1
|
Muneeb M, Khan EU, Ali M, Haque MNU, Khan MUZ, Ahmad S. Comparative Effects of Antibiotic and Antimicrobial Peptide on Growth Performance, Gut Morphology, Intestinal Lesion Score, Ileal Microbial Counts, and Immune Status in Broilers Challenged with Necrotic Enteritis. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10448-y. [PMID: 39789384 DOI: 10.1007/s12602-025-10448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
This experiment aimed to compare the efficacy of an antimicrobial peptide (AMP) with a conventional antibiotic growth promoter (AGP) during necrotic enteritis (NE) challenge in broilers. In total, 720 1-day-old exclusively male broiler chicks (Ross-308) were allocated to five treatments, each with six replicates of 24 birds (n = 144/treatment), for 35 days. The treatments were as follows: (1) uninfected control (UC) with basal diet, (2) infected control (IC) with C. perfringens challenge and basal diet, (3) CP-AGP with C. perfringens challenge and 200 g/ton enramycin throughout trial, (4) CP-AMP1 with C. perfringens challenge and 200 g/ton AMP in all phases, and (5) CP-AMP2 with C. perfringens challenge and 300 g/ton AMP throughout experiment. To induce NE, the birds were predisposed with 10 × coccidia vaccine (day 15) followed by oral gavage of C. perfringens type G (1 ml; 1 × 108 CFU/ml/bird) at days 19 and 20. The results showed that AMP supplemented at 300 g/ton of diet improved body weight gain and FCR in both non-challenge (days 1-14) and challenge phases (days 15-35) as compared to the infected control (P < 0.05). Moreover, it also enhanced the livability and production efficiency factor (P < 0.0001). AMP at 300 g/ton also reduced NE lesion scores, and coccidia oocyst shedding, and positively affected intestinal morphology, gut microbial balance, immune organ weights, and HI titers against Newcastle disease (P < 0.0001). These findings suggest that AMP at 300 g/ton of diet could effectively mitigate NE and may be used as a viable substitute for AGPs in broiler diets during the NE challenge.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashar Ali
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Naveed Ul Haque
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Ijaz A, Pols N, Abboud KY, Rutten VPMG, Broere F, Schols H, Veldhuizen EJA, Jansen CA. Citrus pectins impact the function of chicken macrophages. Int J Biol Macromol 2025; 286:138344. [PMID: 39638205 DOI: 10.1016/j.ijbiomac.2024.138344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The restrictions on excessive use of antimicrobials in the poultry industry have led to the search for alternative strategies including nutritional interventions to enhance gut health with the ultimate aim to prevent gut infections. Pectins as prebiotics have shown beneficial effects on gut health in humans and mice by improving the gut barrier function, altering the gut microbiota, and by modulating the gut immune response. However, little is known about immunomodulatory properties of pectins in chickens. The present in vitro study assessed the effect of three pectins (SPE6, SPE7, SPE8) differing in methyl esterification, on responsiveness of the chicken macrophage cell line HD11 cells and primary monocyte derived macrophage from the blood, through interaction with chicken TLRs. All three pectins increased gene expression of iNOS and IL10 in chicken macrophages. Differences in immunomodulatory activity between the three pectins were observed in other assays. The low methoxyl pectin (SPE8) interacted with TLR4 leading to the production of NO, but also to increased phagocytosis of E. coli, while high methoxyl pectins SPE6 and SPE7 did not activate TLR4. All three pectins were able to attenuate PAM3CSK4 induced activation of chicken macrophages as measured by decreased NO production and phagocytosis. Additional studies using ITC and flow cytometry suggest that the inhibiting properties of pectins (SPE6, SPE7) on macrophages are due to pectins occupying TLR2 and blocking PAM3CSK4 to activate chicken macrophages, whereas SPE8 actually binds to the TLR2 ligand and that way attenuates the PAM3CSK4 induced activation. Based on these immunomodulatory properties observed in this study, these pectins may in the future be suitable as feed additive for the treatment and prevention of inflammatory disorders in poultry.
Collapse
Affiliation(s)
- Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Noah Pols
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kahlile Youssef Abboud
- Center for Healthy Eating and Food Innovation (HEFI)- Maastricht University, Campus Venlo, the Netherlands
| | - Victor P M G Rutten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Femke Broere
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Edwin J A Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Christine A Jansen
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Khan YR, Hernandez JA, Kariyawasam S, Butcher G, Czyz DM, Pellissery AJ, Denagamage T. Exposure factors associated with antimicrobial resistance and identification of management practices for preharvest mitigation along broiler production systems: A systematic review. J Glob Antimicrob Resist 2024; 39:212-223. [PMID: 39490979 DOI: 10.1016/j.jgar.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This systematic review aimed to (i) determine the risk of antimicrobial resistance (AMR) development associated with antimicrobial use (AMU) and other exposure factors in broilers, and (ii) identify best management practices to mitigate preharvest AMR development of enteric bacteria alongside broiler production. METHODS Study selection criteria comprised the population, exposure or intervention, comparator, and outcome framework and included broiler (population), AMU or other management practices (exposure or intervention), organic or antibiotic-free production (comparator), and the presence of AMR-enteric bacteria/genes (outcome). Peer-reviewed primary research studies were searched in PubMed on 19 December 2022, and AGRICOLA, Embase, Scopus, and Web of Science on 10 February 2023. The risk of bias in studies was assessed using the modified ROBIS-E risk of bias assessment tool. The results were synthesised and presented narratively according to PRISMA 2020 guidelines. RESULTS In total, 205/2699 studies were subjected to full-text review, with 15 included in the final synthesis. Enteric bacteria Escherichia coli, Salmonella, and Campylobacter exhibited AMR and multidrug resistance against several critically important antimicrobials (aminoglycoside, cephalosporin, chloramphenicol, macrolide, penicillin, quinolone, tetracycline, and sulfonamide) for human health. The risk of AMR development in bacteria was shown to be potentially higher with AMU in broiler production. Substandard farm management practices, poor biosecurity measures, and conventional production systems have also been associated with the dissemination of AMR in bacteria. CONCLUSIONS Our findings indicate that AMU exposure is associated with considerably higher risk of AMR development in enteric bacteria. Antimicrobial stewardship, organic/antibiotic-free broiler production, good farm management practices, and high-level biosecurity measures are able to substantially mitigate preharvest AMR development in enteric bacteria. However, most of studies were cross-sectional, and therefore causal inference cannot be established.
Collapse
Affiliation(s)
- Yasir R Khan
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jorge A Hernandez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Gary Butcher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Daniel M Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, USA
| | - Abraham J Pellissery
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas Denagamage
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Zhang Y, Liu J, Pan Y, Shi K, Mai P, Li X, Shen S. Progress on the prevention of poultry Salmonella with natural medicines. Poult Sci 2024; 104:104603. [PMID: 39631274 DOI: 10.1016/j.psj.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Salmonella infection is an acute and systemic disease of poultry, primarily affecting young birds. The mortality rate of chicken within one week of age can reach up to 40 %. Surviving individuals may become carriers of the bacteria, leading to latent infections that can result in bacterial residues in meat and egg products, posing serious threats to human food safety and health. Antibiotic therapy is one of the most conventional treatments for Salmonella infections in birds. However, the current abuse of antibiotics has accelerated the mutation of pathogenic bacteria to generate antibiotic-resistant strains. Thus, the effectiveness of treatment with antibiotics alone is gradually diminishing. To address this threat, researchers have explored the use of natural products to enhance the immune system of poultry for preventing Salmonella infections. This study aims to provide a comprehensive review, systematically summarizing recent research progress of the application of natural medicines on poultry Salmonella infection.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Jianglan Liu
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Yinan Pan
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Kai Shi
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Ping Mai
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Xiaokai Li
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China
| | - Shasha Shen
- Institute of Laboratory Animal Sciences, Panzhihua University, Panzhihua 617000, China.
| |
Collapse
|
6
|
Kim JW, Jeong JS, Kim JH, Kim CY, Chung EH, Boo SY, Lee SH, Ko JW, Kim TW. Comparative Pharmacokinetics and Egg Residues of Amoxicillin, Single and in Combination with Bromhexine, in Laying Hens. Pathogens 2024; 13:982. [PMID: 39599535 PMCID: PMC11597875 DOI: 10.3390/pathogens13110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The need for antibiotics in commercial laying hens is increasing owing to intensive farming systems. Amoxicillin trihydrate (AMX), an aminopenicillin β-lactam antibiotic, exerts broad bactericidal activity. However, its short half-life necessitates frequent administration to ensure efficacy, thus limiting its use. Herein, we investigated the effect of concurrent administration of bromhexine hydrochloride (BRM), a mucolytic agent, on AMX pharmacokinetics, performing a comparative pharmacokinetic analysis of AMX administration alone and in combination with BRM. AMX (50 mg/kg) was administered by oral gavage once daily for three days alone or in combination with 10 mg/kg BRM. Plasma and egg samples were collected to evaluate pharmacokinetic profiles and egg residues. The area under the curve and maximum plasma concentration values were significantly higher in the AMX + BRM group than the AMX only group. However, there were no significant differences in AMX half-life in the elimination phase (T1/2), elimination rate constant (kel), or apparent clearance (CL/F) values. In the egg residue study, the withdrawal period for AMX was 5 days in both groups, with no significant difference when using the maximum residue limit (MRL) of 10 μg/kg. The concentration of BRM in the eggs remained at 100 μg/kg up to the fourth day following drug administration. Conclusion: These results confirmed that BRM co-administration increased systemic exposure to AMX, with a negligible residual impact of amoxicillin in eggs.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - So-Young Boo
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - Soo-Ha Lee
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-W.K.); (J.-S.J.); (J.-H.K.); (C.-Y.K.); (E.-H.C.); (S.-Y.B.); (S.-H.L.)
| |
Collapse
|
7
|
Wang X, Xiao C, Wu S, Lin Q, Lin S, Liu J, Ye D, Wang C, Guo P. Impacts of Nano-Composite of Copper and Carbon on Intestinal Luminal Micro-Ecosystem and Mucosal Homeostasis of Yellow-Feather Broilers. Microorganisms 2024; 12:2247. [PMID: 39597636 PMCID: PMC11596944 DOI: 10.3390/microorganisms12112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The present study was undertaken to evaluate the impacts of nano-composites of copper and carbon (NCCC) on the intestinal luminal micro-ecosystem and mucosal homeostasis of yellow-feather broilers. A total of two-hundred and forty 1-day-old male yellow-feather broilers were randomly allocated into four groups, each with five replications of twelve birds. The control (CON) group received a corn-soybean basal diet, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial duration was 63 days. The findings demonstrated that there were slight impacts of NCCC addition on the intestinal luminal micro-ecosystem of broilers, with the fecal moisture content in the N100 group being slightly higher on Day 3 in the starter phase (p < 0.05). The cecal microbiota structure also did not obviously change (p > 0.05), in spite of the fall in the relative abundance of the Ruminococcus torques group in the N50 group and norank Clostridia UCG-014 in N200 group (p < 0.05). But for intestinal mucosal homeostasis, NCCC played a crucial part in jejunal morphology, tight junction, immunologic status, and antioxidant capacity. There was linear growth in villus height and a quadratic increase in villus height, crypt depth and their ratio with the increase in NCCC dosage (p < 0.05), and 100 mg/kg NCCC supplementation could intensify the expression of CLDN-3 genes (p < 0.05). In addition, IL-4 and IL-10 linearly increased after NCCC treatment (p < 0.05), along with some irregular changes in sIgA (p < 0.05). In addition, higher jejunal mucosal total antioxidant capacities in N50 and N200 groups were also observed (p < 0.05). Overall, NCCC treatment optimized the intestinal mucosa function of broilers in terms of physical barrier and immune and antioxidant capacities, but exerted subtle influence in the luminal environment of yellow-feather broilers. More precisely, dietary supplementation with 50 mg/kg NCCC is recommended for intestinal homeostasis of broilers.
Collapse
Affiliation(s)
- Xianglin Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| | - Chunlong Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| | - Shuqing Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| | - Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (D.Y.)
- Livestock and Poultry Genetic Breeding Key Laboratory of Fujian Province, Fuzhou 350013, China
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (D.Y.)
- Livestock and Poultry Genetic Breeding Key Laboratory of Fujian Province, Fuzhou 350013, China
| | - Changkang Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.W.); (C.X.); (S.W.); (Q.L.); (S.L.); (C.W.)
| |
Collapse
|
8
|
Koné GA, Tiho T, Kouakou NDV, Yapi YM, N’Guessan KR, Good M, Kouba M. Performance, Egg Quality, and Composition in Isa Brown Laying Hens Fed with Different Levels of Desmodium tortuosum Leaf Flour. Animals (Basel) 2024; 14:2868. [PMID: 39409817 PMCID: PMC11476379 DOI: 10.3390/ani14192868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The objective of this study was to investigate the effects on laying performance, egg quality traits, color, and composition of supplementing a white corn-based diet with Desmodium tortuosum leaf flour. Three hundred 32-week-old hens were distributed to 30 pens of 10 hens each and allocated to six dietary treatments (five replicates per treatment) for 13 weeks. Two control groups of 50 hens received one of either diet Y, based on yellow corn, or diet W, based on white corn. The other groups received a diet based on white corn supplemented with Desmodium tortuosum leaf flour at 2.5%, 5%, 7.5%, or 10% (diet D). Diet D improved laying performance and yolk color at a reduced feed cost per egg but had no effect on cholesterol content. In conclusion, the inclusion of Desmodium tortuosum leaf flour, in a white corn-based diet, is effective in lowering feed cost, increasing egg production, and improving yolk color.
Collapse
Affiliation(s)
- Gningnini Alain Koné
- Unité Mixte de Recherche et d’Innovation Sciences Agronomiques et Procédés de Transformation (UMRI SAPT), Institut National Polytechnique Felix Houphouët Boigny, Yamoussoukro BP 1313, Côte d’Ivoire; (T.T.); (N.D.V.K.); (Y.M.Y.); (K.R.N.)
| | - Tagouèlbè Tiho
- Unité Mixte de Recherche et d’Innovation Sciences Agronomiques et Procédés de Transformation (UMRI SAPT), Institut National Polytechnique Felix Houphouët Boigny, Yamoussoukro BP 1313, Côte d’Ivoire; (T.T.); (N.D.V.K.); (Y.M.Y.); (K.R.N.)
| | - N’Goran David Vincent Kouakou
- Unité Mixte de Recherche et d’Innovation Sciences Agronomiques et Procédés de Transformation (UMRI SAPT), Institut National Polytechnique Felix Houphouët Boigny, Yamoussoukro BP 1313, Côte d’Ivoire; (T.T.); (N.D.V.K.); (Y.M.Y.); (K.R.N.)
| | - Yapo Magloire Yapi
- Unité Mixte de Recherche et d’Innovation Sciences Agronomiques et Procédés de Transformation (UMRI SAPT), Institut National Polytechnique Felix Houphouët Boigny, Yamoussoukro BP 1313, Côte d’Ivoire; (T.T.); (N.D.V.K.); (Y.M.Y.); (K.R.N.)
| | - Konan Raphaël N’Guessan
- Unité Mixte de Recherche et d’Innovation Sciences Agronomiques et Procédés de Transformation (UMRI SAPT), Institut National Polytechnique Felix Houphouët Boigny, Yamoussoukro BP 1313, Côte d’Ivoire; (T.T.); (N.D.V.K.); (Y.M.Y.); (K.R.N.)
| | - Margaret Good
- Independant Researcher and Private Consultant, A96DX4C Dun Laoghaire, Ireland;
| | - Maryline Kouba
- Unité Mixte de Recherche Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage (UMR PEGASE), Institut Agro, National Research Institute for Agriculture, Food and Environment (INRAE), 35590 Saint Gilles, France;
| |
Collapse
|
9
|
Hao Z, Guo Z, Zhang N, Wang J, Xu J, Zhang W, Liu Q, Wang C, Zhang Y, Zhang Y. Effects of 5-Aminolevulinic Acid Supplementation on Gas Production, Fermentation Characteristics, and Bacterial Community Profiles In Vitro. Microorganisms 2024; 12:1867. [PMID: 39338541 PMCID: PMC11433865 DOI: 10.3390/microorganisms12091867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
To investigate the effect of 5-aminolevulinic acid (5-ALA) on in vitro rumen gas production, fermentation characteristics, and bacterial community profiles, five levels of 5-ALA (0, 100, 500, 1000, and 5000 mg/kg DM) were supplemented into a total mixed ration (concentrate/forage = 40:60) as substrate in an in vitro experiment. Results showed that as the supplementation level of 5-ALA increased, asymptotic gas production (b) decreased linearly and quadratically (p < 0.01) while the dry matter degradation rate increased quadratically (p < 0.01). Meanwhile, the propionate concentration of 72 h incubation fluid increased linearly (p = 0.03) and pH value increased linearly and quadratically (p < 0.01), while the concentrations of butyrate, isobutyrate, valerate, isovalerate, and NH3-N and the ratio of acetate/propionate (A/P) decreased linearly and quadratically (p < 0.05). There was no significant difference in any alpha diversity indices of bacterial communities among the various 5-ALA levels (p < 0.05). PCoA and PERMANOVA analysis revealed that the bacterial profiles showed a statistical difference between the treatment 5-ALA at 1000 mg/kg DM and the other levels except for 5000 mg/kg DM (p < 0.05). Taxonomic classification revealed a total of 18 and 173 bacterial taxa at the phylum and genus level with relative abundances higher than 0.01% in at least half of the samples, respectively. LEfse analysis revealed that 19 bacterial taxa were affected by 5-ALA levels. Correlation analysis showed that Actinobacteriota was positively correlated with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, isovalerate, and NH3-N (p < 0.05) and negatively correlated with pH (p < 0.05). WPS-2 exhibited a negative correlation with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, valerate, isobutyrate, isovalerate, and NH3-N (p < 0.05), along with a weaker positive correlation with pH (p = 0.04). The Bacteroidales BS11 gut group was negatively correlated with the concentration of propionate but positively correlated with gas production parameter b and the concentration of butyrate and NH3-N (p < 0.05). The Lachnospiraceae NK3A20 group was found to have a positive correlation with gas production parameter b, the ratio of A/P, and the concentration of butyrate, isobutyrate, isovalerate, valerate, total VFA, and NH3-N (p < 0.05), but a highly negative correlation with pH (p < 0.01). Differential metabolic pathways analysis suggested that metabolic pathways related to crude protein utilization, such as L-glutamate degradation VIII (to propanoate), L-tryptophan degradation IX, and urea cycle, increased with 5-ALA levels. In summary, including 5-ALA in the diet might improve energy and protein utilization by reducing the abundance of Actinobacteriota, the Bacteroidales BS11 gut group, the Lachnospiraceae NK3A20 group, and certain pathogenic bacteria and increasing the abundance of WPS-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yawei Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuanqing Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
10
|
García-Gómora S, Gómez-Verduzco G, Márquez-Mota CC, Cortés-Cuevas A, Vazquez-Mendoza OV, Ávila-González E. An Assessment of the Effects of Guanidinoacetic Acid on the Performance and Immune Response of Laying Hens Fed Diets with Three Levels of Metabolizable Energy. Animals (Basel) 2024; 14:1675. [PMID: 38891722 PMCID: PMC11171344 DOI: 10.3390/ani14111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Different levels of metabolizable energy (ME) and the inclusion of guanidinoacetic acid (GAA) in the diet of 53-week-old Lohmann LSL-CLASSIC hens were used to evaluate its effect on reproductive parameters, egg quality, intestinal morphology, and the immune response. Six diets were used in a 3 × 2 factorial design, with three levels of ME (2850, 2800, and 2750 kcal/kg), and with (0.08%) or without the inclusion of GAA. The addition of GAA to diets with low levels of ME increased (p < 0.05) egg production and egg mass. Moreover, hens fed with 2800 kcal/g without GAA had the highest concentration (p < 0.05) of serum interleukin IL-2, while those fed diets with the same amount of ME but supplemented with 0.08% GAA had the lowest concentration. Finally, the inclusion of 0.08% GAA increased (p < 0.05) the concentration of vascular endothelial growth factor (VEGF), regardless of the ME level in the diet. This study highlights the potential role of GAA in decreasing the energy level of ME (50-100 kcal/g) in the feeding of hens and in the modulation of specific immune responses. Further research is recommended to fully understand the mechanisms of action of GAA on the mechanism target of rapamycin and its relationship with the immune response.
Collapse
Affiliation(s)
- Santiago García-Gómora
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico;
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico;
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Arturo Cortés-Cuevas
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac, Ciudad de México 13300, Mexico; (A.C.-C.); (E.Á.-G.)
| | | | - Ernesto Ávila-González
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac, Ciudad de México 13300, Mexico; (A.C.-C.); (E.Á.-G.)
| |
Collapse
|
11
|
Zhao X, Hao S, Zhang J, Yao Y, Li L, Sun L, Qin S, Nian F, Tang D. Aerial parts of Angelica sinensis supplementation for improved broiler growth and intestinal health. Poult Sci 2024; 103:103473. [PMID: 38340660 PMCID: PMC10869287 DOI: 10.1016/j.psj.2024.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
This research examined the impact of incorporating Angelica sinensis's aerial components (APA), commonly referred to as "female ginseng", into broilers' diet. Two hundred eighty-eight 1-day-old Cobb 500 broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the diets included 4 concentrations of APA (0, 1, 2, and 3%, respectively). The study spanned 42 d, categorized as the starter phase (1-21 d) and the finisher phase (22-42 d). Notably, broilers fed with 3% APA demonstrated a pronounced surge in feed consumption and weight gain during the 22 to 42 d and over the full 42-d period (P < 0.05). Furthermore, when examining the broilers' intestinal structure, there was a notable increase in the villus height and villi ratio across the duodenum, jejunum, and ileum, with a decrease in crypt depth upon 3% APA inclusion (P < 0.05). On a molecular note, certain genes connected to the intestinal mechanical barrier, such as Zona Occludens 1 and Claudin-2, saw significant elevation in the jejunum (P < 0.05). The jejunum also displayed heightened levels of antimicrobial peptides like lysozyme, mucin 2, sIgA, IgG, and IgM, showcasing an enhanced chemical and immune barrier (P < 0.05). Delving into the 16SrDNA sequencing of intestinal content, a higher microbial diversity was evident with a surge in beneficial bacteria, particularly Firmicutes, advocating a resilient and balanced microecosystem. The findings imply that a 3% APA dietary addition bolsters growth metrics and fortifies the intestinal barrier's structural and functional integrity in broilers.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Hao
- Animal Husbandry, Pasture and Green Agricultute, Gansu Academy of Agricultural Science, Lanzhou, 730070, China
| | - Jiawei Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yali Yao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lulu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Likun Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Hu X, Zhen W, Bai D, Zhong J, Zhang R, Zhang H, Zhang Y, Ito K, Zhang B, Ma Y. Effects of dietary chlorogenic acid on cecal microbiota and metabolites in broilers during lipopolysaccharide-induced immune stress. Front Microbiol 2024; 15:1347053. [PMID: 38525083 PMCID: PMC10957784 DOI: 10.3389/fmicb.2024.1347053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of chlorogenic acid (CGA) on the intestinal microorganisms and metabolites in broilers during lipopolysaccharide (LPS)-induced immune stress. Methods A total of 312 one-day-old Arbor Acres (AA) broilers were randomly allocated to four groups with six replicates per group and 13 broilers per replicate: (1) MS group (injected with saline and fed the basal diet); (2) ML group (injected with 0.5 mg LPS/kg and fed the basal diet); (3) MA group (injected with 0.5 mg LPS/kg and fed the basal diet supplemented with 1,000 mg/kg CGA); and (4) MB group (injected with saline and fed the basal diet supplemented with 1,000 mg/kg CGA). Results The results showed that the abundance of beneficial bacteria such as Bacteroidetes in the MB group was significantly higher than that in MS group, while the abundance of pathogenic bacteria such as Streptococcaceae was significantly decreased in the MB group. The addition of CGA significantly inhibited the increase of the abundance of harmful bacteria such as Streptococcaceae, Proteobacteria and Pseudomonas caused by LPS stress. The population of butyric acid-producing bacteria such as Lachnospiraceae and Coprococcus and beneficial bacteria such as Coriobacteriaceae in the MA group increased significantly. Non-targeted metabonomic analysis showed that LPS stress significantly upregulated the 12-keto-tetrahydroleukotriene B4, riboflavin and mannitol. Indole-3-acetate, xanthurenic acid, L-formylkynurenine, pyrrole-2-carboxylic acid and L-glutamic acid were significantly down-regulated, indicating that LPS activated inflammation and oxidation in broilers, resulting in intestinal barrier damage. The addition of CGA to the diet of LPS-stimulated broilers significantly decreased 12-keto-tetrahydro-leukotriene B4 and leukotriene F4 in arachidonic acid metabolism and riboflavin and mannitol in ABC transporters, and significantly increased N-acetyl-L-glutamate 5-semialdehyde in the biosynthesis of amino acids and arginine, The presence of pyrrole-2-carboxylic acid in D-amino acid metabolism and the cecal metabolites, indolelactic acid, xanthurenic acid and L-kynurenine, indicated that CGA could reduce the inflammatory response induced by immune stress, enhance intestinal barrier function, and boost antioxidant capacity. Conclusion We conclude that CGA can have a beneficial effect on broilers by positively altering the balance of intestinal microorganisms and their metabolites to inhibit intestinal inflammation and barrier damage caused by immune stress.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science & Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
13
|
Paneru D, Tellez-Isaias G, Bottje WG, Asiamah E, Abdel-Wareth AAA, Salahuddin M, Lohakare J. Modulation of Immune Response and Cecal Microbiota by Dietary Fenugreek Seeds in Broilers. Vet Sci 2024; 11:57. [PMID: 38393075 PMCID: PMC10891824 DOI: 10.3390/vetsci11020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Fenugreek seeds (FSs) are a natural source of bioactive compounds that may modulate the immune system and gut microbiota in broilers. This study examined the effects of dietary fenugreek seed powder on immune-related gene expression and cecal microbiota composition in broilers. A total of 144 broiler chickens were randomly allocated to three dietary groups, CON (0 g/kg FS, FS5 (5 g/kg FS) and FS10 (10 g/kg FS), each with 6 replicates of 8 birds. Ileum tissues and cecal contents were collected on day 42 for the mRNA expression of inflammation and antimicrobial defense-related genes and cecal microbiome diversity, respectively. The results indicated that fenugreek seeds downregulated mRNA-level inflammation and antimicrobial defense-related genes: IL6, IL8L2, CASP6, PTGS2, IRF7, AvBD9, AvBD10, and AvBD11. Moreover, fenugreek seeds altered the cecal microbial community by increasing the population of Firmicutes and decreasing the population of Actinobacteriota, Gemmatimonadota and Verrucomicrobiota at the phylum level and increasing Alistipes, Bacteriodes and Prevotellaceae at the genera level. These findings suggest that fenugreek seeds have a positive impact on the immunological profile and microbiome of broiler chickens, possibly through the interplay of the immune system and the gut microbiome.
Collapse
Affiliation(s)
- Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| | - Guillermo Tellez-Isaias
- Center of Excellence in Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.-I.); (W.G.B.)
| | - Walter G. Bottje
- Center of Excellence in Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.-I.); (W.G.B.)
| | - Emmanuel Asiamah
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
| | - Ahmed A. A. Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena 83523, Egypt;
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Md Salahuddin
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
14
|
Zhao X, Du B, Wan M, Li J, Qin S, Nian F, Tang D. Analysis of the antioxidant activity of toons sinensis extract and their biological effects on broilers. Front Vet Sci 2024; 10:1337291. [PMID: 38260193 PMCID: PMC10800727 DOI: 10.3389/fvets.2023.1337291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plant extracts are rich in a variety of nutrients and contain a large number of bioactive compounds, and compared with traditional feed additives, they have advantages such as wide sources, natural safety and rich nutrition. This study employed in vitro antioxidant and animal experiments to comprehensively evaluate the use of Toona sinensis extract (TSE) in broiler production. 508 1-day-old Cobb 500 broilers were randomly assigned to the 7 experimental groups with 6 replications and 12 birds/replicate. Two groups received Vitamin C (VC) 300 g/t and Vitamin E 500 g/t, and five dose groups of TSE received 0, 300, 600, 900, and 1,200 g/t of TSE in their feed. The study spanned 42 days, with a starter phase (1-21 days) and a finisher phase (22-42 days). The results showed that compared to ascorbic acid, TSE had the scavenging ability of 2,2-Diphenyl-1-picrylhydrazyl and hydroxyl radical, with IC50 values of 0.6658 mg/mL and 33.1298 mg/mL, respectively. Compared to TSE 0 group, broilers fed with 1,200 g/t TSE showed significant weight gain during the starter phase and increased the feed-to-weight gain ratio during both the starter and finisher phases. Additionally, broilers receiving 1,200 g/t TSE had enhanced dry matter and organic matter utilization. Concerning meat quality, broilers in the 1,200 g/t TSE group demonstrated increased cooked meat yield, and pH value, as well as higher antioxidant capacity (T-AOC), dismutase (SOD), and glutathione peroxidase (GSH-PX) in serum. In addition, there was no significant difference in ileal microflora due to TSE supplementation. In summary, this study confirms the positive impact of a dietary inclusion of 1,200 g/t TSE on broiler growth, meat quality, and serum antioxidants.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Baolong Du
- Yizhou District Animal Disease Prevention and Control Center, Hami, China
| | - Minyan Wan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Li Y, Li J, Li M, Sun J, Shang X, Ma Y. Biological mechanism of ZnO nanomaterials. J Appl Toxicol 2024; 44:107-117. [PMID: 37518903 DOI: 10.1002/jat.4522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Modern nanotechnology has made zinc oxide nanomaterials (ZnO NMts) multifunctional, stable, and low cost, enabling them to be widely used in commercial and biomedical fields. With its wide application, the risk of human direct contact and their release into the environment also increases. This review aims to summarize the toxicity studies of ZnO NMts in vivo, including neurotoxicity, inhalation toxicity, and reproductive toxicity. The antibacterial and antiviral mechanisms of ZnO NMts in vitro and the toxicity to eukaryotic cells were summarized. The summary found that it was mainly related to reactive oxygen species (ROS) produced by oxidative stress. It also discusses the potential harm to body and the favorable prospects of the widespread use of antibacterial and antiviral in the future medical field. The review also emphasizes that the dosage and use method of ZnO NMts will be the focus of future biomedical research.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jiwen Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Xiaofen Shang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
16
|
Wang Y, Du J, Li Q, Tao Y, Cheng Y, Lu J, Wang H. Bioconversion of cellulose and hemicellulose in corn cob into L-lactic acid and xylo-oligosaccharides. Int J Biol Macromol 2023; 253:126775. [PMID: 37699460 DOI: 10.1016/j.ijbiomac.2023.126775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
With the banning of antibiotic chemical feed additives, multi-functional bioactive feed additives have been extensively sought after by the feed industry. In this study, low-cost and renewable corn cobs were treated with liquid hot water and converted into bioactive xylo-oligosaccharides and L-lactic acid after enzymatic hydrolysis, strain activation, and fermentation under mild conditions, which achieved a full utilization of cellulose and hemicellulose in corn cobs. Simultaneous saccharification fermentation after strain activation with enzymatic hydrolysate delivered the highest conversion rate of glucose to L-lactic acid (93.00 %) and yielded 17.38 g/L L-lactic acid and 2.68 g/L xylo-oligosaccharides. On this basis, batch-feeding fermentation resulted in a 78.03 % conversion rate of glucose to L-lactic acid, 18.99 g/L L-lactic acid, and 2.84 g/L xylo-oligosaccharides. This work not only provided a green and clean bioconversion strategy to produce multi-functional feed additives but can also boost the full utilization of renewable and cheap biomass resources.
Collapse
Affiliation(s)
- Yiqin Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
17
|
Chabalala O, Bhebhe E, Fushai F. Evaluation of apple ( Malus domestica) cider vinegar and garlic ( Allium sativum) extract as phytogenic substitutes for growth-promoting dietary antibiotics in sexed broiler chickens. Transl Anim Sci 2023; 7:txad109. [PMID: 37901203 PMCID: PMC10601447 DOI: 10.1093/tas/txad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Tightening global regulations on the use of subclinical dietary antibiotics to enhance broiler growth are in response to increasing concern about the risk of resistance and their residues in animal products. The study evaluated the potential of apple cider vinegar (ACV) and garlic extract (GAE) as safer, phytogenic alternatives. A batch of 390 mixed-sex Ross 308-d-old broiler chicks was received into an open, deep litter house, and feather sexed in the second week into 30 experimental units of 13 birds per 2.03 m2 pen. From days 1 to 22, all chicks were on a 200 g/kg crude protein, coccidiostat-treated commercial starter diet. During the grower (16 to 28 days) and finisher (29 to 42 days) phases, chick pens were assigned treatments in a 2 (sex) × 5 (additives) factorial experiment replicated three times. The GAE was a pure extract, while ACV was produced by fermenting 1,000 g fresh apple and 80 g supplementary brown cane sugar in 1.3 liters of water for 4 wk. The five treatments comprised antibiotic (15% granular zinc bacitracin and 12% valinomycin sodium, each at 500 g/tonne) grower (190 g/kg crude protein, 13.0 MJ ME/kg) and finisher (165 g/kg crude protein, 13.2 MJ ME/kg) commercial diets with untreated drinking water as positive controls (PC), antibiotic-free duplicates of the PC diets with untreated drinking water as the negative controls (NC), with 3 mL/L filtered ACV in drinking water (T1), 2 mL/L filtered GAE-treated drinking water (T2), or mixed (3 mL/L ACV + 2mL/L GAE) additive drinking water (T3). Males had higher (P < 0.05) feed intake than females in both growth phases. Birds on the PC gained more (P < 0.05) weight than others. Birds on the PC consumed more feed (P < 0.05) during the finisher phase than T1, T2, and the NC. Birds on the PC had a lower (P < 0.05) grower-phase feed convesion (feed:gain) ratio (FCR) than others, and lower (P < 0.05) FCR during the finisher phase than birds on T1 and T3. Birds on the PC had higher (P < 0.05) percent spleen weight than birds on T1, with smaller proventriculi (P < 0.05) than on NC, T1, T2, and T3, and smaller gizzard weight than birds on the T2 and T3. Birds on the NC exhibited less dressing percentage (P < 0.05) than all other treatments. Meat pH was higher (P < 0.05) in males. In conclusion, in contrast to dietary antibiotics, except for improved dressing percentage, the ACV and GAE did not express phytogenic benefit at the experimental dosage.
Collapse
Affiliation(s)
- Oscar Chabalala
- Department of Animal Science, Faculty of Science, Engineering & Agriculture, University of Venda, Thohoyandou, Limpopo 0950, South Africa
| | - Evison Bhebhe
- Department of Animal Science, Faculty of Science, Engineering & Agriculture, University of Venda, Thohoyandou, Limpopo 0950, South Africa
| | - Felix Fushai
- Department of Animal Science, Faculty of Science, Engineering & Agriculture, University of Venda, Thohoyandou, Limpopo 0950, South Africa
| |
Collapse
|
18
|
Cui L, Ma Z, Li W, Ma H, Guo S, Wang D, Niu Y. Inhibitory activity of flavonoids fraction from Astragalus membranaceus Fisch. ex Bunge stems and leaves on Bacillus cereus and its separation and purification. Front Pharmacol 2023; 14:1183393. [PMID: 37538180 PMCID: PMC10395332 DOI: 10.3389/fphar.2023.1183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: Astragalus membranaceus Fisch. ex Bunge is a traditional botanical drug with antibacterial, antioxidant, antiviral, and other biological activities. In the process of industrialization of A. membranaceus, most of the aboveground stems and leaves are discarded without resource utilization except for a small amount of low-value applications such as composting. This study explored the antibacterial activity of A. membranaceus stem and leaf extracts to evaluate its potential as a feed antibiotic substitute. Materials and methods: The antibacterial activity of the flavonoid, saponin, and polysaccharide fractions in A. membranaceus stems and leaves was evaluated by the disk diffusion method. The inhibitory activity of the flavonoid fraction from A. membranaceus stems and leaves on B. cereus was explored from the aspects of the growth curve, cell wall, cell membrane, biofilm, bacterial protein, and virulence factors. On this basis, the flavonoid fraction in A. membranaceus stems and leaves were isolated and purified by column chromatography to determine the main antibacterial components. Results: The flavonoid fraction in A. membranaceus stems and leaves had significant inhibitory activity against B. cereus, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 1.5625 and 6.25 mg/mL, respectively. A. membranaceus stem and leaf flavonoid fraction can induce death of B. cereus in many ways, such as inhibiting growth, destroying cell wall and cell membrane integrity, inhibiting biofilm formation, inhibiting bacterial protein synthesis, and downregulating virulence factor expression. In addition, it was clear that the main flavonoid with antibacterial activity in A. membranaceus stems and leaves was isoliquiritigenin. Molecular docking showed that isoliquiritigenin could form a hydrogen bonding force with FtsZ. Conclusion: A. membranaceus stem and leaf flavonoid fractions had significant inhibitory activity against B. cereus, and the main chemical composition was isoliquiritigenin.
Collapse
Affiliation(s)
- Liyan Cui
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhennan Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Wenhui Li
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Haihui Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yanbing Niu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
19
|
Liu W, Song X, Ding X, Xia R, Lin X, Li G, Nghiem LD, Luo W. Antibiotic removal from swine farming wastewater by anaerobic membrane bioreactor: Role of hydraulic retention time. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
20
|
Duskaev G, Kurilkina M, Zavyalov O. Growth-stimulating and antioxidant effects of vanillic acid on healthy broiler chickens. Vet World 2023; 16:518-525. [PMID: 37041822 PMCID: PMC10082733 DOI: 10.14202/vetworld.2023.518-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Phytobiotics are a safe alternative to feed antibiotics in industrial poultry farming that increases productivity by stimulating various digestive enzymes to reduce the number of pathogenic microorganisms in the intestines and improve antioxidant status and immune response. This study aimed to evaluate the effect of vanillic acid in its pure form and in combination with gamma lactone on weight growth and the physiological parameters of broiler chickens. Materials and Methods The studies were performed on 120 Arbor Acres broiler chickens (7 days old) that were randomly divided into four groups with five replicates (cages) and six birds per replicate. The control group was fed the basal diet (BD) only. Group I was fed the BD + gamma lactone (average dose 0.07 mL/animal/day). Group II was fed the BD + vanillic acid (average dose 0.07 mL/animal/day). Group III was fed the BD + gamma lactone + vanillic acid in a 1:1 ratio (average dose 0.07 mL/body/day). Live weight of broiler chickens for all group was assessed at the end of each period (age of 7, 14, 21, 28, 35, 42 days). At the end of the experiment (on day 42), 10 broilers with an average live weight were selected for blood sampling from the axillary vein. Results The results showed a growth-promoting effect of vanillic acid when fed with a diet free of synthetic antioxidants. Groups I and II had increased live weights throughout the entire experiment and a significant increase at the end of the experiment (8.2%-8.5%; p ≤ 0.05) compared to the control group. Toxic effects were not found in the biochemical blood serum analyses of Groups II and III. The metabolic processes in the experimental groups were intensified, especially in the enzyme associated with amino acid metabolism (gamma-glutamyl transferase) in Groups I and III (p ≤ 0.05). Vanillic acid, whether fed alone or in combination with gamma lactone, exhibited high antioxidant activities, protected cells from oxidative damage by inducing total antioxidant, catalase, and superoxide dismutase activities (p ≤ 0.05), and reduced the level of malondialdehyde (p ≤ 0.05) measured. No significant changes in the morphological blood parameters were found. Conclusion The use of vanillic acid alone and in combination with gamma lactone increases the digestive enzyme activities in blood plasma, increases body weight, and has a positive effect on lipid metabolism and the antioxidant status of broiler chickens. These findings indicate the significant potential use of vanillic acid and gamma lactone in poultry due to their antioxidant properties.
Collapse
Affiliation(s)
- Galimzhan Duskaev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Marina Kurilkina
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- Corresponding author: Marina Kurilkina, e-mail: Co-authors: GD: , OZ:
| | - Oleg Zavyalov
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
21
|
Selby CM, Beer LC, Forga AJ, Coles ME, Graham LE, Teague KD, Tellez-Isaias G, Hargis BM, Vuong CN, Graham BD. Evaluation of the impact of formaldehyde fumigation during the hatching phase on contamination in the hatch cabinet and early performance in broiler chickens. Poult Sci 2023; 102:102584. [PMID: 36924591 PMCID: PMC10166707 DOI: 10.1016/j.psj.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Commercial hatch cabinet environments promote replication of microorganisms. These pathogenic or apathogenic microorganisms may serve as pioneer colonizers of the gastrointestinal tract (GIT) of poultry. Some of these pioneer colonizers, such as Escherichia coli and Enterococcus spp., are opportunistic pathogens that lead to reduced performance in commercial poultry. Effective hatchery sanitation is imperative to limit contamination of naïve neonatal chicks and poults. Formaldehyde fumigation has been traditionally used to reduce the pathogen load in commercial hatch cabinets. To investigate potential alternatives to formaldehyde fumigation, models to mimic the microbial bloom in a laboratory setting must be utilized. The purpose of the present study was to evaluate the impact of a multispecies environmental challenge model (PM challenge) with and without formaldehyde fumigation during the hatching phase on early performance in broiler chicks. Three experiments were conducted to evaluate microbial contamination in the hatch cabinet environment (air samples, fluff samples), enteric colonization at day-of-hatch (DOH), and 7-day performance. In all experiments, significantly (P < 0.05) more gram-negative bacteria were recovered from the GIT at DOH in the PM challenge control group as compared to the nonchallenged control (NC) group and the formaldehyde-treated group (PM + F). There were no statistical differences in 7-day body weight gain or feed conversion ratio between the PM challenge control group, the NC group or the PM + F group. These data suggest this model could be utilized to evaluate alternatives to formaldehyde fumigation for controlling the microbial load during the hatching phase in a laboratory setting.
Collapse
Affiliation(s)
- C M Selby
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - L C Beer
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - A J Forga
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - M E Coles
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - L E Graham
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - K D Teague
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - G Tellez-Isaias
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - B M Hargis
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - C N Vuong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | - B D Graham
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|
22
|
Effect of citrus-coconut electrolyte blend on growth performance, haemato-biochemical status, organs development and intestinal morphology of broiler chickens. Trop Anim Health Prod 2023; 55:56. [PMID: 36715847 DOI: 10.1007/s11250-023-03463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION In a bid to mitigate growing concerns regarding the use of antibiotics in food animals OBJECTIVES: This study determined the growth performance, haemato-biochemical status, organ development and intestinal morphology of Arbor Acre broiler chicken strain on oral administration of citrus-coconut electrolyte blend (CCEB) for 26 days. METHODS One-hundred ninety-two chicks were brooded for 2 weeks and thereafter divided on a weight equalization basis into four groups (0, 5, 10 and 15 ml CCEB per litre of water) of six replicates each and eight birds per replicate. Phytochemical screening of CCEB was determined, while data collected for growth performance, organ proportions and intestinal morphology were subjected to a one-way analysis of variance. RESULTS Phytochemical composition revealed the abundance of phenols (128.40 mg/100g) and tannins (78.10 mg/100g) in CCEB. All productive performance parameters measured were not significantly (p < 0.05) different across treatment means. However, significantly (p < 0.05) highest concentrations (134.47 and 66.48 mg/dl, respectively) for total cholesterol and high-density lipoprotein (HDL) and the lowest concentration (38.34 mg/dl) for low-density lipoprotein (LDL) were recorded in birds on 15 ml of CCEB/litre of water. Furthermore, a progressive reduction (p < 0.05) in the bursa of Fabricius was observed with increasing CCEB/litre of water. The supplementation of CCEB did not influence (p > 0.05) duodenal morphological parameters. CONCLUSION The study concluded that 15 ml of CCEB/litre of water enhanced the production of HDL, reduced LDL, and improved immunity via the reduction of the bursa of Fabricius in broiler chickens.
Collapse
|
23
|
Elsasser TH, Ma B, Ravel J, Kahl S, Gajer P, Cross A. Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model. Anim Microbiome 2023; 5:6. [PMID: 36703224 PMCID: PMC9878500 DOI: 10.1186/s42523-023-00225-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota. RESULTS A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus. CONCLUSION The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.
Collapse
Affiliation(s)
- Ted H. Elsasser
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Bing Ma
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Stanislaw Kahl
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Pawel Gajer
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan Cross
- grid.411024.20000 0001 2175 4264Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
24
|
Jambwa P, Nkadimeng SM, Mudimba TN, Matope G, McGaw LJ. Antibacterial and anti-inflammatory activity of plant species used in traditional poultry ethnomedicine in Zimbabwe: A first step to developing alternatives to antibiotic poultry feed additives. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115687. [PMID: 36084819 DOI: 10.1016/j.jep.2022.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Global interest in phytogenic feed additives as alternatives to antibiotics in feed has been spurred by the banning of antibiotic growth promoters by several countries. Suitable plant extracts for development of phytogenic feed additives should have therapeutic value and should also be safe. AIM OF STUDY The aim of this study was to evaluate the antibacterial, antioxidant and anti-lipoxygenase activities as well as cytotoxicity of selected plant species used in poultry ethnomedicine in Zimbabwe. METHODS Antibacterial activity was determined against three ATCC strains (Staphylococcus aureus, Escherichia coli, Salmonella Enteritidis) and two clinical strains isolated from chickens (Escherichia coli and Salmonella Gallinarum) using a two-fold serial microdilution assay. Qualitative antibacterial bioautography was also carried out using the ATCC strains. Antioxidant activities of crude acetone and methanol extracts were determined using free radical scavenging assays whilst anti-lipoxygenase activity was evaluated using a ferrous oxidation-xylenol orange (FOX) assay. Cytotoxicity was evaluated using a tetrazolium-based colorimetric assay (MTT assay) on Vero monkey kidney cells. RESULTS Erythrina abyssinica had the best antibacterial activity against both ATCC strains and clinical strains with minimum inhibitory concentration (MIC) values ranging from 0.02 to 0.156 mg/ml. Aloe greatheadii, Adenia gummifera (leaves), Senna singueana and Aloe chabaudii had moderate activity against the poultry pathogens. Bioautography showed that all ten plant species have antibacterial activity against the tested microorganisms with E. abyssinica and S. singueana having prominent bands of inhibition against both Gram-negative and Gram-positive bacteria. The acetone extract of S. singueana and the methanol extract of Euphorbia matabelensis had the most powerful antioxidant activities with mean IC50 values of 1.43 μg/ml and 1.31 μg/ml respectively in the ABTS assay which were comparable with those of the positive controls (ascorbic acid and trolox). Bobgunnia madagascariensis, A. chabaudii, E. abyssinica and Tridactyle bicaudata extracts had reasonable antioxidant activity. The S. singueana extract had the most potent anti-lipoxygenase activity with a mean IC50 value of 1.72 μg/ml. The cytotoxicity results showed that only the acetone extracts of A. greatheadii and S. singueana were relatively safe at concentrations that were active against the tested microorganisms (selective index >1). Regarding anti-lipoxygenase activity, extracts of B. madagascariensis, S. singueana, T. bicaudata and E. matabelensis were more active than toxic (selective index >5) indicating anti-inflammatory potential. CONCLUSIONS This study showed that S. singueana had a cocktail of therapeutic activity and supports further investigation of this plant species for development of phytogenic poultry feed additives. Other plant species with noteworthy biological activities include B. madagascariensis, E. abyssinica, A. greatheadii, T. bicaudata and E. matabelensis.
Collapse
Affiliation(s)
- P Jambwa
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; Department of Veterinary Biosciences, University of Zimbabwe, PO Box MP167, Mt Pleasant, Harare, Zimbabwe.
| | - S M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - T N Mudimba
- Department of Animal Production and Veterinary Medicine, University of Zimbabwe, PO Box MP167, Mt Pleasant, Harare, Zimbabwe.
| | - G Matope
- Department of Veterinary Pathobiology, University of Zimbabwe, PO Box MP167, Mt Pleasant, Harare, Zimbabwe.
| | - L J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| |
Collapse
|
25
|
Johnson CN, Arsenault RJ, Piva A, Grilli E, Swaggerty CL. A microencapsulated feed additive containing organic acids and botanicals has a distinct effect on proliferative and metabolic related signaling in the jejunum and ileum of broiler chickens. Front Physiol 2023; 14:1147483. [PMID: 37035681 PMCID: PMC10075360 DOI: 10.3389/fphys.2023.1147483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Well designed and formulated natural feed additives have the potential to provide many of the growth promoting and disease mitigating characteristics of in-feed antibiotics, particularly feed additives that elicit their effects on targeted areas of the gut. Here, we describe the mechanism of action of a microencapsulated feed additive containing organic acids and botanicals (AviPlus®P) on the jejunum and ileum of 15-day-old broiler-type chickens. Day-of-hatch chicks were provided ad libitum access to feed containing either 0 or 500 g/MT of the feed additive for the duration of the study. Fifteen days post-hatch, birds were humanely euthanized and necropsied. Jejunum and ileum tissue samples were collected and either flash frozen or stored in RNA-later as appropriate for downstream applications. Chicken-specific kinome peptide array analysis was conducted on the jejunum and ileum tissues, comparing the tissues from the treated birds to those from their respective controls. Detailed analysis of peptides representing individual kinase target sites revealed that in the ileum there was a broad increase in the signal transduction pathways centering on activation of HIF-1α, AMPK, mTOR, PI3K-Akt and NFκB. These signaling responses were largely decreased in the jejunum relative to control birds. Gene expression analysis agrees with the kinome data showing strong immune gene expression in the ileum and reduced expression in the jejunum. The microencapsulated blend of organic acids and botanicals elicit a more anti-inflammatory phenotype and reduced signaling in the jejunum while resulting in enhanced immunometabolic responses in the ileum.
Collapse
Affiliation(s)
- Casey N. Johnson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Andrea Piva
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro S.p.A, Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
- *Correspondence: Christina L. Swaggerty,
| |
Collapse
|
26
|
Effects of Kadsura coccinea L. Fruit Extract on Growth Performance, Meat Quality, Immunity, Antioxidant, Intestinal Morphology and Flora of White-Feathered Broilers. Animals (Basel) 2022; 13:ani13010093. [PMID: 36611702 PMCID: PMC9817888 DOI: 10.3390/ani13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to determine whether adding Kadsura coccinea fruit extract to the diet of broilers could replace antibiotics. For this study, 300 one-day-old AA white feathered broilers were divided into five groups (no sex separated), with six repetitions per group (n = 10), as follows: blank control group (basal feed, CK group), positive drug (basal feed + 300 mg/kg aureomycin, PD group), and Kadsura coccinea low-dose, medium-dose, and high-dose groups (basal feed + 100 mg/kg, 200 mg/kg, and 300 mg/kg of Kadsura coccinea fruit extract, LD group, MD group and HD group). The experiment period was divided into early (1−21 days) and late (22−42 days) stage. We found that supplementation with Kadsura coccinea fruit extract in the diet significantly improved the growth performance of broilers (p < 0.05), reduced the feed to meat ratio (p < 0.05), reduced the fat percentage (p < 0.05), while had no significant effect on meat quality (p > 0.05) and Kadsura coccinea fruit extract could promote the development of immune organs to different extents, enhance antioxidant capacity, the contents of SOD and GSH-Px in serum were significantly increased (p < 0.05), improve the ratio of villus height to crypt depth. Finally, Kadsura coccinea fruit extract increased the relative abundance of probiotics and beneficial bacteria (Bacteroidales, NK4A214, Subdoligranulum and Eubacterium hallii) (p < 0.05) and reduced the relative abundance of harmful bacteria (Erysipelatoclostridium) (p < 0.05) in the gut of broilers. Compared with positive drug group, most of the indexes in the medium-dose group were better or had similar effects. We believe that Kadsura coccinea fruit extract can be used as a potential natural antibiotic substitute in livestock and poultry breeding programs.
Collapse
|
27
|
Zhang K, Ruan R, Zhang Z, Zhi S. An exhaustive investigation on antibiotics contamination from livestock farms within sensitive reservoir water area: Spatial density, source apportionment and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157688. [PMID: 35908704 DOI: 10.1016/j.scitotenv.2022.157688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Although the studies on antibiotic contamination are common at present, large-scale sampling studies drawing highly representative conclusions are still scarce. This study conducted a comprehensive investigation on a total of 1183 samples from 70 livestock farms within a sensitive area around reservoir waters. 45 types of antibiotics belonging to 5 different classes were monitored. This is the first analysis to comprehensively investigate the density distribution, source apportionment, ecological and health risk of antibiotics in an entire area of sensitive waters. The results showed that the layer manure samples had highest detection rate of antibiotics (0.0 %-96.1 %, average value = 30.7 %) followed by pig manure samples. Oxytetracycline had the highest concentration of 712.16 mg/kg in a pig manure sample. Different from using antibiotic concentration as a proxy for pollution level, the spatial density was calculated by averaging antibiotic concentration to area and converting different livestock to pig equivalent. The spatial density of pig equivalent can more realistically reflect the pollution caused by different breeds of livestocks. It was shown that the pig farms contributed higher to total antibiotic density than the layer and cattle farms did. After assessed, a few antibiotics (oxytetracycline, chlorotetracycline and tetracycline) have posed high ecological risks to soil around the farms. However, none of them caused hazard quotient (HQ) risk and carcinogenic risk (CR) to human health in the water of reservoir. Children were more likely to be at hazard risk than adults. Antibiotic mass fluctuation rules were analyzed along the chain (feed → livestock waste → soil → surface water). Feed, livestock waste and soil had similar diversity, but the antibiotic concentrations continued to decline, implying the possible sources of antibiotic residues were similar. Thus, it is important to reduce unnecessary antibiotic use to prevent the potential long-term risk of antibiotics.
Collapse
Affiliation(s)
- Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Rong Ruan
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB18 8QH, United Kingdom
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
28
|
Tong Y, Lin Y, Di B, Yang G, He J, Wang C, Guo P. Effect of Hydrolyzed Gallotannin on Growth Performance, Immune Function, and Antioxidant Capacity of Yellow-Feather Broilers. Animals (Basel) 2022; 12:2971. [PMID: 36359094 PMCID: PMC9656923 DOI: 10.3390/ani12212971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/16/2023] Open
Abstract
Tannins were traditionally considered as anti-nutritional factors in poultry production. Recent studies found that the addition of hydrolyzed gallotannin (HGT) could improve animal health; however, the proper dosage of HGT in chickens' diet is still unknown. Hence, our study aims to recommend its optimal dose by exploring the effects of HGT from Chinese gallnuts on the growth performance, immune function, and antioxidant capacity of yellow-feather broilers. A total of 288 male yellow-feather broilers (34.10 ± 0.08 g) were randomly allocated to four diet treatments, the basal diet with 0 (CON), 150, 300, and 450 mg/kg HGT for 63 days, respectively, with six replications per treatment and 12 birds per replication. The growth performance, slaughter performance, immune organ index, liver antioxidant-related indicators, and serum immune-related factors were evaluated. Results show that HGT supplementation did not influence the growth performance of broilers, but the diets supplemented with 300 and 450 mg/kg HGT increased the semi-eviscerated rate. Furthermore, HGT increased the content of liver T-AOC and the ratio of GSH/GSSG, which can protect against oxidative damage of birds. Additionally, supplementing HGT raised the contents of serum IL-10, IL-4, IL-6, IgA, and IgM. In conclusion, diet supplemented with 450 mg/kg HGT may be the optimal to the health of yellow-feather broilers on the whole.
Collapse
Affiliation(s)
| | | | | | | | | | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 250003, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 250003, China
| |
Collapse
|
29
|
Aguinaga-Casañas MA, Mut-Salud N, Falcón-Piñeiro A, Alcaraz-Martínez Á, Guillamón E, Baños A. In Vitro Antiparasitic Activity of Propyl-Propane-Thiosulfinate (PTS) and Propyl-Propane-Thiosulfonate (PTSO) from Allium cepa against Eimeria acervulina Sporozoites. Microorganisms 2022; 10:microorganisms10102040. [PMID: 36296317 PMCID: PMC9607501 DOI: 10.3390/microorganisms10102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Among the alternatives to control avian coccidiosis, alliaceous extracts stand out due to their functional properties. Despite this, most of the references are focused just on garlic. In this study, we analyze the in vitro effects of propyl-propane thiosulfinate (PTS) and propyl-propane thiosulfonate (PTSO), two organosulfur compounds from onion, on MDBK cells infected with sporozoites of Eimeria acervulina. To this aim, two different experiments were performed. In the first experiment, sporozoites were previously incubated for 1 h at 1, 5 and 10 µg/mL of PTS or PTSO and added to MDBK cells. In the second experiment, MDBK cells were first incubated for 24 h at different concentrations of PTS or PTSO and then infected with E. acervulina sporozoites. Then, 24 h after inoculation, the presence of E. acervulina was quantified by qPCR. MDBK viability was measured at 72 h post-infection. Sporozoites incubated at 10 µg/mL of PTS and PTSO inhibited the capability to penetrate the cells up to 75.2% ± 6.44 and 71.7% ± 6.03, respectively. The incubation of MDBK with each compound resulted in a preventive effect against sporozoite invasion at 1 µg/mL of PTS and 1 and 10 µg/mL of PTSO. Cells incubated with PTSO obtained similar viability percentages to uninfected cells. These results suggest that the use of PTS and PTSO is a promising alternative to coccidiosis treatment, although further in vivo studies need to be performed.
Collapse
Affiliation(s)
| | - Nuria Mut-Salud
- Department of Microbiology and Biotechnology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain
| | - Ana Falcón-Piñeiro
- Department of Microbiology and Biotechnology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain
| | | | - Enrique Guillamón
- Department of Microbiology and Biotechnology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain
| | - Alberto Baños
- Department of Microbiology and Biotechnology, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain
- Department of Microbiology, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|
30
|
Potential Probiotics Role in Excluding Antibiotic Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5590004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Antibiotic supplementation in feed has been continued for the previous 60 years as therapeutic use. They can improve the growth performance and feed efficiency in the chicken flock. A favorable production scenario could favor intestinal microbiota interacting with antibiotic growth promoters and alter the gut bacterial composition. Antibiotic growth promoters did not show any beneficial effect on intestinal microbes. Scope and Approach. Suitable and direct influence of growth promoters are owed to antimicrobial activities that reduce the conflict between host and intestinal microbes. Unnecessary use of antibiotics leads to resistance in microbes, and moreover, the genes can relocate to microbes including Campylobacter and Salmonella, resulting in a great risk of food poisoning. Key Findings and Conclusions. This is a reason to find alternative dietary supplements that can facilitate production, growth performance, favorable pH, and modulate gut microbial function. Therefore, this review focus on different nutritional components and immune genes used in the poultry industry to replace antibiotics, their influence on the intestinal microbiota, and how to facilitate intestinal immunity to overcome antibiotic resistance in chicken.
Collapse
|
31
|
Liu Z, Zou H, Lan Z, Li X. Prioritized antibiotics screening based on comprehensive risk assessments and related management strategy in various animal farms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115702. [PMID: 35834855 DOI: 10.1016/j.jenvman.2022.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic pollution in the environment caused by animal breeding has become a serious issue. The persistent release of antibiotics with animal waste may lead to antibiotic resistances in the environment, which poses a threat to human health. This study tries to provides a practical method for screening prioritized antibiotics via a comprehensive risk assessment and determination of their major sources, and put forward corresponding regulatory measures for animal industries. We investigated the occurrence and distribution of 20 antibiotics belonging to eight classes, spanning the areas of animal feed, drinking water, and animal feces on 59 animal farms in Shandong Province, China. The results showed that antibiotic contamination was prevalent in different environmental mediums (feed, feces, and drinking water) on these farms. Tetracyclines typically exhibited higher concentrations than the other classes in all samples, and the majority of antibiotics had greater concentrations in cattle feces than in pig- or chicken feces. For the antibiotic ecological risks in feces, doxycycline, tetracycline, and enrofloxacin exhibited much more toxic effects on terrestrial organisms (e.g., wheat, cucumber, and rice). Ciprofloxacin, enrofloxacin, ofloxacin, and tetracycline levels in drinking water samples can lead to high risk of antibiotic resistance, while no antibiotic posed obvious risks to human health. Based on compressive risk assessments, 11 antibiotics were prioritized to control in the animal breeding environment. Based on the survey of feeds, drinking water and animal waste from the farm, roxithromycin in the feces mainly originated from the feeds, while most prioritized antibiotics, were from extra addition in the animal breeding process (including injection and other oral routes). The key point of local antibiotic management in animal farms should be adjusted from the feed factory to the extra addition of antibiotics in animal breeding processes.
Collapse
Affiliation(s)
- Zhong Liu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan City Center for Disease Control and Prevention, Jinan, Shandong, 250021, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan, Shandong, 250100, China.
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
32
|
Lee W, Matthews A, Moore D. Safety Evaluation of a Novel Algal Feed Additive for Poultry Production. Avian Dis 2022; 66:1-11. [PMID: 36214407 DOI: 10.1637/aviandiseases-d-22-00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Feed additives are critical components for poultry health and the economic viability of antibiotic-free poultry production. The aim of the present study is to evaluate the safety of a novel algal-derived feed additive, a dried biomass powder produced from Chlamydomonas reinhardtii strain crAL082, modified to express an N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) and a lysozyme-type enzyme (EC 3.2.1.17). A 42-day oral toxicity study showed that the crAL082 dried biomass powder was fully tolerated by broiler chicken based on the lack of detrimental effects found in performance, mortality, hematology, blood clinical chemistry, and histopathologic results compared with those of a nontreated control group, resulting in a "No Observed Adverse Effect Level" of 5000 ppm, the highest dose tested. The study demonstrates the first-ever safety result of a C. reinhardtii microalgae dried biomass powder used as a feed additive in broiler chickens. Furthermore, safety is shown for the two additional enzymes expressed within the C. reinhardtii crAL082 strain and ingested by the birds.
Collapse
Affiliation(s)
- Weiluo Lee
- Axitan Ltd., Ground Floor Offices, Whittle Way, SG1 2FS, Stevenage, United Kingdom,
| | | | - Daniel Moore
- Colorado Quality Research, Inc., Wellington, CO 80549
| |
Collapse
|
33
|
Effects of Compound Polysaccharides Derived from Astragalus and Glycyrrhiza on Growth Performance, Meat Quality and Antioxidant Function of Broilers Based on Serum Metabolomics and Cecal Microbiota. Antioxidants (Basel) 2022; 11:antiox11101872. [PMID: 36290595 PMCID: PMC9598874 DOI: 10.3390/antiox11101872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the effects of dietary supplementation of compound polysaccharides derived from Astragalus and Glycyrrhiza on growth performance, meat quality, antioxidant function, cecal microbiota and serum metabolomics of broilers. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four treatments with six replicates comprising 20 broilers each. Treatments: CON group was the basal diet; ANT group was supplemented with Terramycin calcium; LAG group was supplemented with 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides; HAG group was supplemented with 300 mg/kg Astragalus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides. The results showed that LAG and HAG supplementation increased growth performance, antioxidant function and meat quality compared with the CON group and ANT group and, especially, the effect of LAG treatment was better than HAG. Analysis of cecal microbiota showed that LAG and HAG supplementation altered cecal microbial diversity and composition in broilers. Serum metabolomics analysis showed that a total of 193 differential metabolites were identified in CON and LAG groups, which were mainly enriched in linoleic acid metabolism and glutathione metabolism pathways. Moreover, there was a close correlation between serum metabolites, cecal microbiota and phenotypic indicators. Conclusion: Dietary supplementation of 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides could improve the growth performance, antioxidant function and meat quality of broilers by changing the serum metabolites and cecal microbiota composition.
Collapse
|
34
|
Oregano Oil Combined with Macleaya Cordata Oral Solution Improves the Growth Performance and Immune Response of Broilers. Animals (Basel) 2022; 12:ani12182480. [PMID: 36139338 PMCID: PMC9495209 DOI: 10.3390/ani12182480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Developing safe and effective antibiotic growth promoters (AGPs) substitutes is particularly important to improve animal health and production performance. As an essential plant oil, the oregano oil's main bioactive substance is carvacrol, which has been proven to have antioxidant, anti-inflammatory, antibacterial, and antiviral properties. The sanguinarine from macleaya cordata is the primary bioactive substance. Sanguinarine has anti-tumor, immune-enhancing, antibacterial, and anti-inflammatory effects. However, it has not been reported whether the compatibility of oregano oil and macleaya cordata extract could produce better results. This study is the first to report the effect of oregano oil combined with macleaya cordata oral solution on the growth of broilers. The oregano oil combined with macleaya cordata oral solution significantly improved the growth performance of broilers. At the same time, serum biochemical indices, serum antioxidant indices, serum immune indices, serum cytokines, and intestinal morphology were significantly improved. In summary, our results demonstrated that the mixed solution of oregano oil and macleaya cordata has substantial potential to be an alternative to AGPs for broilers to reduce costs and improve benefits. This study provides basic data and technical support for further research. Abstract The abuse of AGPs in animal husbandry has led to severe problems such as drug resistance and ecological, and environmental destruction, which seriously threaten human health and public health security. In recent years, extracts of oregano oil and macleaya cordata have become a hot spot in the research and application of AGP substitutes for their safety and high efficiency. This study is the first to report the effect of oregano oil combined with macleaya cordata oral solution on broiler growth performance. A total of 960 one-day-old broiler chickens were randomly divided into four treatment groups (240 chickens per group). Each treatment group was divided into six replicate groups (40 birds per replicate group). There were four groups in this study: the solvent control group, the oregano essential oil combined with macleaya cordata extract oral solution group (OS group), the oregano essential oil oral solution group (OEO group), and the macleaya cordata extract oral solution group (MCE group). Two chickens from each replicate group were collected and mixed into a composite sample. Six composite samples were obtained for each treatment group. The results showed that the oregano oil combined with macleaya cordata oral solution significantly improved the growth performance of broiler chickens. At the same time, serum biochemical indices, serum antioxidant indices, serum immune indices, serum cytokines, and intestinal morphology were significantly improved by the OS group. This study shows that oregano oil combined with macleaya cordata oral solution has substantial potential to be an alternative to AGPs for broilers.
Collapse
|
35
|
Zhou X, Zou Y, Xu Y, Zhang Z, Wu Y, Cao J, Qiu B, Qin X, Han D, Piao X, Wang J, Zhao J. Dietary Supplementation of 25-Hydroxyvitamin D 3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets. Antioxidants (Basel) 2022; 11:1750. [PMID: 36139824 PMCID: PMC9495450 DOI: 10.3390/antiox11091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to evaluate the effects of 25-hydroxyvitamin D3 (25(OH)VD3) and Vitamin D3 (VD3) supplemented in the diet of weaned piglets on their growth performance, bone quality, intestinal integrity, immune function and antioxidant capacity. A total of 192 weaned piglets were allocated into four groups and they were fed a control diet containing 2000 IU VD3 (negative control, NC), NC + 100 ppm colistin sulfate (positive control, PC), NC + 2000 IU VD3 (VD3) and NC + 2000 IU 25(OH)VD3 (25(OH)VD3). The results showed that 25(OH)VD3 improved the growth performance, bone quality and antioxidase activity of piglets compared with the other groups. Meanwhile, 25(OH)VD3 up-regulated ileal mRNA expressions of tight junction proteins and host defense peptides. The VD3 group had an increased intestinal sIgA content and mRNA expression of pBD-1 compared with the NC group. Both groups of VD3 and 25(OH)VD3 altered the microbial β-diversity compared with the NC group, and 25(OH)VD3 increased ileal concentrations of acetate and butyrate. In conclusion, our findings indicated that a regular dosage of 2000 IU VD3 in the weaned piglets' diet did not achieve optimal antioxidant capacity and immune function. 25(OH)VD3 had better growth performance than VD3 at the same inclusion level, which is associated with the improved intestinal integrity and antioxidant capacity.
Collapse
Affiliation(s)
- Xingjian Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youwei Zou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youhan Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jindang Cao
- Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China
| | - Baoqin Qiu
- Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China
| | - Xiaoyu Qin
- Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Kim KC, Han MH, Pak MN, Sin JI, Ri KC, Pak SS, Ri JH, Pak CJ, Won KY. Effect of dietary Pinus densiflora bark extract on nutrient utilization and intestinal health in weaned piglets. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Potential Probiotic Acceptability of a Novel Strain of Paenibacillus konkukensis SK 3146 and Its Dietary Effects on Growth Performance, Intestinal Microbiota, and Meat Quality in Broilers. Animals (Basel) 2022; 12:ani12111471. [PMID: 35681935 PMCID: PMC9179277 DOI: 10.3390/ani12111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
This study evaluates the in vitro probiotic characteristics of P. konkukensis sp. nov. SK-3146, which was isolated from animal feed, and its dietary effects on growth performance, intestinal characteristics, intestinal microbiota, and meat quality in broilers. In vitro experiments revealed that P. konkukensis was non-hemolytic with variable antibiotic susceptibility, and acid as well as bile tolerance. To assess the effect of P. konkukensis on broilers, a total of four hundred eighty 1-day-old Ross 308 broiler chicks were allocated to 3 treatment groups with 4 replicates of 40 birds each; the negative control group was fed a basal diet without any feed additives (NC), the positive control group was fed a basal diet containing 0.01% enramycin (PC), and the experimental group was fed a basal diet containing P. konkukensis bacterial culture (PK) at 104 CFU/g of the diet based on bacterial count. The experiment lasted for 35 days. Results indicated that there were no significant differences in any growth performance parameters among the dietary treatments (p > 0.05). In addition, the inclusion of P. konkukensis in the broilers’ diet did not affect meat cooking loss, color, and pH but increased the relative weight of breast meat (p < 0.05). The PK group showed heavier intestinal weight and shorter intestinal length than the NC group (p < 0.05). The ratio of the intestinal weight to length of jejunum was the highest in the PK group (p < 0.05). The PK group showed increased counts of Streptococcus thermophilus (p < 0.05) with no adverse effects of P. konkukensis on other intestinal microbiota in the jejunum. This study implies that P. konkukensis might have the potential to be applied as a probiotic feed additive in poultry.
Collapse
|
38
|
Makowski Z, Lipiński K, Mazur-Kuśnirek M. The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency. Animals (Basel) 2022; 12:ani12111458. [PMID: 35681923 PMCID: PMC9179849 DOI: 10.3390/ani12111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Butyric acid is a short-chain organic acid with established antimicrobial properties. It decreases the pH of intestinal digesta and reduces the abundance of pathogenic bacteria, thus indirectly improving the growth performance of birds. In the present study, turkey diets were supplemented with different forms of butyric acid. The efficiency of bird production and carcass dressing percentage were improved when butyric acid glycerides or coated sodium butyrate were added to the diet. An improvement in footpad condition and an increase in the dry matter content of faeces were noted in birds fed experimental diets. The addition of butyric acid in various forms to turkey diets improved the economic efficiency of production. The results of this study suggest that different forms of butyric acid improve production efficiency, carcass traits, and footpad condition in turkeys. Therefore, sodium butyrate, coated sodium butyrate, and butyric acid glycerides can be valuable feed additives in turkey nutrition. Abstract The aim of this study was to compare the efficacy of butyric acid glycerides (BAG), sodium butyrate (SB) and coated sodium butyrate (CSB) in turkey nutrition based on the growth performance of birds, carcass yield, meat quality, the dry matter (DM) content of faeces, the incidence of footpad dermatitis (FPD), and economic efficiency. A 105-day experiment was conducted on 400 BIG 6 female turkeys (4 treatments, 5 replications, 20 birds per replication). The addition of CSB and BAG to turkey diets improved the feed conversion ratio (FCR, p ≤ 0.05) and increased the values of the European Efficiency Index (EEI, p ≤ 0.01). The analysed forms of BA in turkey diets increased the concentration of DM in faeces (p ≤ 0.01) and decreased FPD incidence (p ≤ 0.01), which may suggest that all forms of butyrate improved litter quality and inhibit the risk for diarrhoea. The results of this study indicate that all forms of butyric acid can be valuable feed additives in turkey nutrition.
Collapse
|
39
|
Rodrigues G, Souza Santos L, Franco OL. Antimicrobial Peptides Controlling Resistant Bacteria in Animal Production. Front Microbiol 2022; 13:874153. [PMID: 35663853 PMCID: PMC9161144 DOI: 10.3389/fmicb.2022.874153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the last few decades, antimicrobial resistance (AMR) has been a worldwide concern. The excessive use of antibiotics affects animal and human health. In the last few years, livestock production has used antibiotics as food supplementation. This massive use can be considered a principal factor in the accelerated development of genetic modifications in bacteria. These modifications are responsible for AMR and can be widespread to pathogenic and commensal bacteria. In addition, these antibiotic residues can be dispersed by water and sewer water systems, the contamination of soil and, water and plants, in addition, can be stocked in tissues such as muscle, milk, eggs, fat, and others. These residues can be spread to humans by the consumption of water or contaminated food. In addition, studies have demonstrated that antimicrobial resistance may be developed by vertical and horizontal gene transfer, producing a risk to public health. Hence, the World Health Organization in 2000 forbid the use of antibiotics for feed supplementation in livestock. In this context, to obtain safe food production, one of the potential substitutes for traditional antibiotics is the use of antimicrobial peptides (AMPs). In general, AMPs present anti-infective activity, and in some cases immune response. A limited number of AMP-based drugs are now available for use in animals and humans. This use is still not widespread due to a few problems like in-vivo effectiveness, stability, and high cost of production. This review will elucidate the different AMPs applications in animal diets, in an effort to generate safe food and control AMR.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- *Correspondence: Octávio Luiz Franco
| |
Collapse
|
40
|
Paneru D, Tellez-Isaias G, Romano N, Lohakare G, Bottje WG, Lohakare J. Effect of Graded Levels of Fenugreek ( Trigonella foenum-graecum L.) Seeds on the Growth Performance, Hematological Parameters, and Intestinal Histomorphology of Broiler Chickens. Vet Sci 2022; 9:vetsci9050207. [PMID: 35622735 PMCID: PMC9146639 DOI: 10.3390/vetsci9050207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of fenugreek seeds (FS) as a potential alternative to antibiotic growth promoters in broiler chickens. In the first experiment, one-day-old Ross (n = 160) straight-run broilers were fed FS at 0 g, 2.5 g, 5 g, and 10 g/kg of diet during the starter (from 1 to 21 days) and finisher phase (from 22 to 35 days) with four replicates of ten birds each. In the second experiment, one-day-old Ross (n = 144) male broilers were fed 0 g, 5 g, and 10 g FS per kilogram of diet during the starter (from 1 to 21 days) and finisher phase (from 22 to 42 days) with six replicates of eight birds each. In addition to growth performance, hematological parameters and intestinal histomorphology were measured in the second experiment. FS linearly reduced the body weight gain (BWG) (p < 0.001), feed intake (FI) (p < 0.05), and increased feed conversion ratio (FCR) (p < 0.05) during the starter phase in both experiments. However, no significant effects on BWG, FI, and FCR were observed during the finisher phase. Moreover, the overall BWG and FI were linearly reduced (p < 0.05) with the increasing levels of FS, but BWG and FI were similar in the 5 g/kg FS group and control group. The inclusion of FS had a linear increase in white blood cell (WBC), heterophil, and lymphocyte count (p < 0.005) and the decrease in hematocrit % (p = 0.004) and total bilirubin (p = 0.001). The villus height and villus height: crypt depth ratio of jejunum and ileum were significantly lower in 5 g FS and 10 g FS treatments (p < 0.001) compared to the control. The result indicates that the dietary inclusion of FS reduces the early growth performance, increases the WBC counts, and negatively affects the intestinal morphology of broiler chickens.
Collapse
Affiliation(s)
- Deependra Paneru
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
| | - Guillermo Tellez-Isaias
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.-I.); (W.G.B.)
| | - Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
| | - Gautami Lohakare
- Little Rock Central High School, 1500 S Park St, Little Rock, AR 72202, USA;
| | - Walter G. Bottje
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.-I.); (W.G.B.)
| | - Jayant Lohakare
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
- Correspondence:
| |
Collapse
|
41
|
Song D, Li A, Wang Y, Song G, Cheng J, Wang L, Liu K, Min Y, Wang W. Effects of synbiotic on growth, digestibility, immune and antioxidant performance in broilers. Animal 2022; 16:100497. [PMID: 35338905 DOI: 10.1016/j.animal.2022.100497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The overuse of in-feed antibiotics has been associated with serious issues, including the developing of antibiotic-resistant pathogens and causing drug residues in poultry products. To date, many countries have restricted the use of growth-promoting antibiotics in food animals, resulting in the increased need for effective alternatives to in-feed antibiotic. Synbiotics, which are composed of probiotics and prebiotics, have been shown to act synergistically when applied simultaneously. Thus, this study investigated the effects of a synbiotic, composed of microencapsulated Lactobacillus plantarum (MLP) and fructooligosaccharide (FOS), on growth, immune and antioxidant parameters, and digestibility of calcium and phosphorus in broilers. A total of 168 newly hatched male broilers were randomly allotted to three dietary groups (n = 7): (1) a corn-soybean meal basal diet (CON); (2) basal diet + synbiotic (SYN); and (3) basal diet + aureomycin (ANT). Compared with the CON, chickens had greater average daily gain and digestibility of calcium and phosphorus in the SYN group (P < 0.05). In the SYN and ANT group, serum IgA, IgG, and IL-10 levels were higher, while the serum TNF-α, IL-2, and IL-6 levels were reduced (P < 0.05) compared to CON. Compared with CON, the level of serum malondialdehyde was lower (P < 0.05) and SOD level was higher (P < 0.05) in either SYN or ANT group. No significant differences in populations of Escherichia coli were seen in chickens among the three groups, whereas, the populations of Lactobacillus were higher (P < 0.05) in chickens in the SYN group compared with those in CON and ANT groups. Taken together, the addition of SYN, consisting of MLP and FOS, had benefits on growth, immune and antioxidant parameters, and digestibility of calcium and phosphorus, indicating its potential to serve as a substitute for antibiotics in broiler feeding.
Collapse
Affiliation(s)
- Dan Song
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Yongwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Junlin Cheng
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Li Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Kuanbo Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Weiwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, PR China.
| |
Collapse
|
42
|
Swaggerty CL, Byrd JA, Arsenault RJ, Perry F, Johnson CN, Genovese KJ, He H, Kogut MH, Piva A, Grilli E. A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poult Sci 2022; 101:101753. [PMID: 35240358 PMCID: PMC8892003 DOI: 10.1016/j.psj.2022.101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating disease that has seen a resurgence of cases following the removal of antibiotics from feed resulting in financial loss and significant animal health concerns across the poultry industry. The objective was to evaluate the efficacy of a microencapsulated blend of organic (25% citric and 16.7% sorbic) acids and botanicals (1.7% thymol and 1% vanillin [AviPlusP]) to reduce clinical NE and determine the signaling pathways associated with any changes. Day-of-hatch by-product broiler breeder chicks were randomly assigned to a control (0) or supplemented (500 g/MT) diet (n = 23-26) and evaluated in a NE challenge model (n = 3). Birds were administered 2X cocci vaccine on d 14 and challenged with a cocktail of Clostridium perfringens strains (107) on d 17 to 19. On d 20 to 21 birds were weighed, euthanized, and scored for NE lesions. Jejunal tissue was collected for kinome analysis using an immuno-metabolism peptide array (n = 5; 15/treatment) to compare tissue from supplement-fed birds to controls. Mortality and weight were analyzed using Student's t test and lesion scores analyzed using F-test two-sample for variances (P < 0.05). The kinome data was analyzed using PIIKA2 peptide array analysis software and fold-change between control and treated groups determined. Mortality in the supplemented group was 47.4% and 70.7% in controls (P = 0.004). Lesions scores were lower (P = 0.006) in supplemented birds (2.47) compared to controls (3.3). Supplement-fed birds tended (P = 0.19) to be heavier (848.6 g) than controls (796.2 g). Kinome analysis showed T cell receptor, TNF and NF-kB signaling pathways contributed to the improvements seen in the supplement-fed birds. The following peptides were significant (P < 0.05) in all 3 pathways: CHUK, MAP3K14, MAP3K7, and NFKB1 indicating their importance. Additionally, there were changes to IL6, IL10, and IFN- γ mRNA expression in tissue between control- and supplement-fed chickens. In conclusion, the addition of a microencapsulated blend of organic acids and botanicals to a broiler diet reduced the clinical signs of NE that was mediated by specific immune-related pathways.
Collapse
Affiliation(s)
- Christina L Swaggerty
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| | - J Allen Byrd
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Famatta Perry
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Casey N Johnson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Kenneth J Genovese
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Haiqi He
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Michael H Kogut
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Andrea Piva
- DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy; Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy; Vetagro Inc., Chicago, IL, USA
| |
Collapse
|
43
|
Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poult Sci 2022; 101:101905. [PMID: 35576745 PMCID: PMC9117935 DOI: 10.1016/j.psj.2022.101905] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation of polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis on growth performance, intestinal health, and gut microbiota composition in broilers. A total of 480 one-day-old male Arbor Acres broilers were randomly divided into 4 treatments with 6 replicates comprising 20 broilers each. Treatments included: basal diet without antibiotics (CON); basal diet supplemented with 500 mg/kg terramycin calcium (ANT); basal diet supplemented with 300 mg/kg Astragalus membranaceus polysaccharides (APS); and basal diet supplemented with 150 mg/kg Glycyrrhiza uralensis polysaccharides (GPS). The results showed that ANT, AP,S and GPS supplementation significantly increased average daily gain (ADG) and decreased feed conversion ratio (FCR) of broilers from 1 to 42 d of age. At 42 d, serum immunoglobulin A (IgA), immunoglobulin M (IgM) and immunoglobulin G (IgG) levels of the APS and GPS group were notably higher than those of the CON group, while serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) as well as diamine oxidase (DAO) activity in the APS and GPS group were obviously decreased. Moreover, diets supplemented with APS and GPS could significantly increase villus height (VH) and the ratio of villus height to crypt depth (VH/CD) and remarkably upregulated occludin, claudin-1 and mucin-2 (MUC2) mRNA expression in duodenum, jejunum, and ileum of broilers. In addition, 16S rRNA gene sequencing revealed that APS and GPS supplementation altered cecal microbial diversity and composition in broilers. Higher Shannon index was observed in the APS and GPS group compared with the CON group, while GPS supplementation could also increase Chao1 index and Observed species. The result of Principal coordinate analysis (PCoA) showed that microbial community in the CON, ANT, APS, and GPS group clustered separately. Notably, both APS and GPS supplementation significantly decreased the abundance of Bacteroidetes, Bacteroides, Faecalibacterium, Desulfovibrio, and Butyricicoccus, while increased the abundance of Firmicutes, Prevotella, Parabacteroides, Ruminococcus, and Alistipes. The correlation analysis showed that the changes in cecal microbial composition induced by dietary APS and GPS supplementation were closely associated with the alteration of the phenotype of broilers including ADG, FCR, TNF-α, IL-1β, IL-6, IgA, IgG, DAO, Occludin, Claudin-1, ZO-1, and MUC2. In conclusion, polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis could improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota.
Collapse
|
44
|
Mohamed TM, Sun W, Bumbie GZ, Elokil AA, Mohammed KAF, Zebin R, Hu P, Wu L, Tang Z. Feeding Bacillus subtilis ATCC19659 to Broiler Chickens Enhances Growth Performance and Immune Function by Modulating Intestinal Morphology and Cecum Microbiota. Front Microbiol 2022; 12:798350. [PMID: 35281307 PMCID: PMC8904210 DOI: 10.3389/fmicb.2021.798350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
This study investigated dietary supplementation with Bacillus subtilis (BS) ATCC19659 on growth performance, biochemical indices, intestinal morphology, and cecum microflora in broiler chicks. A total of 600 Arbor 1-day Acres broilers of either sex were allotted to 5 treatments: chicks were fed a corn- and soybean-based diet (CON); chicks were fed basal diet containing 500 mg ZnB/kg (ZnB); chicks were fed basal diet containing 1 × 108 CFU/g feed of BS-ATCC19659 (BS-1); chicks were fed basal diet containing 3 × 108 CFU/g feed of BS-ATCC19659 (BS-3); and chicks were fed basal diet containing 5 × 108 CFU/g feed of BS-ATCC19659 (BS-5). Each treatment comprised 6 replicates with 20 birds for each replicate pen. Chicks in the BS-5 and BS-3 groups had higher body weight at the 21st and 42nd days and average daily gain from 1 to 21 days than that in the CON group (p < 0.05). Chicks in the BS-5 and ZnB groups had higher serum antioxidant activities and immunity response than those in the CON group (p < 0.05). Compared with the CON group, the liver mRNA abundance of GHR, TGF-β, IGF-1, IFN-γ, SOD, CAT, and GPX of chicks in three BS groups and the ileum villus length (μm) of chicks in BS-3 and ZnB groups was increased (p < 0.05). Compared with the CON group, the villus height-to-crypt depth ratio of the ileum of chicks in the BS-5 and BS-3 groups and the crypt depth and villus height-to-crypt depth ratio of the jejunum in the BS-5 and ZnB groups were increased (p < 0.05). The abundance of the Cyanobacteria phyla in the cecum decreased in response to treatment with both BS-ATCC19659 and ZnB groups (p < 0.05). Compared with the CON group, the cecum abundance of genera GCA-900066575 (Lachnospiraceae), Anaerofustis, and Papillibacter (Firmicutes phylum) in three BS groups were increased (p < 0.05); The abundance of genus Escherichia–Shigella reduced in the BS-3 group (p < 0.05). Compared with the CON group, the cecum abundance of genus Clostridia_unclassified in ZnB and BS-5 groups was decreased (p < 0.05) of broilers. Generally, Bacillus subtilis ATCC19659 as feed additive positively affected growth performance, immunity response, and cecal microflora of broilers.
Collapse
Affiliation(s)
- Taha M Mohamed
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China.,Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Weizhong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Gifty Z Bumbie
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Abdelmotaleb A Elokil
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | | | - Rao Zebin
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ping Hu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
45
|
A Pilot Study on the Effect of Thyme Microemulsion Compared with Antibiotic as Treatment of Salmonella Enteritidis in Broiler. Vet Med Int 2022; 2022:3647523. [PMID: 35251587 PMCID: PMC8894032 DOI: 10.1155/2022/3647523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance poses a global threat to the poultry industry and public health, so the direction towards eliminating the use of antibiotics and finding alternatives is a vital step to solve this problem. Thyme microemulsion (10% oil/water) had nanodrop size 28.65 ± 0.89 nm, with a polydispersity index (PDI) of 0.28 with greater homogeneity. It showed IC50 > 100 ug/ml on cytotoxicity assay and 14 active components by GC-Mass. The study was carried out using 210 Cobb chicks divided into fourteen groups. The infected groups were challenged using two Salmonella Enteritidis multidrug resistance (MDR) and Salmonella Enteritidis sensitive strains to the sulpha-trimethoprim antibiotic. The challenged inoculum was 1 × 109 CFU of Salmonella Enteritidis by oral route. The MIC treatments doses were 1 ml/liter water for thyme oil and thyme microemulsion and 33.34 mg/kg b.wt sulfadiazine for 5 days. The results showed that both thymol oil (0.1%) and microemulsion (0.01%) are able to decrease the count of Salmonella Enteritidis in cecal content and fecal dropping and the mortality rates after five days of treatment. In addition, thyme oil and microemulsion had no pathological alteration on chickens' tissues that were collected two weeks after giving the treatment. By the robust HPLC method, the SDZ and TMP residues in tissues of infected groups treated with Cotrimazine® + thyme oil microemulsion had a slight significant economic impact (P < 0.05) compared to Cotrimazine® alone. In conclusion, thymol oil and microemulsion could be an alternative economic choice for multidrug resistance Salmonella Enteritidis treatment in poultry farms.
Collapse
|
46
|
Sedghi M, Mohammadi I, Sarrami Z, Ghasemi R, Azarfar A. Effects of a yeast cell wall product on the performance of broiler chickens and PGC-1α, TLR4, IL-10 and PPARγ genes expression. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Razie Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
47
|
Gao J, Wang R, Liu J, Wang W, Chen Y, Cai W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult Sci 2022; 101:101412. [PMID: 34920387 PMCID: PMC8683594 DOI: 10.1016/j.psj.2021.101412] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we prepared a kind of novel microecologics, namely Chinese medicine-probiotic compound microecological preparation (CPCMP), which is composed of 5 traditional Chinese medicine herbs (Galla Chinensis, Andrographis paniculata, Arctii Fructus, Glycyrrhizae Radix, and Schizonepeta tenuifolia) fermented by Aspergillus niger and a kind of compound probiotics (Lactobacillus plantarum A37 and L. plantarum MIII). The effects of the CPCMP in broilers on growth performance, serum parameters, immune function, and intestinal health were investigated. A total of 450 one-day-old male Arbor Acres broilers were randomly divided into 6 treatment groups with 5 replicates, 15 birds per replicate. Treatments consisted of: blank control, CPCMP, positive control, commercial CPCMP, traditional Chinese medicine, and probiotics groups, which were birds fed with basal diet supplemented with no extra additives, 0.2% CPCMP, 0.0035% chlortetracycline, 0.2% commercially available CPCMP, 0.2% fermented traditional Chinese medicines, and 0.2% compound probiotics, respectively. CPCMP obviously increased the average body weight and average daily gain (P < 0.05, compared with any other group) and decreased the feed:gain ratio of broilers (P < 0.05, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Moreover, it significantly increased glutathione peroxidase and secretory immunoglobulin A levels and spleen/bursa indices (P < 0.05 for all, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Villus heights in duodenum, jejunum, and ileum were also elevated by CPCMP treatment (P < 0.05, compared with any other group). Furthermore, CPCMP substantially increased jejunal mRNA levels of occludin and zonula occludens-1 (P < 0.05, compared with the blank control, positive control, or probiotics group) and facilitated the growth and colonization of beneficial cecal bacteria, such as Olsenella, Barnesiella, and Lactobacillus. Overall results show that the CPCMP prepared in our work contributes to improving growth performance, serum parameters, immune function, and intestinal health of broilers and exerts synergistic effects of traditional Chinese medicines and probiotics to some extent. Our findings suggest that CPCMP is a promising antibiotic substitute in the livestock and poultry industry in the future.
Collapse
Affiliation(s)
- Jin Gao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Rui Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jingxuan Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
48
|
Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult Sci 2022; 101:101584. [PMID: 34942519 PMCID: PMC8695362 DOI: 10.1016/j.psj.2021.101584] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing market pressure to reduce the use of antibiotics and the Veterinary Feed Directive of 2019 have led to expanded research on alternate antibiotic solutions. This review aimed to assess the benefits of using essential oils (EOs) and their nanoemulsions (NEs) as feed supplements for poultry and their potential use as antibiotic alternatives in organic poultry production. Antibiotics are commonly used to enhance the growth and prevent diseases in poultry animals due to their antimicrobial activities. EOs are a complex mixture of volatile compounds derived from plants and manufactured via various fermentation, extraction, and steam distillation methods. EOs are categorized into 2 groups of compounds: terpenes and phenylpropenes. Differences among various EOs depend on the source plant type, physical and chemical soil conditions, harvest time, plant maturity, drying technology used, storage conditions, and extraction time. EOs can be used for therapeutic purposes in various situations in broiler production as they possess antibacterial, antifungal, antiparasitic, and antiviral activities. Several studies have been conducted using various combinations of EOs or crude extracts of their bioactive compounds to investigate their complexity and applications in organic poultry production. NEs are carrier systems that can be used to overcome the volatile nature of EOs, which is a major factor limiting their application. NEs are being progressively used to improve the bioavailability of the volatile lipophilic components of EOs. This review discusses the use of these nonantibiotic alternatives as antibiotics for poultry feed in organic poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza,12211, Egypt
| | - Noha M Ashry
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Toukh, 13736, Egypt
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
49
|
Zhang R, Zhang H, Liu J, Zeng X, Wu Y, Yang C. Rhamnolipids enhance growth performance by improving the immunity, intestinal barrier function, and metabolome composition in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:908-919. [PMID: 34235749 DOI: 10.1002/jsfa.11423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rhamnolipids (RLS), well known as glycolipid biosurfactants, display low toxicity, high biodegradability, and strong antibacterial properties. This study was carried out to evaluate the use of RLS supplementation as a substitute for antibiotics, and particularly to evaluate its effects on growth performance, immunity, intestinal barrier function, and metabolome composition in broilers. RESULTS The RLS treatment improved the growth performance, immunity, and intestinal barrier function in broilers. The 16S rRNA sequencing revealed that the genus Alistipes was the dominant genus in broilers treated by RLS. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomic analysis indicated that the sphingolipid metabolism, glycine, serine, and threonine metabolism, the gycerophospholipid metabolism, and the tryptophan metabolism were changed in broilers that were treated with RLS. CONCLUSION l-Tryptophan may be the medium for RLS to regulate the growth and physiological metabolism. Rhamnolipids can be used as a potential alternative to antibiotics, with similar functions to antibiotics in the diet of broilers. The optimal level of supplemented RLS in the diet was 1000 mg kg-1 . © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Haoran Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Xinfu Zeng
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
50
|
Zhang B, Liu N, Hao M, Zhou J, Xie Y, He Z. Plant-Derived Polysaccharides Regulated Immune Status, Gut Health and Microbiota of Broilers: A Review. Front Vet Sci 2022; 8:791371. [PMID: 35155646 PMCID: PMC8831899 DOI: 10.3389/fvets.2021.791371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
In modern intensive breeding system, broilers are exposed to various challenges, such as diet changes and pathological environment, which may cause the increase in the incidence rate and even death. It is necessary to take measures to prevent diseases and maintain optimal health and productivity of broilers. With the forbidden use of antibiotics in animal feed, polysaccharides from plants have attracted much attention owing to their lower toxicity, lower drug resistance, fewer side effects, and broad-spectrum antibacterial activity. It had been demonstrated that polysaccharides derived from plant exerted various functions, such as growth promotion, anti-inflammation, maintaining the integrity of intestinal mucosa, and regulation of intestinal microbiota. Therefore, the current review aimed to provide an overview of the recent advances in the impacts of plant-derived polysaccharides on anti-inflammation, gut health, and intestinal microbiota community of broilers in order to provide a reference for further study on maintaining the integrity of intestinal structure and function, and the related mechanism involved in the polysaccharide administration intervention.
Collapse
|