1
|
Saadi S, Makhlouf C, Nacer NE, Halima B, Faiza A, Kahina H, Wahiba F, Afaf K, Rabah K, Saoudi Z. Whey proteins as multifunctional food materials: Recent advancements in hydrolysis, separation, and peptidomimetic approaches. Compr Rev Food Sci Food Saf 2024; 23:e13288. [PMID: 38284584 DOI: 10.1111/1541-4337.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Chaalal Makhlouf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University of Bejaia, Bejaia, Algeria
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna, Algeria
| | - Boughellout Halima
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Adoui Faiza
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Hafid Kahina
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Equipe MaQuaV, Laboratoire Bioqual INATAA, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Falek Wahiba
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kheroufi Afaf
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| | - Kezih Rabah
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria
| | - Zineddine Saoudi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agroalimentaires (INATAA), Université Frères Mentouri Constantine 1, Constantine, Algeria
- Laboratoire de Génie Agro-alimentaire, équipe Génie des Procédés Alimentaires, Biodiversité et Agro environnement, INATAA, Université Frères Mentouri Constantine 1 (UFC1), Constantine, Algeria
| |
Collapse
|
2
|
Amato S, Ramsey J, Ahern TP, Rovnak J, Barlow J, Weaver D, Eyasu L, Singh R, Cintolo-Gonzalez J. Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. Breast Cancer Res Treat 2023; 202:325-334. [PMID: 37517027 DOI: 10.1007/s10549-023-07061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.
Collapse
Affiliation(s)
- Stas Amato
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Jon Ramsey
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Thomas P Ahern
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Joel Rovnak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Donald Weaver
- Department of Pathology, University of Vermont Medical Center, Burlington, VT, USA
| | - Lud Eyasu
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Rohit Singh
- Division of Hematology/Oncology, Department of Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Jessica Cintolo-Gonzalez
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA.
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA.
| |
Collapse
|
3
|
Bottani M, Cattaneo S, Pica V, Stuknytė M, Gomarasca M, Lombardi G, Banfi G, Noni ID, Ferraretto A. Gastrointestinal In Vitro Digests of Infant Biscuits Formulated with Bovine Milk Proteins Positively Affect In Vitro Differentiation of Human Osteoblast-Like Cells. Foods 2020; 9:foods9101510. [PMID: 33096628 PMCID: PMC7589107 DOI: 10.3390/foods9101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Infant biscuits (IBs) are part of complementary feeding from weaning up to the age of five years. They normally contain bovine milk proteins, which can influence bone development. This potential effect was investigated using experimental baked IBs, which were prepared from doughs containing different type of dairy proteins: milk protein concentrate (IB1), whey protein isolate (IB2), and skimmed milk powder (IB3). Dairy protein-free (IB0) and gluten-free (IB4) biscuits were also formulated. The in vitro gastrointestinal digests of IBs (IBDs) were tested on a co-culture of Caco-2/HT-29 70/30 cells as an in vitro model of human small intestine. None of the IBDs influenced cell viability and monolayer integrity, while IBD0 and IBD4 increased Peptide-YY production. The basolateral contents of Transwell plates seeded with Caco-2/HT-29 70/30 co-culture, mimicking metabolized IBDs (MIBDs), were tested on Saos-2 cells, an in vitro model of human osteoblast-like cells. After incubation, MIBD0, lacking dairy proteins, decreased the cell viability, while MIBD2, containing whey protein isolate, increased both the viability and the number of cells. MIBD2 and MIBD4, the latter containing both casein and whey proteins, increased alkaline phosphatase activity, a bone differentiation marker. These results highlight that IBs containing dairy proteins positively affect bone development.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
| | - Valentina Pica
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
| | - Milda Stuknytė
- Unitech COSPECT—University Technological Platforms Office, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Via Galeazzi 4, 20161 Milan, Italy; (M.B.); (M.G.); (G.L.); (G.B.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.C.); (V.P.)
- Correspondence: ; Tel.: +39-02-503-16680
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy;
| |
Collapse
|
4
|
Ostertag F, Schmidt CM, Berensmeier S, Hinrichs J. Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins. Food Chem 2020; 342:128176. [PMID: 33046286 DOI: 10.1016/j.foodchem.2020.128176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Whey represents a valuable protein source for human nutrition. Whey composition varies with respect to process characteristics during milk processing. For efficient exploitation of this dairy side stream, reliable analytical methods are essential. The aim of this study was to develop and validate an RP-HPLC-DAD method for the simultaneous quantification of the minor (lactoferrin, lactoperoxidase, bovine serum albumin) and major (α-lactalbumin, β-lactoglobulin) whey proteins. Seven RP-columns were compared and the composition of the mobile phase was optimized to achieve baseline separation. In validation experiments the limits of detection (LOD < 8 mg/L) and quantification (LOQ < 24 mg/L) were determined. Validity was proofed by precision (>96%), accuracy (95% - 103%) and recovery (96% - 102%) measurements. Peak homogeneity was confirmed by SDS-PAGE. The individual working ranges were adjusted to the estimated protein concentrations in whey, allowing direct analysis without sample preparation at a method runtime of 23 min.
Collapse
Affiliation(s)
- Fabian Ostertag
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstrasse 21, 70599 Stuttgart, Germany.
| | - Christian M Schmidt
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstrasse 21, 70599 Stuttgart, Germany
| | - Sonja Berensmeier
- Technical University of Munich, Department of Mechanical Engineering, Bioseparation Engineering Group, Germany
| | - Jörg Hinrichs
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstrasse 21, 70599 Stuttgart, Germany
| |
Collapse
|
5
|
Spalinger MR, Atrott K, Baebler K, Schwarzfischer M, Melhem H, Peres DR, Lalazar G, Rogler G, Scharl M, Frey-Wagner I. Administration of the Hyper-immune Bovine Colostrum Extract IMM-124E Ameliorates Experimental Murine Colitis. J Crohns Colitis 2019; 13:785-797. [PMID: 30590526 DOI: 10.1093/ecco-jcc/jjy213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/18/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease [IBD] is accompanied by lesions in the epithelial barrier, which allow translocation of bacterial products from the gut lumen to the host's circulation. IMM-124E is a colostrum-based product containing high levels of anti-E.coli-LPS IgG, and might limit exposure to bacterial endotoxins. Here, we investigated whether IMM-124E can ameliorate intestinal inflammation. METHODS Acute colitis was induced in WT C57Bl/6J mice by administration of 2.5% dextran sodium sulphate [DSS] for 7 days. T cell transfer colitis was induced via transfer of 0.5 x 106 naïve T cells into RAG2-/- C57Bl/6J mice. IMM-124E was administered daily by oral gavage, either preventively or therapeutically. RESULTS Treatment with IMM-124E significantly ameliorated colitis in acute DSS colitis and in T cell transfer colitis. Maximum anti-inflammatory effects were detected at an IMM-124E concentration of 100 mg/kg body weight, whereas 25 mg/kg and 500 mg/kg were less effective. Histology revealed reduced levels of infiltrating immune cells and less pronounced mucosal damage. Flow cytometry revealed reduced numbers of effector T helper cells in the intestine, whereas levels of regulatory T cells were enhanced. IMM-124E treatment reduced the DSS-induced increase of serum levels of lipopolysaccharide [LPS]-binding protein, indicating reduced systemic LPS exposure. CONCLUSIONS Our results demonstrate that oral treatment with IMM-124E significantly reduces intestinal inflammation, via decreasing the accumulation of pathogenic T cells and concomitantly increasing the induction of regulatory T cells. Our study confirms the therapeutic efficacy of IMM-124E in acute colitis and suggests that administration of IMM-124E might represent a novel therapeutic strategy to induce or maintain remission in chronic colitis.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Gadi Lalazar
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY, USA
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Santos MB, da Costa NR, Garcia-Rojas EE. Interpolymeric Complexes Formed Between Whey Proteins and Biopolymers: Delivery Systems of Bioactive Ingredients. Compr Rev Food Sci Food Saf 2018; 17:792-805. [DOI: 10.1111/1541-4337.12350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Monique Barreto Santos
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA); Univ. Federal Rural de Rio de Janeiro (UFRRJ); Rodovia BR 465, Km 7, Seropédica/RJ 23890-000 Brazil
| | - Naiara Rocha da Costa
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA); Univ. Federal Rural de Rio de Janeiro (UFRRJ); Rodovia BR 465, Km 7, Seropédica/RJ 23890-000 Brazil
| | - Edwin Elard Garcia-Rojas
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA); Univ. Federal Rural de Rio de Janeiro (UFRRJ); Rodovia BR 465, Km 7, Seropédica/RJ 23890-000 Brazil
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA); Univ. Federal Fluminense (UFF); Av. dos Trabalhadores, 420, Volta Redonda/RJ 27255-125 Brazil
| |
Collapse
|
7
|
Reyes-Díaz A, González-Córdova AF, Hernández-Mendoza A, Reyes-Díaz R, Vallejo-Cordoba B. Immunomodulation by hydrolysates and peptides derived from milk proteins. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Aline Reyes-Díaz
- Laboratorio de Química y Biotecnología de Productos Lácteos.; Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD); Carretera a La Victoria Km 0.6 Hermosillo Sonora 83304 México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos.; Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD); Carretera a La Victoria Km 0.6 Hermosillo Sonora 83304 México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos.; Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD); Carretera a La Victoria Km 0.6 Hermosillo Sonora 83304 México
| | - Ricardo Reyes-Díaz
- Laboratorio de Química y Biotecnología de Productos Lácteos.; Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD); Carretera a La Victoria Km 0.6 Hermosillo Sonora 83304 México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos.; Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD); Carretera a La Victoria Km 0.6 Hermosillo Sonora 83304 México
| |
Collapse
|
8
|
Badr G, Ramadan NK, Sayed LH, Badr BM, Omar HM, Selamoglu Z. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:338-349. [PMID: 28804604 PMCID: PMC5425915 DOI: 10.22038/ijbms.2017.8573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022]
Abstract
The balance between free radicals and antioxidants is an important factor for maintaining health and slowing disease progression. The use of antioxidants, particularly natural antioxidants, has become an important strategy for dealing with this cause of widespread diseases. Natural antioxidants have been used as therapeutic tools against many diseases because they are safe, effective, and inexpensive and are among the most commonly used adjuvants in the treatment of several diseases. Camel whey protein (CWP) is considered a strong natural antioxidant because it decreases oxidative stress, enhances immune system function, and increases glutathione levels. The structure of CWP is very similar to that of other types of whey protein from different types of milk. CWP contains many components, such as lactoferrin (LF), lactalbumin, lactoglobulins, lactoperoxidase, and lysozyme, and is rich in immunoglobulins. However, in contrast to other WPs, CWP lacks β-lactoglobulin, the main cause of milk allergies in children. The components of CWP have many beneficial effects, including stimulation of both innate and adaptive immunity and anti-inflammatory, anticancer, antibacterial, and antiviral activities. Recently, it has been shown that CWP and its unique components can facilitate the treatment of impaired diabetic wound healing. However, the molecular mechanisms underlying the protective effects of CWP in human and other animal disorders are not fully understood. Therefore, the current review presents a concise summary of the scientific evidence of the beneficial effects of CWP to support its therapeutic use in disease treatment and nutritional intervention.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Nancy K Ramadan
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Animal Health Research Institute, Assiut Branch. Assiut, Egypt
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Badr M Badr
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt
| | - Hossam M Omar
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Zeliha Selamoglu
- Department of Biology, Faculty of Arts and Sciences, Nigde University, Nigde, Turkey
| |
Collapse
|
9
|
Summer A, Formaggioni P, Franceschi P, Di Frangia F, Righi F, Malacarne M. Cheese as Functional Food: The Example of Parmigiano Reggiano and Grana Padano. Food Technol Biotechnol 2017; 55:277-289. [PMID: 29089844 DOI: 10.17113/ftb.55.03.17.5233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Italian hard cooked types of cheese, like Parmigiano Reggiano and Grana Padano, are characterised by positive nutritional qualities. In fact, they contain substances that have particular biological activities, and therefore they can be fully considered, according to the definition given by the European Unit, as 'functional' foods. This short review concisely describes these components and the beneficial effects related to their activities. The description of the biologically active components has been organised in the following paragraphs: protein and peptides, fat and lipids, carbohydrates and prebiotics, probiotic bacteria, vitamins, mineral salts, and components of dairy products active in disease prevention. In particular, several known bioactive peptides were found in Parmigiano Reggiano cheese samples: for example, phosphopeptides, which are known for their mineral-binding capacity and vehiculation activity, peptides with immunomodulatory activity, and angiotensin-converting enzyme-inhibitory peptides with anti-hypertensive effects. Among lipids, the role of conjugated linoleic acid and other fatty acids present in these cheese types was taken into consideration. The presence of oligosaccharides with prebiotic properties and probiotic bacteria was also described. Finally, particular emphasis was given to highly available calcium and its impact on bone health.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy.,MILC Center, University of Parma, Parco Area delle Scienze 59/A, IT-43124 Parma, Italy
| | - Paolo Formaggioni
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Piero Franceschi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Federica Di Frangia
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Federico Righi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy
| | - Massimo Malacarne
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, IT-43126 Parma, Italy.,MILC Center, University of Parma, Parco Area delle Scienze 59/A, IT-43124 Parma, Italy
| |
Collapse
|
10
|
De Vos M, Huygelen V, Van Raemdonck G, Willemen S, Fransen E, Van Ostade X, Casteleyn C, Van Cruchten S, Van Ginneken C. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier. J Anim Sci 2014; 92:3491-501. [PMID: 25012977 DOI: 10.2527/jas.2013-6437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.
Collapse
Affiliation(s)
- M De Vos
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - V Huygelen
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - G Van Raemdonck
- Laboratory Protein Science, Proteomics, and Epigenetic Signaling, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - S Willemen
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - E Fransen
- StatUa Center for Statistics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
| | - X Van Ostade
- Laboratory Protein Science, Proteomics, and Epigenetic Signaling, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - C Casteleyn
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - S Van Cruchten
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - C Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
11
|
O'Riordan N, Kane M, Joshi L, Hickey RM. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 2014; 24:220-36. [PMID: 24398766 DOI: 10.1093/glycob/cwt162] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Most secreted and cell membrane proteins in mammals are glycosylated. Many of these glycoproteins are also prevalent in milk and play key roles in the biomodulatory properties of milk and ultimately in determining milk's nutritional quality. Although a significant amount of information exists on the types and roles of free oligosaccharides in milk, very little is known about the glycans associated with milk glycoproteins, in particular, the biological properties that are linked to their presence. The main glycoproteins found in bovine milk are lactoferrin, the immunoglobulins, glycomacropeptide, a glycopeptide derived from κ-casein, and the glycoproteins of the milk fat globule membrane. Here, we review the glycoproteins present in bovine milk, the information currently available on their glycosylation and the biological significance of their oligosaccharide chains.
Collapse
Affiliation(s)
- Noelle O'Riordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | | | | |
Collapse
|
12
|
Phelan M, Aherne-Bruce SA, O'Sullivan D, FitzGerald RJ, O'Brien NM. Potential bioactive effects of casein hydrolysates on human cultured cells. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Michaelidou A, Steijns J. Nutritional and technological aspects of minor bioactive components in milk and whey: Growth factors, vitamins and nucleotides. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2006.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Takayama Y, Takezawa T. Lactoferrin promotes collagen gel contractile activity of fibroblasts mediated by lipoprotein receptorsThis paper is one of a selection of papers published in this Special Issue, entitled 7th International Conference on Lactoferrin: Structure, Function, and Applications, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:268-74. [PMID: 16936796 DOI: 10.1139/o06-041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. Recent studies in vitro and in vivo suggest that lactoferrin is a potential therapeutic agent for wound healing. We have shown that both bovine and human lactoferrin enhance the collagen gel contractile activity of WI-38 human fibroblasts. The collagen gel contraction is considered as an in vitro model for reorganization of the collagen matrix during the wound healing process. The elevation of collagen gel contractile activity induced by lactoferrin was accompanied by activation of extracellular-regulated kinase (ERK) 1/2 and myosin light chain kinase (MLCK), and subsequent elevation of myosin light chain (MLC) phosphorylation. The effects of lactoferrin on collagen gel contraction and the activation of the signaling pathway were dependent on the expression of low-density lipoprotein receptor - related protein (LRP) - 1 in the fibroblasts. LRP-1 is known as an endocytosis receptor and is involved in the cellular uptake of diverse ligands, including lactoferrin. In addition, LRP-1 acts as a signaling lactoferrin receptor in mammalian cells by converting the lactoferrin-binding signal into the activation of the intracellular signaling pathway. This property was found to be independent of the endocytic function of LRP-1, as seen in osteoblast-like cells.
Collapse
Affiliation(s)
- Yoshiharu Takayama
- Functional Bio-molecules Laboratory, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, 305-0901, Japan.
| | | |
Collapse
|
15
|
Gauthier SF, Pouliot Y, Maubois JL. Growth factors from bovine milk and colostrum: composition, extraction and biological activities. ACTA ACUST UNITED AC 2006. [DOI: 10.1051/lait:2005048] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Kawabe M, Sasaki M, Hirai S, Ikeda T, Sasaki H, Yoshida M, Amaya H, Aotake T, Uchinami M, Ihaya A, Tanaka K. Whey proteins and peptides: beneficial effects on immune health. ACTA ACUST UNITED AC 2006; 33:69-71. [PMID: 16410700 DOI: 10.2217/14750708.3.1.69] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 65-year-old male with liver metastases after lung cancer resection was treated with five courses of chemotherapy consisting of gemcitabine (GEM) 1,000 mg/m2 (day 1, 8, every 4 weeks) plus carboplatin (CBDCA) AUC 6 (day 1, every 4 weeks). A partial response (PR) was achieved, his symptoms abated and his quality of life(QOL) improved. Although bone marrow suppression was observed as a side effect, it was within the tolerable range and did not interfere with therapy. This approach may be worth considering as a first-line anti-cancer chemotherapy for recurrence lung cancer.
Collapse
Affiliation(s)
- Masakazu Kawabe
- Dept. of Surgery II, University of Fukui Faculty of Medical Sciences
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sugahara T, Onda H, Shinohara Y, Horii M, Akiyama K, Nakamoto K, Hara K. Immunostimulation effects of proteose-peptone component 3 fragment on human hybridomas and peripheral blood lymphocytes. Biochim Biophys Acta Gen Subj 2005; 1725:233-40. [PMID: 15978734 DOI: 10.1016/j.bbagen.2005.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 04/20/2005] [Accepted: 05/04/2005] [Indexed: 11/29/2022]
Abstract
Fat-free bovine milk fermented by 12 kinds of lactic acid bacteria and yeast enhanced monoclonal antibody production of human hybridoma HB4C5 cells 2.8-fold in serum-free medium. Immunoglobulin production of human peripheral blood lymphocytes (PBL) was also stimulated in vitro. IgM and IgG production of human PBL was accelerated up to 2.8-fold and 5.4-fold, respectively. Interferon-gamma production of human PBL was also accelerated 6.0-fold by 50 microg/ml of the fermented milk. However, interleukin-4 production of PBL was not affected, and tumor necrosis factor-alpha production was suppressed. The activity was enhanced 2.5-fold by the thermal treatment for 30 min at 65 degrees C and was completely lost by trypsin digestion. The findings suggested that the active substance in the fermented milk was heat stable protein. Gel-filtration and the SDS-PAGE analysis revealed that the molecular weight of the active substance was estimated as 19.0 kDa, which was not detected in fat-free bovine milk before fermentation. N-terminal amino acid sequence of the 19.0 kDa protein was highly homologous to proteose-peptone component 3 (PP3). Since molecular weight of PP3 is 28 kDa, it is suggested that the 19.0 kDa protein is derived from degradation of PP3 during fermentation of fat-free milk. Moreover, PP3 purified from fat-free milk also enhanced IgM production of HB4C5 cells.
Collapse
Affiliation(s)
- Takuya Sugahara
- Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Middleton N, Reid J, Coolbear T, Jelen P. Proliferation and intracellular glutathione in Jurkat T cells with concentrated whey protein products. Int Dairy J 2003. [DOI: 10.1016/s0958-6946(03)00078-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Pihlanto A, Korhonen H. Bioactive peptides and proteins. ADVANCES IN FOOD AND NUTRITION RESEARCH 2003; 47:175-276. [PMID: 14639784 DOI: 10.1016/s1043-4526(03)47004-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Anne Pihlanto
- MTT Agrifood Research Finland, Food Research, 31600 Jokioinen, Finland
| | | |
Collapse
|
20
|
Chapter 11 Gut regulatory peptides and hormones of the small intestine. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-1823(09)70127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
|
22
|
Takayama Y, Kitsunai K, Mizumachi K. Factors in bovine colostrum that enhance the migration of human fibroblasts in type I collagen gels. Biosci Biotechnol Biochem 2001; 65:2776-9. [PMID: 11826977 DOI: 10.1271/bbb.65.2776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine colostrum has an activity that increases the migration of WI38 fibroblasts. We evaluated the motility of fibroblasts by their ability to contract collagen gels. Part of the activity was absorbed by anion-exchange chromatography at pH 6.4, and eluted by 0.2-0.3 M sodium chloride. The activity was separated into many fractions corresponding to 20-150 kDa by gel filtration chromatography under acidic conditions. The major peak of the activity coincided with 50-70 kDa.
Collapse
Affiliation(s)
- Y Takayama
- National Institute of Livestock and Grassland Science, Inashiki, Ibaraki, Japan.
| | | | | |
Collapse
|
23
|
Rowlands JC, He L, Hakkak R, Ronis MJ, Badger TM. Soy and whey proteins downregulate DMBA-induced liver and mammary gland CYP1 expression in female rats. J Nutr 2001; 131:3281-7. [PMID: 11739881 DOI: 10.1093/jn/131.12.3281] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One possible mechanism by which diet may reduce cancer risk is through enhancement of metabolic systems that prevent activation of carcinogens or accelerate carcinogen inactivation. We studied the effects of diet and 7,12-dimethylbenz-(a)anthracene (DMBA) on hepatic and mammary gland CYP1A1, CYP1A2 and CYP1B1 enzymes in female Sprague-Dawley rats. Diets (AIN-93G) were fed from conception to adulthood, and DMBA was given by oral gavage at age 48-50 d. The protein sources of diets were casein (CAS), soy protein isolate (SPI) or whey protein hydrolysate (WPH). The DMBA-induced hepatic ethoxyresorufin-O-deethylase and methoxyresorufin-O-demethylase activities and CYP1A1 protein and mRNA expression were lower (P < 0.05) in SPI-fed rats compared with those fed casein. Differences in mammary gland CYP1 expression were also observed with decreased DMBA induction (P < 0.05) of all three CYP1 proteins and mRNAs in rats fed either SPI or WPH compared with those fed CAS. Most notable were the decreased constitutive and DMBA-induced mammary gland expression of CYP1B1 protein of 93 and 96%, respectively, in the SPI-fed rats relative to the CAS-fed controls. The diet-induced changes in CYP1 enzyme expression were consistent with changes in the AhR and ARNT transcription factors that regulate them. Decreased (P < 0.05) mammary constitutive AhR and ARNT proteins were measured in SPI-fed rats. There was also a 100% increase in constitutive AhR protein in the WPH-fed rats that paralleled a 100% increase in constitutive CYP1B1 protein in the mammary gland. These results demonstrate the importance of diet in regulation of phase I metabolism in liver and mammary gland, and suggest a potential mechanism by which soy or whey proteins reduce DMBA-induced mammary tumor incidence.
Collapse
Affiliation(s)
- J C Rowlands
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | |
Collapse
|
24
|
Takayama Y, Mizumachi K. Effects of lactoferrin on collagen gel contractile activity and myosin light chain phosphorylation in human fibroblasts. FEBS Lett 2001; 508:111-6. [PMID: 11707279 DOI: 10.1016/s0014-5793(01)03041-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When fibroblasts are plated on a type I collagen gel they reduce the size of the gel and the extent of collagen gel contraction reflects the motile activity of the fibroblasts. We found that both bovine and human lactoferrin (Lf) enhanced the collagen gel contractile activity of WI-38 human fibroblasts. Rho inhibitor (exoenzyme C3), Rho kinase inhibitor (Y-27632), myosin light chain kinase inhibitor (ML-7), MEK inhibitor (PD98059) and Src family tyrosine kinase inhibitor inhibited the Lf-enhanced collagen gel contraction. Treatment of fibroblasts with Lf induced the phosphorylation of myosin light chain (MLC) within 30 min. Lf-enhanced MLC phosphorylation was inhibited by Y-27632 and ML-7. These results suggest that Lf promotes the motility of fibroblasts by regulating MLC phosphorylation.
Collapse
Affiliation(s)
- Y Takayama
- National Institute of Livestock and Grassland Science, 2 Ikenodai, Kukizaki, Inashiki, Ibaraki 305-0901, Japan.
| | | |
Collapse
|
25
|
He F, Tuomola E, Arvilommi H, Salminen S. Modulation of human humoral immune response through orally administered bovine colostrum. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 31:93-6. [PMID: 11549415 DOI: 10.1111/j.1574-695x.2001.tb00504.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eighteen healthy volunteers were randomized into two treatment groups and consumed liquid prepackaged bovine colostrum whey and placebo for 7 days. On days 1, 3 and 5, an attenuated Salmonella typhi Ty21a oral vaccine was given to all subjects to mimic an enteropathogenic infection. The circulating antibody secreting cells and the expression of phagocytosis receptors of the subjects before and after oral immunization were measured with the ELISPOT assay and flow cytometry. All subjects responded well to the vaccine. No significant differences were observed in ELISPOT values for IgA, IgG, IgM, Fcgamma and CR receptor expression on neutrophils and monocytes between the two groups. There was a trend towards greater increase in specific IgA among the subjects receiving their vaccine with bovine colostrum. These results suggest that bovine colostrum may possess some potential to enhance human special immune responses.
Collapse
Affiliation(s)
- F He
- Department of Biochemistry and Food Chemistry, University of Turku, Finland
| | | | | | | |
Collapse
|
26
|
Abstract
Bovine milk is known to contain a number of peptide fractions that can affect immune function. The vast majority of immunoregulatory peptides that have been characterised are hydrolysate derivatives of major milk proteins. Recent research has also indicated that the metabolic activity of probiotic lactic acid bacteria can generate de novo immunoregulatory peptides from milk, via enzymatic degradation of parent milk protein molecules. In contrast, relatively little is known of endogenous, preformed immunoregulatory peptides in milk that may be relevant to modulating human health. The natural in vivo role of preformed and enzymatically derived peptides is likely to be one of regulation of the neonatal (bovine) gastrointestinal tract immune system, in order to modulate immune function with respect to the development of immunocompetence and avoidance of undesirable immunological responses (e.g. tolerance, and hypersensitivity to nutrients). There is scope for the further characterisation of both the origin and function of milk-derived immunoregulatory peptides, so that their potential to influence human health can be fully appraised. This review highlights our current knowledge of milk-derived immunoregulatory peptides, and outlines areas that are of relevance for further research.
Collapse
Affiliation(s)
- H S Gill
- Milk and Health Research Centre, Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
27
|
Capiaumont J, Jacob C, Frossi C, Nabet P, Dousset B. Whey: a by-product for eucaryotic cell cryopreservation. In Vitro Cell Dev Biol Anim 2000; 36:631-2. [PMID: 11229594 DOI: 10.1290/1071-2690(2000)036<0631:wabpfe>2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Affiliation(s)
- R A Hoerr
- GalaGen Inc., Arden Hills, MN 55112, USA.
| | | |
Collapse
|
29
|
Palupi NS, Franck P, Guimont C, Linden G, Dumas D, Stoltz J, Nabet P, Belleville-Nabet F, Dousset B. Bovine beta-lactoglobulin receptors on transformed mammalian cells (hybridomas MARK-3): characterization by flow cytometry. J Biotechnol 2000; 78:171-84. [PMID: 10725540 DOI: 10.1016/s0168-1656(00)00210-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flow cytometry was used to demonstrate the presence of beta-lactoglobulin (betaLG) receptors on living murine hybridoma MARK-3 cells using a fluorescein isothiocyanate-betaLG conjugate (FITC-betaLG: molar ratio of 5:1). A site occupation curve was produced using a shift in the mean channel fluorescence at various concentrations of FITC-betaLG. The binding of labelled ligand was concentration dependent and was inhibited by unlabelled betaLG. The on-rate constant was 3.2x10(2) M(-1) min(-1) and the off-rate constant was 0.002 min(-1). Scatchard plot analysis gave a dissociation constant (K(d)) of 44+/-21x10(-7) and 39+/-24x10(-5) M (n=3). Flow cytometry indicated that at least 15% of the FITC-betaLG were internalized for 5 min and that internalization was temperature- and time-dependent. The internalization was confirmed by 3-D fluorescence microscopy (CELLScan system).
Collapse
Affiliation(s)
- N S Palupi
- Laboratory of Medical Biochemistry-Prof. NABET, School of Medicine, University of Henri Poincare-Nancy I, 54505, Vandoeuvre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|