1
|
Kim YT, Huang YP, Ozturk G, Hahn J, Taha AY, Wang A, Barile D, Mills DA. Characterization of Bifidobacterium bifidum growth and metabolism on whey protein phospholipid concentrate. J Dairy Sci 2025:S0022-0302(24)01462-0. [PMID: 39788196 DOI: 10.3168/jds.2024-25885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Whey protein phospholipid concentrate (WPPC) is a co-product generated during the manufacture of whey protein isolate. WPPC is depleted of simple sugars but contains numerous glycoconjugates embedded in the milk fat globule membrane, suggesting this fraction may serve as a carbon source for growth of bifidobacteria commonly enriched in breast fed infants. In this work, we demonstrate that WPPC can serve as a sole carbon source for the growth of Bifidobacterium bifidum, a species common to the breastfed infant and routinely used as a probiotic. Growth on WPPC fractions resulted in expression of key extracellular glycosyl hydrolases in B. bifidum associated with the catabolism of glycoproteins. Interestingly, this included induction of fucosidase genes in B. bifidum linked to catabolism of fucosylated human milk oligosaccharides even though the WPPC glycan possesses little fucose. Additional growth studies revealed that WPPC-glycan components N-acetylglucosamine or N-acetylgalactosamine were required for pre-activation of B. bifidum toward rapid growth on the fucosylated human milk oligosaccharides. Growth on WPPC fractions also resulted in expression of extracellular sialidases in B. bifidum which promoted a consistent release of sialic acid, a well-known component of bovine milk oligosaccharides and glycoconjugates with potential impacts on gut microbial ecology and host cognition. These studies suggest WPPC may serve as a promising bioactive component to facilitate probiotic activity for use in infant formulas and other synbiotic applications.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Gulustan Ozturk
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616; Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie Hahn
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Aidong Wang
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - Daniela Barile
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616
| | - David A Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616.
| |
Collapse
|
2
|
Hu C, Shen W, Xia Y, Yang H, Chen X. Lactoferrin: Current situation and future prospects. FOOD BIOSCI 2024; 62:105183. [DOI: 10.1016/j.fbio.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Guan X, Wang K, Wu Y, Xu J, Liu R, Xia Z, Shao Y, Lu Y. Structural characteristics and antioxidant activity of binary compounds formed by covalent modification of plant derived recombinant lactoferrin (OsrhLF) with four typical carbohydrates. Food Chem 2024; 467:142300. [PMID: 39637668 DOI: 10.1016/j.foodchem.2024.142300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Lactoferrin is crucial for the mammalian immune system, but the extraction of bovine lactoferrin (bLF) is low, and human lactoferrin in breast milk is costly. Although there are some reports on heterologous expression of lactoferrin, limited knowledge is available. In this study, structural characteristics and antioxidant activity of binary compounds formed by covalent modification of plant derived recombinant human lactoferrin (OsrhLF) with four typical carbohydrates including sodium alginate (SA), maltodextrin (Mal), pectin (Pec), and lactose (Lac). Results indicated that the structure of both bLF and OsrhLF unfolded, with side chain lysine or terminal amino acids forming CN bonds with aldehydes, altering their structure and improving stability and hydrophilicity. Compared with OsrhLF, the thermal denaturation temperatures of H-OsrhLF-Mal and H-OsrhLF-Lac increased by 56.8 °C and 58.4 °C, respectively. OsrhLF exhibited superior surface hydrophilicity and thermal stability compared to bLF, with Mal showing the most significant effect, aiding future functional food applications.
Collapse
Affiliation(s)
- Xiaoyan Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Wang
- School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Yeting Wu
- College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Xu
- College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixian Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), Wuhan 430070, China.
| |
Collapse
|
4
|
Manzoni P, Messina A, Germano C, Picone S, Masturzo B, Sainaghi PP, Sola D, Rizzi M. Lactoferrin Supplementation in Preventing and Protecting from SARS-CoV-2 Infection: Is There Any Role in General and Special Populations? An Updated Review of Literature. Int J Mol Sci 2024; 25:10248. [PMID: 39408576 PMCID: PMC11476995 DOI: 10.3390/ijms251910248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
At the beginning of the pandemic, SARS-CoV-2 infection represented a great medical burden worldwide, as targeted and effective therapeutic options were lacking. This resulted in the revival of existing molecules and the increasing popularity of over-the-counter nutritional supplements. Among the latter, lactoferrin has been investigated as an adjuvant in COVID-19 therapy with conflicting results, mainly depending on different study designs. Considering that lactoferrin is one of the main components of human breast milk with anti-microbial and anti-inflammatory activity, it is conceivable that such bioactive molecule could be effective in supporting anti-SARS-CoV-2 infection therapy, especially in infants and pregnant women, two subpopulations that have been poorly evaluated in the existing clinical trials. This narrative review is intended to offer insight into the existing literature on lactoferrin's biological functions and protective effects against COVID-19, with a special focus on pregnant women and their infants.
Collapse
Affiliation(s)
- Paolo Manzoni
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Alessandro Messina
- School of Medicine, University of Turin, 10124 Turin, Italy;
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Germano
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Bianca Masturzo
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Daniele Sola
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, S. Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Manuela Rizzi
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Health Sciences (DiSS), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
5
|
Chen X, Zhang X, Wu Y, Wang Z, Yu T, Chen P, Tong P, Gao J, Chen H. The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17771-17781. [PMID: 39087686 DOI: 10.1021/acs.jafc.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Pingduo Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Liu H, Gao X, Qin H, Yan M, Zhu C, Li L, Qu F. Self-Responsive Fluorescence Aptasensor for Lactoferrin Determination in Dairy Products. Molecules 2024; 29:3013. [PMID: 38998965 PMCID: PMC11243337 DOI: 10.3390/molecules29133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 μg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 μg/mL and 0.46 μg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.
Collapse
Affiliation(s)
- Hao Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China;
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China;
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Q.); (M.Y.)
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China; (L.L.); (F.Q.)
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China; (L.L.); (F.Q.)
| |
Collapse
|
7
|
Mu Y, Zhao S, Liu J, Liu Z, He J, Cao H, Zhao H, Wang C, Jin Y, Qi Y, Wang F. Assessment of the Conformation Stability and Glycosylation Heterogeneity of Lactoferrin by Native Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10089-10096. [PMID: 38626386 DOI: 10.1021/acs.jafc.3c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Lactoferrin (LTF) has diverse biological activities and is widely used in functional foods and active additives. Nevertheless, evaluating the proteoform heterogeneity, conformational stability, and activity of LTF remains challenging during its production and storage processes. In this study, we describe the implementation of native mass spectrometry (nMS), glycoproteomics, and an antimicrobial activity assay to assess the quality of LTF. We systematically characterize the purity, glycosylation heterogeneity, conformation, and thermal stability of LTF samples from different sources and transient high-temperature treatments by using nMS and glycoproteomics. Meanwhile, the nMS peak intensity and antimicrobial activity of LTF samples after heat treatment decreased significantly, and the two values were positively correlated. The nMS results provide essential molecular insights into the conformational stability and glycosylation heterogeneity of different LTF samples. Our results underscore the great potential of nMS for LTF quality control and activity evaluation in industrial production.
Collapse
Affiliation(s)
- Yu Mu
- College of Food Science and Engineering, Ocean University of Dalian, Dalian 116023, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
| | - Hongfang Cao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Ocean University of Dalian, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Rodrigo ML, Tymann HA, Lochen HA, Shores DR. Infant formula ingredients: Updates for clinicians. J Pediatr Gastroenterol Nutr 2024; 78:1005-1008. [PMID: 38529854 DOI: 10.1002/jpn3.12192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Take Away Points
All infant formulas meet specific nutritional standards, but there are now numerous versions of formula with newer ingredients that more closely approximate breast milk.
Select infant formulas include ingredients such as human milk oligosaccharides, lactoferrin, or milk fat globule membranes, which may have additional clinical benefits.
These ingredients are considered safe in infants but there is not dosing standardization across formula companies, and they may increase cost.
Collapse
Affiliation(s)
- Minna L Rodrigo
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heidi A Tymann
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heidi A Lochen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Darla R Shores
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Wang W, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Unlocking the power of Lactoferrin: Exploring its role in early life and its preventive potential for adult chronic diseases. Food Res Int 2024; 182:114143. [PMID: 38519174 DOI: 10.1016/j.foodres.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Nutrition during the early postnatal period exerts a profound impact on both infant development and later-life health. Breast milk, which contains lactoferrin, a dynamic protein, plays a crucial role in the growth of various biological systems and in preventing numerous chronic diseases. Based on the relationship between early infant development and chronic diseases later in life, this paper presents a review of the effects of lactoferrin in early life on neonates intestinal tract, immune system, nervous system, adipocyte development, and early intestinal microflora establishment, as well as the preventive and potential mechanisms of early postnatal lactoferrin against adult allergy, inflammatory bowel disease, depression, cancer, and obesity. Furthermore, we summarized the application status of lactoferrin in the early postnatal period and suggested directions for future research.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Jiang H, Zhang T, Pan Y, Yang H, Xu X, Han J, Liu W. Thermal stability and in vitro biological fate of lactoferrin-polysaccharide complexes. Food Res Int 2024; 182:114182. [PMID: 38519194 DOI: 10.1016/j.foodres.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Lactoferrin (LF) is a thermally sensitive iron-binding globular glycoprotein. Heat treatment can induce its denaturation and aggregation and thus affect its functional activity. In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), allowed to apply in infant food, were used to form protein-polysaccharide complexes to improve the thermal stability of LF. Meanwhile, in vitro simulated infant digestion and absorption properties of LF were also estimated. The results showed that the complexes formed by CG and XG with LF (LF-CG and LF-XG) could significantly inhibit the loss of α-helix structure of LF against heating. LF-CG and LF-LBG could protect LF from digestion in simulated infant gastric fluid and slow down the degradation of LF under the simulated intestinal conditions. Besides, LF, LF-CG and LF-XG showed no adverse effects on the growth of Caco-2 cells in the LF concentration range of 10-300 μg/mL, and LF-XG exhibited better beneficial to improve the cell uptake of the digestive product than the other protein-polysaccharides at the LF concentration of 100 µg/mL. This study may provide a reference for the enhancement of thermal processing stability of LF and development infant food ingredient with high nutrients absorption efficiency in the gastrointestinal environment in the future.
Collapse
Affiliation(s)
- Hanyun Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tingting Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yujie Pan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hui Yang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
11
|
Li C, Lu Y, Wang J, Liu B, Szeto IMY, Zhang W, Bi R, Duan S, Quan R, Wang X, Li Y, Xiong W, Sun J, Sun Y. Immunoregulation of bovine lactoferrin together with osteopontin promotes immune system development and maturation. Food Funct 2024; 15:866-880. [PMID: 38165790 DOI: 10.1039/d3fo03515h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system of infants is partly weak and immature, and supplementation of infant formula can be of vital importance to boost the development of the immune system. Lactoferrin (LF) and osteopontin (OPN) are essential proteins in human milk with immunoregulation function. An increasing number of studies indicate that proteins have interactions with each other in milk, and our previous study found that a ratio of LF : OPN at 1 : 5 (w/w, denoted as LOP) had a synergistic effect on intestinal barrier protection. It remains unknown whether LOP can also exert a stronger effect on immunoregulation. Hence, we used an in vitro model of LPS-induced macrophage inflammation and in vivo models of LPS-induced intestinal inflammation and early life development. We showed that LOP increased the secretion of the granulocyte-macrophage colony-stimulating factor (132%), stem cell factor (167%) and interleukin-3 (176%) in bone marrow cells, as well as thymosin (155%) and interleukin-10 (161%) in the thymus, more than LF or OPN alone during development, and inhibited changes in immune cells and cytokines during the LPS challenge. In addition, analysis of the components of digested proteins in vitro revealed that differentially expressed peptides may provide immunoregulation. Lastly, LOP increased the abundance of Rikenellaceae, Muribaculum, Faecalibaculum, and Elisenbergiella in the cecum content. These results imply that LOP is a potential immunomodifier for infants and offers a new theoretical basis for infant formula innovation.
Collapse
Affiliation(s)
- Chuangang Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Yao Lu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Jian Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Biao Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Wen Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Ran Bi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
| | - Rui Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Xuemin Wang
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| |
Collapse
|
12
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
13
|
Zhang Y, Lin Y, He J, Song S, Luo Y, Lu Y, Chen S, Wang Q, Li Y, Ren F, Guo H. Milk-derived small extracellular vesicles: a new perspective on dairy nutrition. Crit Rev Food Sci Nutr 2023; 64:13225-13246. [PMID: 37819268 DOI: 10.1080/10408398.2023.2263573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Milk contains bioactive compounds that have multiple essential benefits. Milk-derived small extracellular vesicles (M-sEVs) have emerged as novel bioactive milk components with various beneficial biological functions and broad applications. The M-sEVs from different mammalian sources have similar composition and bioactive functions. The digestive stability and biocompatibility of the M-sEVs provide a good foundation for their physiological functions. Evidence suggests that M-sEVs promote intestinal, immune, bone, neural, liver, and heart health and show therapeutic effects against cancer, indicating their potential for use in functional foods. In addition, M-sEVs can be developed as natural delivery carriers owing to their superior structural characteristics. Further studies are needed to elucidate the relationship between the specific components and functions of M-sEVs, standardize their extraction processes, and refine relevant clinical trials to advance the future applications of M-sEVs. This review summarizes the structure and composition of M-sEVs isolated from different milk sources and discusses several common extraction methods. Since the introduction of M-sEVs for digestion and absorption, studies have been conducted on their biological functions. Furthermore, we outline the theoretical industrial production route, potential application scenarios of M-sEVs, and the future perspectives of M-sEV research.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Sijia Song
- Food Laboratory of Zhongyuan, Luohe, PR China
| | - Yujia Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | | | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|