
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Dejiang Dai
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Jingyong Jiang
- Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Jie Zhu
- Wenzhou Station of Plant Protection, Soils and Fertilizers, Wenzhou 325000, China;
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.H.); (J.A.A.)
| | - Jamal A. Alorabi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.H.); (J.A.A.)
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| | - Qianli An
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (J.Z.); (T.X.); (B.L.)
| |
Collapse
|