1
|
Xie J, Islam S, Wang L, Zheng X, Xu M, Su X, Huang S, Suits L, Yang G, Eswara P, Cai J, Ming LJ. A tale of two old drugs tetracycline and salicylic acid with new perspectives-Coordination chemistry of their Co(II) and Ni(II) complexes, redox activity of Cu(II) complex, and molecular interactions. J Inorg Biochem 2025; 262:112757. [PMID: 39423693 DOI: 10.1016/j.jinorgbio.2024.112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Extensive use of the broad-spectrum tetracycline antibiotics (TCs) has resulted their wide spread in the environment and drive new microecological balances, including the infamous antibiotic resistance. TCs require metal ions for their antibiotic activity and resistance via interactions with ribosome and tetracycline repressor TetR, respectively, at specific metal-binding sites. Moreover, the Lewis-acidic metal center(s) in metallo-TCs can interact with Lewis-basic moieties of many bioactive secondary metabolites, which in turn may alter their associated chemical equilibria and biological activities. Thus, it is ultimately important to reveal detailed coordination chemistry of metallo-TC complexes. Herein, we report (a) conclusive specific Co2+, Ni2+, and Cu2+-binding of TC revealed by paramagnetic 1H NMR, showing different conformations of the coordination and different metal-binding sites in solution and solid state, (b) significant metal-mediated activity of Cu-TC toward catechol oxidation with different mechanisms by air and H2O2 (i.e., mono- and di-nuclear pathways, respectively), (c) interactions of metallo-TCs with bioactive salicylic acid and its precursor benzoic acid, and (d) noticeable change of TC antibiotic activity by metal and salicylic acid. The results imply that TCs may play broad and versatile roles in maintaining certain equilibria in microecological environments in addition to their well-established antibiotic activity. We hope the results may foster further exploration of previously unknown metal-mediated activities of metallo-TC complexes and other metalloantibiotics.
Collapse
Affiliation(s)
- Jinhua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Shahedul Islam
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xiaojing Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Mengsheng Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Logan Suits
- Department of Molecular Biosciences, ISA6207, University of South Florida, Tampa, FL 33620, USA
| | - Guang Yang
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Prahathees Eswara
- Department of Molecular Biosciences, ISA6207, University of South Florida, Tampa, FL 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Li-June Ming
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
2
|
Wang W, Yi X, Zhou R, Peng W, Huang J, Chen J, Bo R, Liu M, Li J. Tea tree oil nanoemulsion targets AgrA protein potentiates amoxicillin efficacy against methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 2024; 292:139111. [PMID: 39733883 DOI: 10.1016/j.ijbiomac.2024.139111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
The excessive utilization of antibiotics gives rise to the development of bacterial resistance, the deterioration of animal immune functions, the increase in mortality rates, and the undermining of human immunity. Therefore, there is an urgent necessity to explore new antimicrobial agents or alternatives to tackle bacterial resistance. We investigated tea tree oil (TTO), a pure natural plant essential oil extracted from Melaleuca leaves, which exerted efficient antibacterial activities. However, the poor solubility and high volatility of TTO limited the clinical application. Therefore, tea tree oil and Tween 80 were formulated into a stable nanoemulsion (Nano TTO). We attested that Nano TTO, as an antibiotic adjuvant, enhanced the antibacterial activity of amoxicillin (AMX) against methicillin-resistant Staphylococcus aureus (MRSA) and inhibited the formation of biofilms. Mechanistic studies proved that the Nano TTO potentiation effect on AMX was primarily the result of inhibition of the Agr expression by targeting the accessory regulator AgrA. Furthermore, Nano TTO effectively boosts the efficacy of amoxicillin in the mouse septicaemia model and mouse skin wound infection model. Overall, these results revealed the potential of Nano TTO as an adjuvant to evade multidrug-resistant bacterial pathogens and improve treatment outcomes for drug-resistant infections.
Collapse
Affiliation(s)
- Weimei Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaobin Yi
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruigang Zhou
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Junjie Huang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Chen
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruonan Bo
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mingjiang Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
3
|
Zheng M, Wu X, Xu Y, Ma S, Shen J, Li T, Zhai Y, Yuan L, Hu G, Pan Y, Dandan H. Curcumin reverses high-level tigecycline resistance mediated by different mechanisms in Gram-negative bacteria. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156319. [PMID: 39724849 DOI: 10.1016/j.phymed.2024.156319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Tigecycline is one of the few effective treatments for multidrug-resistant bacteria. However, the recent emergence and spread of high-level tigecycline resistance in Enterobacteriaceae have significantly limited its clinical use. To combat this challenge, combining antibiotics with adjuvants has emerged as a promising strategy. Curcumin, known for its antibacterial properties and ability to enhance antibiotic efficacy, presents a viable option for reversing tigecycline resistance. PURPOSE This study aimed to evaluate the in vitro and in vivo synergistic effects of curcumin and tigecycline in gram-negative bacteria with different tigecycline resistance mechanisms and to elucidate the molecular mechanisms by which curcumin reverses tigecycline resistance. METHODS The checkerboard assay was used to evaluate the synergistic effects of tigecycline and curcumin, while the time-killing curves were used to assess their antibacterial activity. The study also examined their impact on biofilm eradication, the development of tigecycline resistance, and the conjugative transfer of tigecycline-resistant plasmids. The molecular mechanisms underlying the combined effect were investigated. Additionally, the in vivo efficacy of the tigecycline-curcumin combination against tigecycline-resistant Escherichia coli was assessed using a mouse peritonitis infection model. RESULTS This study revealed that curcumin and tigecycline exhibited synergistic effects against tigecycline-resistant gram-negative bacteria with various resistance mechanisms in vitro. Notably, the addition of curcumin delayed the development of tigecycline resistance in E. coli and impeded the horizontal transfer of tet(X4)-positive IncX1 plasmid. The curcumin-tigecycline combination significantly disrupted cell membrane integrity and reduced efflux pump activity by modulating proton dynamics and inhibiting ATP synthesis. Transcriptomic and proteomic analyses supported these findings, revealing disruptions in central carbon metabolism and substantial effects on the electron transport chain. In vivo experiments using a peritonitis model induced by the tet(X4)-carrying E. coli ZZ9DT16R demonstrated that the curcumin-tigecycline combination improved survival rates, reduced bacterial counts, and enhanced liver and spleen histopathology. Furthermore, the expression of the tet(X4) gene was reduced, and molecular docking studies indicated that curcumin binds to diverse tigecycline resistance proteins. CONCLUSION This study is the first to reveal the synergistic action of curcumin and tigecycline, highlighting its potential as a combined therapeutic strategy against tigecycline-resistant gram-negative pathogens with various resistance mechanisms.
Collapse
Affiliation(s)
- Mengxiang Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiaoying Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Yakun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Shengnan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Jiaxing Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Tiantian Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens SurveillancePR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens SurveillancePR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens SurveillancePR China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - He Dandan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens SurveillancePR China.
| |
Collapse
|
4
|
Chen Y, Yang P, Li Z, Hou S, Wang R, Wu J, Li Z, Chen D, Xu X. 2-Aminobenzothiazole based adjuvant of polymyxin E against Gram-negative bacteria. Bioorg Chem 2024; 153:107903. [PMID: 39549489 DOI: 10.1016/j.bioorg.2024.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/12/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024]
Abstract
Antibiotic resistance has emerged as a pressing global health issue. Polymyxin E, commonly regarded as a clinically important antibiotic, faces limitations due to its dose-dependent toxicity. A crucial strategy to combat this is the development of an antibiotic adjuvant to enhance efficacy while reducing dosage. Screening from our extensive in-house compound library, KJ1071 emerged as a promising adjuvant candidate for polymyxin E. Subsequent structure-activity relationship studies led to the discovery of compound A35, which demonstrated superior synergistic activity. However, its limited aqueous solubility posed challenges for biological experiments. To address this, we carried out a structural derivatization aimed at enhancing its solubility. The amino acid derivative A59 notably improved aqueous solubility to 3.237 mg/mL, a substantial 3237-fold increase compared to compound A35. Moreover, A59 amplified the efficacy of polymyxin E in eradicating a variety of Gram-negative bacteria, including certain clinical strains that are resistant to polymyxin E. The mechanism studies indicated that A59 might target the bacterial membrane. These findings suggest that the discovery of this innovative scaffold could provide critical insights for new adjuvant therapies.
Collapse
Affiliation(s)
- Yuce Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Yang
- Shanghai JiaoTong University, School of Pharmacy, Shanghai 200240, China; National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 201203, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Li
- Shanghai JiaoTong University, School of Pharmacy, Shanghai 200240, China
| | - Shuang Hou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rong Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiahui Wu
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 201203, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Daijie Chen
- Shanghai JiaoTong University, School of Pharmacy, Shanghai 200240, China; National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 201203, China.
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Zhao X, Zhang Z, Liu L, Wang D, Zhang X, Zhao L, Zhao Y, Jin X, Wang L, Liu X. Guanethidine Enhances the Antibacterial Activity of Rifampicin Against Multidrug-Resistant Bacteria. Microorganisms 2024; 12:2207. [PMID: 39597596 PMCID: PMC11596751 DOI: 10.3390/microorganisms12112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The escalating global threat of antibiotic resistance necessitates innovative strategies, such as the combination of antibiotics with adjuvants. Monotherapy with rifampicin is more likely to induce resistance in pathogens compared to other antibiotics. Herein, we found that the antihypertensive drug guanethidine enhanced the activity of rifampicin against certain clinically resistant Gram-negative bacteria, resulting in a reduction of up to 128-fold in the minimum inhibitory concentration. In infected animal models, this combination has achieved treatment benefits, including increased survival and decreased bacterial burden. The antimicrobial mechanism of guanethidine in synergy with rifampicin involves the disruption of the outer membrane of Gram-negative bacteria, leading to dissipation of the proton motive force. This results in an increase in reactive oxygen species and a reduction in ATP synthesis, severely disturbing energy metabolism and ultimately increasing bacterial mortality. In summary, guanethidine has the potential to become a novel adjuvant for rifampicin, offering a new option for the treatment of clinical Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No.186, Gongzhuling 136100, China; (X.Z.); (Z.Z.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xiaoxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No.186, Gongzhuling 136100, China; (X.Z.); (Z.Z.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| |
Collapse
|
6
|
Zhao X, Zhang M, Zhang Z, Wang L, Wang Y, Liu L, Wang D, Zhang X, Zhao L, Zhao Y, Jin X, Liu X, Ma H. Guanethidine Restores Tetracycline Sensitivity in Multidrug-Resistant Escherichia coli Carrying tetA Gene. Antibiotics (Basel) 2024; 13:973. [PMID: 39452239 PMCID: PMC11504368 DOI: 10.3390/antibiotics13100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
The worrying issue of antibiotic resistance in pathogenic bacteria is aggravated by the scarcity of novel therapeutic agents. Antibiotic adjuvants offer a promising solution due to their cost-effectiveness and high efficacy in addressing this issue, such as the β-lactamase inhibitor sulbactam (a β-lactam adjuvant) and the dihydrofolate reductase inhibitor trimethoprim (a sulfonamide adjuvant). This study aimed to discover potential adjuvants for tetracyclines from a list of previously approved drugs to restore susceptibility to Escherichia coli carrying the tetA gene. We have screened guanethidine, a compound from the Chinese pharmacopoeia, which effectively potentiates the activity of tetracyclines by reversing resistance in tetA-positive Escherichia coli, enhancing its antibacterial potency, and retarding the development of resistance. Guanethidine functions via the inhibition of the TetA efflux pump, thereby increasing the intracellular concentration of tetracyclines. Our findings suggest that guanethidine holds promise as an antibiotic adjuvant.
Collapse
Affiliation(s)
- Xiaoou Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Mengna Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- College of Veterinary Medicine, Northwest A&F University, Xinong Street No. 22, Yangling 712100, China
| | - Zhendu Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Lei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Yu Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- College of Life Sciences, Jilin Normal University, Haifeng Street No. 1301, Siping 136000, China
| | - Lizai Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Duojia Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xin Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Luobing Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Yunhui Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xiangshu Jin
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xiaoxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- The Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
7
|
Valdes-Pena MA, Ratchford A, Nie M, Schnabel LV, Pierce JG. Pyrrolidine-2,3-diones: heterocyclic scaffolds that inhibit and eradicate S. aureus biofilms. Chem Commun (Camb) 2024; 60:11540-11543. [PMID: 39311037 PMCID: PMC11418088 DOI: 10.1039/d4cc02708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
The absence of novel antibiotic classes, coupled with the rising threat of antibiotic persistence and resistance, is pushing the world perilously close to a new pre-antibiotic era. Over 35 000 people die every year in the US as a consequence of antimicrobial-resistant infections. Bacterial biofilms further complicate this scenario, as they are inherently more resistant to antibiotic treatments. Currently, there are no approved single agent or adjuvant small molecules for treating biofilm-complicated infections. Herein, we report the synthesis and microbiological evaluation of a novel library of 25+ monomeric and dimeric pyrrolidine-2,3-dione scaffolds. These compounds have displayed improved aqueous solubility, potent anti-biofilm properties, a low MBEC-to-MIC ratio, and synergism with FDA-approved antimicrobials against biofilm infections, constituting a promising technology as antimicrobial adjuvants.
Collapse
Affiliation(s)
- M Alejandro Valdes-Pena
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| | - Andrew Ratchford
- Department of Clinical Sciences College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| | - Minhua Nie
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| | - Joshua G Pierce
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| |
Collapse
|
8
|
Li W, Tao Z, Zhou M, Jiang H, Wang L, Ji B, Zhao Y. Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy. Microbiol Res 2024; 287:127842. [PMID: 39032266 DOI: 10.1016/j.micres.2024.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Zhen Tao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Motan Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Huilin Jiang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Liudi Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
9
|
Yang S, Liu F, Leng Y, Zhang M, Zhang L, Wang X, Wang Y. Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:744. [PMID: 39200044 PMCID: PMC11350758 DOI: 10.3390/antibiotics13080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Infections caused by multidrug-resistant pathogens have emerged as a serious threat to public health. To develop new antibacterial agents to combat such drug-resistant bacteria, a class of novel amphiphilic xanthoangelol-derived compounds were designed and synthesized by mimicking the structure and function of antimicrobial peptides (AMPs). Among them, compound 9h displayed excellent antimicrobial activity against the Gram-positive strains tested (MICs = 0.5-2 μg/mL), comparable to vancomycin, and with low hemolytic toxicity and good membrane selectivity. Additionally, compound 9h demonstrated rapid bactericidal effects, low resistance frequency, low cytotoxicity, and good plasma stability. Mechanistic studies further revealed that compound 9h had good membrane-targeting ability and was able to destroy the integrity of bacterial cell membranes, causing an increase in intracellular ROS and the leakage of DNA and proteins, thus accelerating bacterial death. These results make 9h a promising antimicrobial candidate to combat bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| |
Collapse
|
10
|
Jiang X, Chen D, Wang X, Wang C, Zheng H, Ye W, Zhou W, Liu G, Zhang K. Nitazoxanide synergizes polymyxin B against Escherichia coli by depleting cellular energy. Microbiol Spectr 2024; 12:e0019124. [PMID: 38904380 PMCID: PMC11302062 DOI: 10.1128/spectrum.00191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The rapid expansion of antibiotic-resistant bacterial diseases is a global burden on public health. It makes sense to repurpose and reposition already-approved medications for use as supplementary agents in synergistic combinations with existing antibiotics. Here, we demonstrate that the anthelmintic drug nitazoxanide (NTZ) synergistically enhances the effectiveness of the lipopeptide antibiotic polymyxin B in inhibiting gram-negative bacteria, including those resistant to polymyxin B. Mechanistic investigations revealed that nitazoxanide inhibited calcium influx and cell membrane depolarization, enhanced the affinity between polymyxin B and the extracellular membrane, and promoted intracellular ATP depletion and an increase in reactive oxygen species (ROS), thus enhancing the penetration and disruption of the Escherichia coli cell membrane by polymyxin B. The transcriptomic analysis revealed that the combination resulted in energy depletion by inhibiting both aerobic and anaerobic respiration patterns in bacterial cells. The increased bactericidal effect of polymyxin B on the E. coli ∆nuoC strain further indicates that NuoC could be a promising target for nitazoxanide. Furthermore, the combination of nitazoxanide and polymyxin B showed promising therapeutic effects in a mouse infection model infected with E. coli. Taken together, these results demonstrate the potential of nitazoxanide as a novel adjuvant to polymyxin B, to overcome antibiotic resistance and improve therapeutic outcomes in refractory infections.IMPORTANCEThe rapid spread of antibiotic-resistant bacteria poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Here, the synergistic activity of the FDA-approved agent nitazoxanide (NTZ) combined with polymyxin B was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of the combination of nitazoxanide and polymyxin B were explored by fluorescent dye, transmission electron microscopy (TEM), and transcriptomic analysis. The synergistic efficacy was evaluated in vivo by the Escherichia coli and mouse sepsis models. These results suggested that nitazoxanide, as a promising antibiotic adjuvant, can effectively enhance polymyxin B activity, providing a potential strategy for treating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xuejia Jiang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Dongliang Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haihong Zheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenchong Ye
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
11
|
Osorio-Olivares ME, Vásquez-Martínez Y, Díaz K, Canelo J, Taborga L, Espinoza-Catalán L. Antibacterial and Antioxidant Activity of Synthetic Polyoxygenated Flavonoids. Int J Mol Sci 2024; 25:5999. [PMID: 38892186 PMCID: PMC11172986 DOI: 10.3390/ijms25115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Flavonoids are an abundant class of naturally occurring compounds with broad biological activities, but their limited abundance in nature restricts their use in medicines and food additives. Here we present the synthesis and determination of the antibacterial and antioxidant activities of twenty-two structurally related flavonoids (five of which are new) by scientifically validated methods. Flavanones (FV1-FV11) had low inhibitory activity against the bacterial growth of MRSA 97-7. However, FV2 (C5,7,3',4' = OH) and FV6 (C5,7 = OH; C4' = SCH3) had excellent bacterial growth inhibitory activity against Gram-negative E. coli (MIC = 25 µg/mL for both), while Chloramphenicol (MIC = 25 µg/mL) and FV1 (C5,7,3' = OCH3; 4' = OH) showed inhibitory activity against Gram-positive L. monocytogenes (MIC = 25 µg/mL). From the flavone series (FO1-FO11), FO2 (C5,7,3',4' = OH), FO3 (C5,7,4' = OH; 3' = OCH3), and FO5 (C5,7,4' = OH) showed good inhibitory activity against Gram-positive MRSA 97-7 (MIC = 50, 12, and 50 µg/mL, respectively), with FO3 being more active than the positive control Vancomycin (MIC = 25 µg/mL). FO10 (C5,7= OH; 4' = OCH3) showed high inhibitory activity against E. coli and L. monocytogenes (MIC = 25 and 15 µg/mL, respectively). These data add significantly to our knowledge of the structural requirements to combat these human pathogens. The positions and number of hydroxyl groups were key to the antibacterial and antioxidant activities.
Collapse
Affiliation(s)
| | - Yesseny Vásquez-Martínez
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Katy Díaz
- Laboratorio de Pruebas Biológicas, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Javiera Canelo
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Luis Espinoza-Catalán
- Laboratorio de Síntesis Orgánica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| |
Collapse
|
12
|
Ding T, Guo Z, Fang L, Guo W, Yang Y, Li Y, Li X, He L. Synergistic antibacterial effects of closantel and its enantiomers in combination with colistin against multidrug resistant gram-negative bacteria. Front Microbiol 2024; 15:1374910. [PMID: 38765678 PMCID: PMC11100319 DOI: 10.3389/fmicb.2024.1374910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Drug combinations and repurposing have recently provided promising alternatives to cope with the increasingly severe issue of antibiotic resistance and depletion of natural drug molecular repertoires that undermine traditional antibacterial strategies. Closantel, an effective adjuvant, reverses antibiotic resistance in gram-negative bacteria. Herein, the combined antibacterial enantioselectivity of closantel is presented through separate enantiomer studies. Despite yielding unexpected differences, two closantel enantiomers (R, S) increased colistin activity against gram-negative bacteria both in vitro and in vivo. The fractional inhibitory concentration indices of R-closantel and S-closantel combined with colistin against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli ranged from 0.0087 to 0.5004 and from 0.0117 to 0.5312, respectively. This difference was further demonstrated using growth inhibition assays and time-killing curves. Mechanistically, a higher intracellular concentration of R-CLO is more effective in enhancing the antimicrobial activity of combination. A mouse cutaneous infection model confirmed the synergistic stereoselectivity of closantel. This discovery provides novel insights for developing precision medication and containment of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Tongyan Ding
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zeyu Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Wenying Guo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuxi Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiarong Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Limin He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Deng J, Ge Y, Yu L, Zuo Q, Zhao K, Adila M, Wang X, Niu K, Tian P. Efficacy of Random Forest Models in Predicting Multidrug-Resistant Gram-Negative Bacterial Nosocomial Infections Compared to Traditional Logistic Regression Models. Microb Drug Resist 2024; 30:179-191. [PMID: 38621166 DOI: 10.1089/mdr.2023.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
This study evaluates whether random forest (RF) models are as effective as traditional Logistic Regression (LR) models in predicting multidrug-resistant Gram-negative bacterial nosocomial infections. Data were collected from 541 patients with hospital-acquired Gram-negative bacterial infections at two tertiary-level hospitals in Urumqi, Xinjiang, China, from August 2022 to November 2023. Relevant literature informed the selection of significant predictors based on patients' pre-infection clinical information and medication history. The data were split into a training set of 379 cases and a validation set of 162 cases, adhering to a 7:3 ratio. Both RF and LR models were developed using the training set and subsequently evaluated on the validation set. The LR model achieved an accuracy of 84.57%, sensitivity of 82.89%, specificity of 80.10%, positive predictive value of 84%, negative predictive value of 85.06%, and a Yoden index of 0.69. In contrast, the RF model demonstrated superior performance with an accuracy of 89.51%, sensitivity of 90.79%, specificity of 88.37%, positive predictive value of 87.34%, negative predictive value of 91.57%, and a Yoden index of 0.79. Receiver operating characteristic curve analysis revealed an area under the curve of 0.91 for the LR model and 0.94 for the RF model. These findings indicate that the RF model surpasses the LR model in specificity, sensitivity, and accuracy in predicting hospital-acquired multidrug-resistant Gram-negative infections, showcasing its greater potential for clinical application.
Collapse
Affiliation(s)
- Jinglan Deng
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Yongchun Ge
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lingli Yu
- Infection Management Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiuxia Zuo
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Kexin Zhao
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Maimaiti Adila
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Xiao Wang
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Ke Niu
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Ping Tian
- Infection Management Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Health Care Research Center for Xinjiang Regional Population,Urumqi,China
| |
Collapse
|
14
|
Chen C, Shi J, Wang D, Kong P, Wang Z, Liu Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit Rev Microbiol 2024; 50:267-284. [PMID: 36890767 DOI: 10.1080/1040841x.2023.2186215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 03/10/2023]
Abstract
The widespread antimicrobial resistance (AMR) calls for the development of new antimicrobial strategies. Antibiotic adjuvant rescues antibiotic activity and increases the life span of the antibiotics, representing a more productive, timely, and cost-effective strategy in fighting drug-resistant pathogens. Antimicrobial peptides (AMPs) from synthetic and natural sources are considered new-generation antibacterial agents. Besides their direct antimicrobial activity, growing evidence shows that some AMPs effectively enhance the activity of conventional antibiotics. The combinations of AMPs and antibiotics display an improved therapeutic effect on antibiotic-resistant bacterial infections and minimize the emergence of resistance. In this review, we discuss the value of AMPs in the age of resistance, including modes of action, limiting evolutionary resistance, and their designing strategies. We summarise the recent advances in combining AMPs and antibiotics against antibiotic-resistant pathogens, as well as their synergistic mechanisms. Lastly, we highlight the challenges and opportunities associated with the use of AMPs as potential antibiotic adjuvants. This will shed new light on the deployment of synergistic combinations to address the AMR crisis.
Collapse
Affiliation(s)
- Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Pan Kong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Spreacker PJ, Wegrzynowicz AK, Porter CJ, Beeninga WF, Demas S, Powers EN, Henzler-Wildman KA. Functional promiscuity of small multidrug resistance transporters from Staphylococcus aureus, Pseudomonas aeruginosa, and Francisella tularensis. Mol Microbiol 2024; 121:798-813. [PMID: 38284496 PMCID: PMC11023800 DOI: 10.1111/mmi.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.
Collapse
Affiliation(s)
| | | | - Colin J. Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Will F. Beeninga
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Sydnye Demas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Emma N. Powers
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
16
|
Atif AN, Hatefi A, Arven A, Foroumadi A, Kadkhodaei S, Sadjadi A, Siavoshi F. Consumption of non-antibacterial drugs may have negative impact on Helicobacter pylori colonization in the stomach. Heliyon 2024; 10:e27327. [PMID: 38495192 PMCID: PMC10943393 DOI: 10.1016/j.heliyon.2024.e27327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Background Nineteen non-antibacterials were examined to show that their consumption for treatment of other diseases may inhibit Helicobacter pylori. Four antibiotics were used for comparison. Materials and methods Agar dilution method was used to examine the susceptibility of 20 H. pylori isolates to 4 antibiotics; metronidazole (MTZ), clarithromycin (CLR), amoxicillin (AMX), tetracycline (TET) and 19 non-antibacterials; proton pump inhibitors (PPIs), H2-blockers, bismuth subsalicylate (BSS), antifungals, statins, acetaminophen (ACE), aspirin (ASA), B-vitamins (B-Vits; Vit B1, Vit B6 and Vit Bcomplex) and vitamin C (Vit C). Blood agar plates were prepared with different concentrations of drugs and spot-inoculated with bacterial suspensions. Plates were incubated at 37 °C under microaerobic conditions and examined after 3-5 days. The isolate #20 that was mucoid and resistant to 19 drugs, including MTZ and SMV was tested against combined MTZ (8 μg/mL) and SMV (100 μg/mL). Results were analyzed statistically. Results Minimum inhibitory concentrations (MICs, μg/mL) of drugs and the frequency of susceptible H. pylori were determined as MTZ (8, 80%), CLR (2, 90%), AMX (1, 100%), TET (0.5, 70%), PPIs (8-128, 80%), H2-blockers (2000-8000, 75-80%), BSS (15, 85%), antifungals (64-256, 30-80%), statins (100-250, 35-90%), ACE (40, 75%), ASA (800, 75%), B-Vits (5000-20000, 80-100%) and Vit C (2048, 85%). Susceptibility of H. pylori isolates to 16 out of 19 non-antimicrobials (75-100%) was almost similar to those of antibiotics (70-100%) (P-value >0.05). The highest susceptibility rate (100%) belonged to Vit B1, Vit B6 and AMX. Out of 20 H. pylori isolates, 17 (85%) were susceptible to ≥13 non-antimicrobials and 3 (15%) were susceptible to < 13 (P-value <0.05). Mucoid H. pylori showed susceptibility to combination of MTZ and SMV. Conclusions Most of non-antibacterials inhibited H. pylori isolates, similar to antibiotics but their MICs exceeded those of antibiotics and their plasma concentrations. At low plasma concentration, non-antimicrobials may act as weak antibacterials, antibiotic adjuvants and immunostimulators.
Collapse
Affiliation(s)
- Allah Nazar Atif
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Sciences, Nangarhar University, Jalalabad, Afghanistan
| | - Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Asadullah Arven
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Education, Daykundi University, Nilli, Afghanistan
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Kadkhodaei
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Alireza Sadjadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Gong Y, Peng Q, Qiao Y, Tian D, Zhang Y, Xiong X, He M, Xu X, Shi B. Hyperbranched Polylysine Exhibits a Collaborative Enhancement of the Antibiotic Capacity to Kill Gram-Negative Pathogens. Antibiotics (Basel) 2024; 13:217. [PMID: 38534651 DOI: 10.3390/antibiotics13030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
In recent years, traditional antibiotic efficacy outcomes have rapidly diminished due to the advent of drug resistance, and the dose limitation value has increased due to the severe side effect of globalized healthcare. Therefore, novel strategies are required to resensitize resistant pathogens to antibiotics existing in the field and prevent the emergence of drug resistance. In this study, cationic hyperbranched polylysine (HBPL-6) was synthesized using the one-pot polymerization method. HBPL-6 exhibited excellent non-cytotoxicity and bio-solubility properties. The present study also showed that HBPL-6 altered the outer membrane (OM) integrity of Escherichia coli O157:H7, Salmonella typhimurium, and Pseudomonas aeruginosa PAO1 by improving their permeability levels. When administered at a safe dosage, HBPL-6 enhanced the accumulation of rifampicin (RIF) and erythromycin (ERY) in bacteria to restore the efficacy of the antibiotics used. Moreover, the combination of HBPL-6 with colistin (COL) reduced the antibiotic dosage, which was helpful in preventing further drug-resistance outcomes. Therefore, this research provides a new strategy for reducing the dosage of drugs used to combat Gram-negative (G-) bacteria through their synergistic effects.
Collapse
Affiliation(s)
- Yuxin Gong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Qing Peng
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Dandan Tian
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Yuwei Zhang
- Institute of Agro-Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Xiaoyan Xiong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Mengxin He
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China
| |
Collapse
|
18
|
Shi J, Chen C, Zhang M, Wang Z, Liu Y. Repurposing Anthracycline Drugs as Potential Antibiotic Candidates and Potentiators to Tackle Multidrug-Resistant Pathogens. ACS Infect Dis 2024; 10:594-605. [PMID: 38183662 DOI: 10.1021/acsinfecdis.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The escalating mortality rate resulting from multidrug-resistant (MDR) bacteria has intensified the urgency for innovative antimicrobial agents. Currently, the antimicrobial activity of compounds is usually assessed by testing the minimum inhibitory concentration (MIC) on a standardized laboratory medium. However, such screening conditions differ from the in vivo environment, making it easy to overlook some antibacterial agents that are active in vivo but less active in vitro. Herein, by using tissue medium RPMI, we uncover that anthracyclines, especially mitoxantrone (MX), exhibit improved bacteriostatic and bactericidal effects against various MDR bacteria in host-like media. Transcriptome results reveal that LPS modification-related genes of bacterial membrane surfaces and metabolic genes are significantly down-regulated in RPMI media. Mechanistic studies demonstrate that MX leads to more substantial membrane damage, increased ROS production, and DNA damage in host-mimicking conditions. Furthermore, we demonstrate that MX and colistin exhibit strong synergistic effects against mcr-positive strains in host-mimicking media by disrupting iron homeostasis. In an experimental murine infection model, MX monotreatment demonstrates therapeutic efficacy in reducing bacterial burdens. Overall, our work suggests that mimicking the host condition is an effective strategy to identify new antimicrobial agents and highlights the therapeutic potential of anthracycline drugs in combating MDR pathogens.
Collapse
Affiliation(s)
- Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Jiang H, Chen J, Du X, Feng D, Zhang Y, Qi J, He Y, An Z, Lu Y, Ge C, Wang Y. Unveiling Synergistic Potency: Exploring Butyrolactone I to Enhance Gentamicin Efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) Strain USA300. ACS Infect Dis 2024; 10:196-214. [PMID: 38127778 DOI: 10.1021/acsinfecdis.3c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Staphylococcus aureus, including MRSA strains, poses significant health risks, imposing a significant disease burden and mortality. We investigate butyrolactone I (BL-1), a marine-derived metabolite from Aspergillus terreus, enhancing aminoglycoside efficacy against MRSA. A promising synergy is observed with BL-1 and various aminoglycosides, marked by low fractional inhibitory concentration indexes (FICIs < 0.5). Comprehensive studies utilizing USA300 MRSA and gentamicin reveal a remarkable one-fourth reduction in minimum inhibitory concentration (MIC) with 20 μg/mL BL-1. A relative abundance assay indicates that BL-1 enhances gentamicin uptake while restraining extracellular presence, involving intricate transmembrane signaling and molecular interactions. RNA-Seq analysis yielded an unexpected revelation, unveiling a distinctive gene expression profile and distinguishing it from other treatment approaches. Furthermore, meticulous analyses validated the extensive perturbations induced by BL-1 exposure, affecting diverse biological functions, encompassing glycolysis, amino acid metabolisms, substance transmembrane transport, and virulence generation. These valuable insights inspired further confirmation of bacterial virulence and the modulation of membrane permeability resulting from BL-1 treatment. Phenotypic validations corroborated our observations, revealing reduced membrane permeability and hemolytic toxicity, albeit demanding a deeper comprehension of the intricate interplay underlying these actions. Our study contributes crucial mechanistic insights to the development of therapeutic strategies against this notorious pathogen and the judicious employment of aminoglycosides. Additionally, it elucidates marine-derived metabolites' ecological and functional roles, exemplified by fungal quorum sensing signals. These compounds could give producers a competitive edge, inhibiting microorganism proliferation and suggesting novel approaches for combating resistant pathogens.
Collapse
Affiliation(s)
- Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinyang Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yanjun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yajing He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhilong An
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
20
|
Qiao L, Zhang Y, Chen Y, Chi X, Ding J, Zhang H, Han Y, Zhang B, Jiang J, Lin Y. Synergistic Activity and Mechanism of Sanguinarine with Polymyxin B against Gram-Negative Bacterial Infections. Pharmaceutics 2024; 16:70. [PMID: 38258081 PMCID: PMC10820148 DOI: 10.3390/pharmaceutics16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Compounds that potentiate the activity of clinically available antibiotics provide a complementary solution, except for developing novel antibiotics for the rapid emergence of multidrug-resistant Gram-negative bacteria (GNB). We sought to identify compounds potentiating polymyxin B (PMB), a traditional drug that has been revived as the last line for treating life-threatening GNB infections, thus reducing its nephrotoxicity and heterogeneous resistance in clinical use. In this study, we found a natural product, sanguinarine (SA), which potentiated the efficacy of PMB against GNB infections. The synergistic effect of SA with PMB was evaluated using a checkerboard assay and time-kill curves in vivo and the murine peritonitis model induced by Escherichia coli in female CD-1 mice in vivo. SA assisted PMB in accelerating the reduction in bacterial loads both in vitro and in vivo, improving the inflammatory responses and survival rate of infected animals. The subsequent detection of the intracellular ATP levels, membrane potential, and membrane integrity indicated that SA enhanced the bacterial-membrane-breaking capacity of PMB. A metabolomic analysis showed that the inhibition of energy metabolism, interference with nucleic acid biosynthesis, and the blocking of L-Ara4N-related PMB resistance may also contribute to the synergistic effect. This study is the first to reveal the synergistic activity and mechanism of SA with PMB, which highlights further insights into anti-GNB drug development.
Collapse
Affiliation(s)
- Luyao Qiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Yu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Ying Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Xiangyin Chi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Jinwen Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Hongjuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Yanxing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Bo Zhang
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.Q.); (Y.Z.); (Y.C.); (X.C.); (J.D.); (H.Z.); (Y.H.)
| |
Collapse
|
21
|
Xie N. Synthesis and antibacterial effects of silver nanoparticles (AgNPs) against multi-drug resistant bacteria. Biomed Mater Eng 2024; 35:451-463. [PMID: 38995765 DOI: 10.3233/bme-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
BACKGROUND The emergence of the global problem of multi-drug resistant bacteria (MDR) is closely related to the improper use of antibiotics, which gives birth to an urgent need for antimicrobial innovation in the medical and health field. Silver nanoparticles (AgNPs) show significant antibacterial potential because of their unique physical and chemical properties. By accurately regulating the morphology, size and surface properties of AgNPs, the antibacterial properties of AgNPs can be effectively enhanced and become a next generation antibacterial material with great development potential. OBJECTIVE The detection of the inhibitory effect of AgNPs on MDR provides more possibilities for the research and development of new antimicrobial agents. METHODS Promote the formation of AgNPs by redox reaction; determine the minimum inhibitory concentration (MIC) of AgNPs to bacteria by broth microdilution method; evaluate the killing efficacy of AgNPs against multi-drug-resistant bacteria by plate counting; evaluate the inhibitory effect of AgNPs on biofilm construction by crystal violet staining; study the drug resistance of bacteria by gradually increasing the concentration of AgNPs; and detect the toxicity of AgNPs to cells by CCK-8 method. RESULTS AgNPs has a significant bactericidal effect on a variety of drug-resistant bacteria. After exposure to AgNPs solution for 12 hours, the number of E. coli decreased sharply, and S. aureus was basically eliminated after 16 hours. In particular, AgNPs showed stronger inhibition against Gram-negative bacteria. In addition, AgNPs can effectively hinder the formation of bacterial biofilm, and its inhibitory effect increases with the increase of AgNPs solution concentration. When AgNPs is used for a long time, the development of bacterial resistance to it is slow. From the point of view of safety, AgNPs has no harmful effects on organisms and has biosafety. CONCLUSION AgNPs can inhibit MDR, and the bacteriostatic ability of Gram-negative bacteria is higher than that of Gram-positive bacteria. It can also inhibit the formation of bacterial biofilm, avoid drug resistance and reduce cytotoxicity.
Collapse
Affiliation(s)
- Na Xie
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Kumar V, Yasmeen N, Pandey A, Ahmad Chaudhary A, Alawam AS, Ahmad Rudayni H, Islam A, Lakhawat SS, Sharma PK, Shahid M. Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Front Cell Infect Microbiol 2023; 13:1293633. [PMID: 38179424 PMCID: PMC10765517 DOI: 10.3389/fcimb.2023.1293633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
The rise of multi-drug resistant (MDR) pathogens poses a significant challenge to the field of infectious disease treatment. To overcome this problem, novel strategies are being explored to enhance the effectiveness of antibiotics. Antibiotic adjuvants have emerged as a promising approach to combat MDR pathogens by acting synergistically with antibiotics. This review focuses on the role of antibiotic adjuvants as a synergistic tool in the fight against MDR pathogens. Adjuvants refer to compounds or agents that enhance the activity of antibiotics, either by potentiating their effects or by targeting the mechanisms of antibiotic resistance. The utilization of antibiotic adjuvants offers several advantages. Firstly, they can restore the effectiveness of existing antibiotics against resistant strains. Adjuvants can inhibit the mechanisms that confer resistance, making the pathogens susceptible to the action of antibiotics. Secondly, adjuvants can enhance the activity of antibiotics by improving their penetration into bacterial cells, increasing their stability, or inhibiting efflux pumps that expel antibiotics from bacterial cells. Various types of antibiotic adjuvants have been investigated, including efflux pump inhibitors, resistance-modifying agents, and compounds that disrupt bacterial biofilms. These adjuvants can act synergistically with antibiotics, resulting in increased antibacterial activity and overcoming resistance mechanisms. In conclusion, antibiotic adjuvants have the potential to revolutionize the treatment of MDR pathogens. By enhancing the efficacy of antibiotics, adjuvants offer a promising strategy to combat the growing threat of antibiotic resistance. Further research and development in this field are crucial to harness the full potential of antibiotic adjuvants and bring them closer to clinical application.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sudarshan S. Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K. Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
23
|
Yi J, Liu C, Yang P, Wu ZC, Du CJ, Shen N. Exogenous glutathione reverses meropenem resistance in carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2023; 14:1327230. [PMID: 38174220 PMCID: PMC10762803 DOI: 10.3389/fphar.2023.1327230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background: The rate of carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has been increasing rapidly worldwide and, poses a significant risk to human health. Effective methods are urgently needed to address treatment failures related to antibiotic resistance. Recent research has reported that some drugs in combination with antibiotics have displayed synergistic killing of resistant bacteria. Here, we investigated whether glutathione (GSH) can synergize with meropenem, and enhance its effectiveness against CRKP. Methods: Synergistic activity was assessed by checkerboard and time-killing assays. The mechanism of these combinations was assessed by total ROS and membrane permeability assays. The bacterial metabolites were assessed by LC‒MS/MS. Results: The FICIs of GSH and meropenem were approximately 0.5 and the combined treatment with GSH and meropenem resulted in a more than 2log10 CFU/mL reduction in bacteria compared to the individual treatments. These findings indicated the synergistic effect of the two drugs. Moreover, the meropenem MIC of CRKP was reduced to less than 4 mg/L when combined with 6 mg/mL GSH, indicating that GSH could significantly reverse resistance to meropenem in bacteria. The production of ROS in bacteria was determined by flow cytometry. After adding GSH, the ROS in the GSH group and the combined group was significantly higher than that in the control and meropenem groups, but there was no significant difference between the combined and GSH groups. The metabolic disturbance caused by GSH alone and in combination with meropenem was significant intracellularly and extracellularly, especially in terms of glycerophospholipid metabolism, indicating that the synergistic effect of the combined use of GSH and meropenem was relevant to glycerophospholipid metabolism. In addition, we measured the cell membrane permeability. The cell membrane permeability of the combination group was significantly higher than that of the blank control or monotreatment groups. This confirmed that the GSH can serve as a meropenem enhancers by disturbing glycerophospholipid metabolism and increasing cell membrane permeability. Conclusion: GSH and meropenem display a synergistic effect, wherein GSH increases the sensitivity of CRKP to meropenem. The synergy and susceptibility effects are thought to related to the increased membrane permeability resulting from the perturbations in glycerophospholipid metabolism, presenting a novel avenue for CRKP treatment.
Collapse
Affiliation(s)
- Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Liu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ping Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhen-chao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Chun-jing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| |
Collapse
|
24
|
Paul D, Chawla M, Ahrodia T, Narendrakumar L, Das B. Antibiotic Potentiation as a Promising Strategy to Combat Macrolide Resistance in Bacterial Pathogens. Antibiotics (Basel) 2023; 12:1715. [PMID: 38136749 PMCID: PMC10740890 DOI: 10.3390/antibiotics12121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotics, which hit the market with astounding impact, were once called miracle drugs, as these were considered the ultimate cure for infectious diseases in the mid-20th century. However, today, nearly all bacteria that afflict humankind have become resistant to these wonder drugs once developed to stop them, imperiling the foundation of modern medicine. During the COVID-19 pandemic, there was a surge in macrolide use to treat secondary infections and this persistent use of macrolide antibiotics has provoked the emergence of macrolide resistance. In view of the current dearth of new antibiotics in the pipeline, it is essential to find an alternative way to combat drug resistance. Antibiotic potentiators or adjuvants are non-antibacterial active molecules that, when combined with antibiotics, increase their activity. Thus, potentiating the existing antibiotics is one of the promising approaches to tackle and minimize the impact of antimicrobial resistance (AMR). Several natural and synthetic compounds have demonstrated effectiveness in potentiating macrolide antibiotics against multidrug-resistant (MDR) pathogens. The present review summarizes the different resistance mechanisms adapted by bacteria to resist macrolides and further emphasizes the major macrolide potentiators identified which could serve to revive the antibiotic and can be used for the reversal of macrolide resistance.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Functional Genomics Laboratory, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | | | | | | | | |
Collapse
|
25
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Zhou H, Wang W, Cai L, Yang T. Potentiation and Mechanism of Berberine as an Antibiotic Adjuvant Against Multidrug-Resistant Bacteria. Infect Drug Resist 2023; 16:7313-7326. [PMID: 38023403 PMCID: PMC10676105 DOI: 10.2147/idr.s431256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The growing global apprehension towards multi-drug resistant (MDR) bacteria necessitates the development of innovative strategies to combat these infections. Berberine (BER), an isoquinoline quaternary alkaloid derived from various medicinal plants, has surfaced as a promising antibiotic adjuvant due to its ability to enhance the effectiveness of conventional antibiotics against drug-resistant bacterial strains. Here, we overview the augmenting properties and mechanisms of BER as an adjunctive antibiotic against MDR bacteria. BER has been observed to exhibit synergistic effects when co-administered with a range of antibiotics, including β-lactams, quinolones, aminoglycosides, tetracyclines, macrolides, lincosamides and fusidic acid. The adjunctive properties of BER led to an increase in antimicrobial effectiveness for these antibiotics against the corresponding bacteria, a decrease in minimal inhibitory concentrations, and even the reversal from resistance to susceptibility sometimes. The potential mechanisms responsible for these effects included the inhibition of antibiotic efflux, the disruption of biofilm formation, the modulation of host immune responses, and the restoration of gut microbiota homeostasis. In brief, BER demonstrated significant potential as an antibiotic adjuvant against MDR bacteria and is a promising candidate for combination therapy. Further research is necessary to fully elucidate its mechanism of action and address the challenges associated with its clinical application.
Collapse
Affiliation(s)
- Hongjuan Zhou
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenli Wang
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Long Cai
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Yang
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
27
|
Nguyen HT, Venter H, Woolford L, Young KA, McCluskey A, Garg S, Sapula SS, Page SW, Ogunniyi AD, Trott DJ. Oral administration of a 2-aminopyrimidine robenidine analogue (NCL195) significantly reduces Staphylococcus aureus infection and reduces Escherichia coli infection in combination with sub-inhibitory colistin concentrations in a bioluminescent mouse model. Antimicrob Agents Chemother 2023; 67:e0042423. [PMID: 37695304 PMCID: PMC10583667 DOI: 10.1128/aac.00424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 09/12/2023] Open
Abstract
We have previously reported promising in vivo activity of the first-generation 2-aminopyramidine robenidine analogue NCL195 against Gram-positive bacteria (GPB) when administered via the systemic route. In this study, we examined the efficacy of oral treatment with NCL195 (± low-dose colistin) in comparison to oral moxifloxacin in bioluminescent Staphylococcus aureus and Escherichia coli peritonitis-sepsis models. Four oral doses of 50 mg/kg NCL195, commencing immediately post-infection, were administered at 4 h intervals in the S. aureus peritonitis-sepsis model. We used a combination of four oral doses of 50 mg/kg NCL195 and four intraperitoneal doses of colistin at 0.125 mg/kg, 0.25 mg/kg, or 0.5 mg/kg in the E. coli peritonitis-sepsis model. Subsequently, the dose rates of four intraperitoneal doses of colistin were increased to 0.5 mg/kg, 1 mg/kg, or 2 mg/kg at 4 h intervals to treat a colistin-resistant E. coli infection. In the S. aureus infection model, oral treatment of mice with NCL195 resulted in significantly reduced S. aureus infection loads (P < 0.01) and longer survival times (P < 0.001) than vehicle-only treated mice. In the E. coli infection model, co-administration of NCL195 and graded doses of colistin resulted in a dose-dependent significant reduction in colistin-susceptible (P < 0.01) or colistin-resistant (P < 0.05) E. coli loads compared to treatment with colistin alone at similar concentrations. Our results confirm that NCL195 is a potential candidate for further preclinical development as a specific treatment for multidrug-resistant infections, either as a stand-alone antibiotic for GPB or in combination with sub-inhibitory concentrations of colistin for Gram-negative bacteria.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly A. Young
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sylvia S. Sapula
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Abiodun David Ogunniyi
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J. Trott
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Controlling biofilm and virulence properties of Gram-positive bacteria by targeting wall teichoic acid and lipoteichoic acid. Int J Antimicrob Agents 2023; 62:106941. [PMID: 37536571 DOI: 10.1016/j.ijantimicag.2023.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Wall teichoic acid (WTA) and lipoteichoic acid (LTA) are structural components of Gram-positive bacteria's peptidoglycan and cell membrane, which are mostly anionic glycopolymers. WTA confers numerous physiological, virulence, and pathogenic features to bacterial pathogens. It controls cell shape, cell division, and the localisation of autolytic enzymes and ion homeostasis. In the context of virulence and pathogenicity, it aids bacterial cell attachment and colonisation and protects against the host defence system and antibiotics. Having such a broad function in pathogenic bacteria's lifecycle, WTA/LTA become one of the potential targets for antibacterial agents to reduce bacterial infection in the host. The number of reports for targeting the WTA/LTA pathway has risen, mostly by focusing on three distinct targets: antivirulence targets, β-lactam potentiator targets, and essential targets. The current review looked at the role of WTA/LTA in biofilm development and virulence in a range of Gram-positive pathogenic bacteria. Furthermore, alternate strategies, such as the application of natural and synthetic compounds that target the WTA/LTA pathway, have been thoroughly discussed. Moreover, the application of nanomaterials and a combination of drugs have also been discussed as a viable method for targeting the WTA/LTA in numerous Gram-positive bacteria. In addition, a future perspective for controlling bacterial infection by targeting the WTA/LTA is proposed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
29
|
Cai J, Shi J, Chen C, He M, Wang Z, Liu Y. Structural-Activity Relationship-Inspired the Discovery of Saturated Fatty Acids as Novel Colistin Enhancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302182. [PMID: 37552809 PMCID: PMC10582468 DOI: 10.1002/advs.202302182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Indexed: 08/10/2023]
Abstract
The emergence and prevalence of mobile colistin resistance gene mcr have dramatically compromised the clinical efficacy of colistin, a cyclopeptide antibiotic considered to be the last option for treating different-to-treat infections. The combination strategy provides a productive and cost-effective strategy to expand the lifespan of existing antibiotics. Structural-activity relationship analysis of polymyxins indicates that the fatty acyl chain plays an indispensable role in their antibacterial activity. Herein, it is revealed that three saturated fatty acids (SFAs), especially sodium caprate (SC), substantially potentiate the antibacterial activity of colistin against mcr-positive bacteria. The combination of SFAs and colistin effectively inhibits biofilm formation and eliminates matured biofilms, and is capable of preventing the emergence and spread of mobile colistin resistance. Mechanistically, the addition of SFAs reduces lipopolysaccharide (LPS) modification by simultaneously promoting LPS biosynthesis and inhibiting the activity of MCR enzyme, enhance bacterial membrane damage, and impair the proton motive force-dependent efflux pump, thereby boosting the action of colistin. In three animal models of infection by mcr-positive pathogens, SC combined with colistin exhibit an excellent therapeutic effect. These findings indicate the therapeutic potential of SFAs as novel antibiotic adjuvants for the treatment of infections caused by multidrug-resistant bacteria in combination with colistin.
Collapse
Affiliation(s)
- Jinju Cai
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Jingru Shi
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Chen Chen
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Mengping He
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Zhiqiang Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| | - Yuan Liu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| |
Collapse
|
30
|
Zhu C, Zhou Y, Kang J, Yang H, Lin J, Fang B. Alkaline arginine promotes the gentamicin-mediated killing of drug-resistant Salmonella by increasing NADH concentration and proton motive force. Front Microbiol 2023; 14:1237825. [PMID: 37795291 PMCID: PMC10546041 DOI: 10.3389/fmicb.2023.1237825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Antimicrobial resistance, especially the development of multidrug-resistant strains, is an urgent public health threat. Antibiotic adjuvants have been shown to improve the treatment of resistant bacterial infections. Methods We verified that exogenous L-arginine promoted the killing effect of gentamicin against Salmonella in vitro and in vivo, and measured intracellular ATP, NADH, and PMF of bacteria. Gene expression was determined using real-time quantitative PCR. Results This study found that alkaline arginine significantly increased gentamicin, tobramycin, kanamycin, and apramycin-mediated killing of drug-resistant Salmonella, including multidrug-resistant strains. Mechanistic studies showed that exogenous arginine was shown to increase the proton motive force, increasing the uptake of gentamicin and ultimately inducing bacterial cell death. Furthermore, in mouse infection model, arginine effectively improved gentamicin activity against Salmonella typhimurium. Discussion These findings confirm that arginine is a highly effective and harmless aminoglycoside adjuvant and provide important evidence for its use in combination with antimicrobial agents to treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chunyang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yanhong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Kang
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jinglin Lin
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Binghu Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Zhang MN, Zhao XO, Cui Q, Zhu DM, Wisal MA, Yu HD, Kong LC, Ma HX. Famotidine Enhances Rifampicin Activity against Acinetobacter baumannii by Affecting OmpA. J Bacteriol 2023; 205:e0018723. [PMID: 37439688 PMCID: PMC10448789 DOI: 10.1128/jb.00187-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
The development of novel antibiotic adjuvants is imminent because of the frequent emergence of resistance in Gram-negative bacteria, which severely restricts the efficiency and longevity of commonly used clinical antibiotics. It is reported that famotidine, a clinical inhibitor of gastric acid secretion, enhances the antibacterial activity of rifamycin antibiotics, especially rifampicin, against Gram-negative bacteria and reverses drug resistance. Studies have shown that famotidine disrupts the cell membrane of Acinetobacter baumannii and inhibits the expression of the outer membrane protein ompA gene, while causing a dissipation of the plasma membrane potential, compensatively upregulating the pH gradient and ultimately increasing the accumulation of reactive oxygen species by leading to increased bacterial mortality. In addition, famotidine also inhibited the efflux pump activity and the biofilm formation of A. baumannii. In the Galleria mellonella and mouse infection models, the combination of famotidine and rifampicin increased the survival rate of infected animals and decreased the bacterial load in mouse organs. In conclusion, famotidine has the potential to be a novel rifampicin adjuvant, providing a new option for the treatment of clinical Gram-negative bacterial infections. IMPORTANCE In this study, famotidine was discovered for the first time to have potential as an antibiotic adjuvant, enhancing the antibacterial activity of rifamycin antibiotics against A. baumannii and overcoming the limitations of drug therapy. With the discovery of novel applications for the guanidine-containing medication famotidine, the viability of screening prospective antibiotic adjuvants from guanidine-based molecules was further explored. In addition, famotidine exerts activity by affecting the OmpA protein of the cell membrane, indicating that this protein might be used as a therapeutic drug target to treat A. baumannii infections.
Collapse
Affiliation(s)
- Meng-na Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao-ou Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Changchun, China
| | - Qi Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dao-mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Muhammad Asif Wisal
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Han-dong Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
32
|
Dhiman S, Ramirez D, Arora R, Gandhi K, Wimalasekara R, Arthur G, Kumar A, Schweizer F. Trimeric Tobramycin/Nebramine Synergizes β-Lactam Antibiotics against Pseudomonas aeruginosa. ACS OMEGA 2023; 8:29359-29373. [PMID: 37599980 PMCID: PMC10433466 DOI: 10.1021/acsomega.3c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
β-Lactam antibiotics remain one of the most effective therapeutics to treat infections caused by Gram-negative bacteria (GNB). However, since ancient times, bacteria have developed multiple resistance mechanisms toward this class of antibiotics including overexpression of β-lactamases, suppression of porins, outer membrane impermeability, overexpression of efflux pumps, and target modifications. To cope with these challenges and to extend the lifetime of existing β-lactam antibiotics, β-lactamase inhibitors are combined with β-lactam antibiotics to prevent antibiotic inactivation by β-lactamases. The combination therapy of an outer membrane permeabilizer with β-lactam antibiotics is an alternative approach to overcoming bacterial resistance of β-lactams in GNB. This approach is of particular interest for pathogens with highly impermeable outer membranes like Pseudomonas aeruginosa. Previous studies have shown that outer membrane permeabilizers can be designed by linking tobramycin and nebramine units together in the form of dimers or chimeras. In this study, we developed trimeric tobramycin and nebramine-based outer membrane permeabilizers presented on a central 1,3,5-triazine framework. The resultant trimers are capable of potentiating outer membrane-impermeable antibiotics but also β-lactams and β-lactam/β-lactamase inhibitor combinations against resistant P. aeruginosa isolates. Furthermore, the microbiological susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached by a triple combination consisting of an outer-membrane permeabilizer/β-lactam/β-lactamase inhibitor in β-lactam-resistant P. aeruginosa isolates. Overall, our results indicate that trimeric tobramycins/nebramines can rescue clinically approved β-lactams and β-lactam/β-lactamase inhibitor combinations from resistance.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Danyel Ramirez
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Rajat Arora
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karan Gandhi
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruwani Wimalasekara
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Gilbert Arthur
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ayush Kumar
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Frank Schweizer
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
33
|
Guo W, Liu Y, Yao Z, Zhou H, Wang X, Huang Z, Zhang X, Wu Q, Zhou T. Bithionol Restores Sensitivity of Multidrug-Resistant Gram-Negative Bacteria to Colistin with Antimicrobial and Anti-biofilm Effects. ACS Infect Dis 2023; 9:1634-1646. [PMID: 37458689 DOI: 10.1021/acsinfecdis.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Being among the few last-resort antibiotics, colistin (COL) has been used to treat severe infectious diseases, such as those caused by multidrug-resistant Gram-negative bacteria (MDR GNB). However, the appearance of colistin-resistant (COL-R) GNB has been frequently reported. Therefore, novel antimicrobial strategies need to be urgently sought to address this resistance challenge. In the present study, antimicrobial drug screening conducted revealed that bithionol (BT), approved by the Food and Drug Administration and used as an anthelminthic drug for paragonimiasis, exhibited a synergistic antibacterial effect with COL. Clinically isolated COL-R GNB were used as candidates to evaluate the synergistic antibacterial activity. The results revealed that BT could significantly reverse the sensitivity of COL-R GNB to COL. Furthermore, the combined application of BT and COL can reduce bacterial biofilm formation and have a scavenging effect on the mature biofilm in vitro. The damage caused to the bacterial cell membrane integrity by the BT/COL combination was observed under a fluorescence microscope. The fluorescence intensity of reactive oxygen species also increased in the experimental group. The BT/COL combination also exhibited a synergistic antibacterial effect in vivo. Importantly, BT was confirmed to be safe at the highest concentrations that exerted synergistic effects on all tested strains. In conclusion, our findings demonstrated that BT exerted synergistic antimicrobial and anti-biofilm effects when combined with COL against MDR organisms, especially COL-R GNB, in vitro and in vivo. The findings thus provide a reference for the clinical response to the serious challenge of MDR GNB and the exploitation of the potential antibacterial activities of existing clinical non-antibacterial drugs.
Collapse
Affiliation(s)
- Wenhui Guo
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huijing Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiuxiu Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Wu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
34
|
Křížkovská B, Hoang L, Brdová D, Klementová K, Szemerédi N, Loučková A, Kronusová O, Spengler G, Kaštánek P, Hajšlová J, Viktorová J, Lipov J. Modulation of the bacterial virulence and resistance by well-known European medicinal herbs. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116484. [PMID: 37044231 DOI: 10.1016/j.jep.2023.116484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia officinalis L., Sambucus nigra L., Matricaria chamomilla L., Agrimonia eupatoria L., Fragaria vesca L. and Malva sylvestris L. are plants that have a long tradition in European folk medicine. To this day, they are part of medicinal teas or creams that help with the healing of skin wounds and the treatment of respiratory or intestinal infections. However, so far these plants have not been investigated more deeply than in their direct antibacterial effect. AIM OF THE STUDY Our research is focused on adjuvants that inhibit the mechanism of antibiotic resistance or modulate bacterial virulence. Based on a preliminary screening of 52 European herbs, which commonly appear as part of tea blends or poultice. Six of them were selected for their ability to revert the resistant phenotype of nosocomial bacterial strains. METHODS Herbs selected for this study were obtained from commercially available sources. For the extraction of active compounds ethanol was used. Modulation of virulence was observed as an ability to inhibit bacterial cell-to-cell communication using two mutant sensor strains of Vibrio campbellii. Biofilm formation, and planktonic cell adhesion was measured using a static antibiofilm test. Ethidium bromide assay was used to checked the potential of inhibition bacterial efflux pumps. The antibacterial activities of the herbs were evaluated against resistant bacterial strains using macro dilution methods. RESULTS Alcohol extracts had antibacterial properties mainly against Gram-positive bacteria. Of all of them, the highest antimicrobial activity demonstrated Malva sylvestris, killing both antibiotic resistant bacteria; Staphylococcus aureus with MIC of 0.8 g/L and Pseudomonas aeruginosa 0.7 g/L, respectively. Fragaria vesca extract (0.08 g/L) demonstrated strong synergism with colistin (4 mg/L) in modulating the resistant phenotype to colistin of Pseudomonas aeruginosa. Similarly, the extract of S. officinalis (0.21 g/L) reverted resistance to gentamicin (1 mg/L) in S. aureus. However, Sambucus nigra and Matricaria chamomilla seem to be a very promising source of bacterial efflux pump inhibitors. CONCLUSION The extract of F. vesca was the most active. It was able to reduce biofilm formation probably due to the ability to decrease bacterial quorum sensing. On the other hand, the activity of S. nigra or M. chamomilla in reducing bacterial virulence may be explained by the ability to inhibit bacterial efflux systems. All these plants have potential as an adjuvant for the antibiotic treatment.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Lan Hoang
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Daniela Brdová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Kristýna Klementová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Loučková
- Department of Food Analysis and Nutrition, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | | | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Jana Hajšlová
- Department of Food Analysis and Nutrition, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic.
| |
Collapse
|
35
|
Chen C, Cai J, Shi J, Wang Z, Liu Y. Resensitizing multidrug-resistant Gram-negative bacteria to carbapenems and colistin using disulfiram. Commun Biol 2023; 6:810. [PMID: 37537267 PMCID: PMC10400630 DOI: 10.1038/s42003-023-05173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
The increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. Antibiotic adjuvant strategy is a more effective and economical approach to expand the lifespan of currently used antibiotics. Herein, we uncover that alcohol-abuse drug disulfiram (DSF) and derivatives thereof are potent antibiotic adjuvants, which dramatically potentiate the antibacterial activity of carbapenems and colistin against New Delhi metallo-β-lactamase (NDM)- and mobilized colistin resistance (MCR)-expressing Gram-negative pathogens, respectively. Mechanistic studies indicate that DSF improves meropenem efficacy by specifically inhibiting NDM activity. Moreover, the robust potentiation of DSF to colistin is due to its ability to exacerbate the membrane-damaging effects of colistin and disrupt bacterial metabolism. Notably, the passage and conjugation assays reveal that DSF minimizes the evolution and spread of meropenem and colistin resistance in clinical pathogens. Finally, their synergistic efficacy in animal models was evaluated and DSF-colistin/meropenem combination could effectively treat MDR bacterial infections in vivo. Taken together, our works demonstrate that DSF and its derivatives are versatile and potent colistin and carbapenems adjuvants, opening a new horizon for the treatment of difficult-to-treat infections.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jinju Cai
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
36
|
Wang X, Liu T, Lv X, Sun N, Li F, Luo L, Zhuge X, Huang J, Wang L. A Potential Nontraditional Approach To Combat tmexCD1-toprJ1-Mediated Tigecycline Resistance: Melatonin as a Synergistic Adjuvant of Tigecycline. Antimicrob Agents Chemother 2023; 67:e0004723. [PMID: 37289048 PMCID: PMC10353380 DOI: 10.1128/aac.00047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
The emergence of TMexCD1-TOprJ1, a novel transferable resistance-nodulation-division (RND)-type efflux pump conferring resistance to tigecycline, is now a serious public health issue in the world. Here, we found that melatonin synergistically enhanced the antibacterial efficacy of tigecycline against tmexCD1-toprJ1-positive Klebsiella pneumoniae by disrupting the proton driving force and efflux function to promote the accumulation of tigecycline into cells, damaging cell membrane integrity and causing the leakage of cell contents. The synergistic effect was further validated by a murine thigh infection model. The results revealed that the melatonin/tigecycline combination is a potential therapy to combat resistant bacteria carrying the tmexCD1-toprJ1 gene.
Collapse
Affiliation(s)
- Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing, China
| | - Ting Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Wei S, Tian Q, Husien HM, Tao Y, Liu X, Liu M, Bo R, Li J. The synergy of tea tree oil nano-emulsion and antibiotics against multidrug-resistant bacteria. J Appl Microbiol 2023; 134:lxad131. [PMID: 37401131 DOI: 10.1093/jambio/lxad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
AIMS We determined the synergistic effects of tea tree essential oil nano-emulsion (nanoTTO) and antibiotics against multidrug-resistant (MDR) bacteria in vitro and in vivo. Then, the underlying mechanism of action of nanoTTO was investigated. METHODS AND RESULTS Minimum inhibitory concentrations and fractional inhibitory concentration index (FICI) were determined. The transepithelial electrical resistance (TEER) and the expression of tight junction (TJ) protein of IPEC-J2 cells were measured to determine the in vitro efficacy of nanoTTO in combination with antibiotics. A mouse intestinal infection model evaluated the in vivo synergistic efficacy. Proteome, adhesion assays, quantitative real-time PCR, and scanning electron microscopy were used to explore the underlying mechanisms. Results showed that nanoTTO was synergistic (FICI ≤ 0.5) or partial synergistic (0.5 < FICI < 1) with antibiotics against MDR Gram-positive and Gram-negative bacteria strains. Moreover, combinations increased the TEER values and the TJ protein expression of IPEC-J2 cells infected with MDR Escherichia coli. The in vivo study showed that the combination of nanoTTO and amoxicillin improved the relative weight gain and maintained the structural integrity of intestinal barriers. Proteome showed that type 1 fimbriae d-mannose specific adhesin of E. coli was downregulated by nanoTTO. Then, nanoTTO reduced bacterial adhesion and invasion and inhibited the mRNA expression of fimC, fimG, and fliC, and disrupted bacterial membranes.
Collapse
Affiliation(s)
- SiMin Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - QiMing Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Hosameldeen Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Al Jazirah, Sudan
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - XiaoPan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - MingJiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - RuoNan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - JinGui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| |
Collapse
|
38
|
Cai J, Deng T, Shi J, Chen C, Wang Z, Liu Y. Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. iScience 2023; 26:106809. [PMID: 37235051 PMCID: PMC10206174 DOI: 10.1016/j.isci.2023.106809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Although meropenem, colistin, and tigecycline are recognized as the last-line antibiotics for multidrug-resistant Gram-negative bacteria (MDR-GN), the emergence of mobile resistance genes such as blaNDM, mcr, and tet(X) severely compromises their clinical effectiveness. Developing novel antibiotic adjuvants to restore the effectiveness of existing antibiotics provides a feasible approach to address this issue. Herein, we discover that a Food and Drug Administration (FDA)-approved drug daunorubicin (DNR) drastically potentiates the activity of last-resort antibiotics against MDR-GN pathogens and biofilm-producing bacteria. Furthermore, DNR effectively inhibits the evolution and spread of colistin and tigecycline resistance. Mechanistically, DNR and colistin combination exacerbates membrane disruption, induces DNA damage and the massive production of reactive oxygen species (ROS), ultimately leading to bacterial cell death. Importantly, DNR restores the effectiveness of colistin in Galleria mellonella and murine models of infection. Collectively, our findings provide a potential drug combination strategy for treating severe infections elicited by Gram-negative superbugs.
Collapse
Affiliation(s)
- Jinju Cai
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tian Deng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
39
|
Wang Y, Su J, Zhou Z, Yang J, Liu W, Zhang Y, Zhang P, Guo T, Li G. Baicalein Resensitizes Multidrug-Resistant Gram-Negative Pathogens to Doxycycline. Microbiol Spectr 2023; 11:e0470222. [PMID: 37070985 PMCID: PMC10269726 DOI: 10.1128/spectrum.04702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
As multidrug-resistant pathogens emerge and spread rapidly, novel antibiotics urgently need to be discovered. With a dwindling antibiotic pipeline, antibiotic adjuvants might be used to revitalize existing antibiotics. In recent decades, traditional Chinese medicine has occupied an essential position in adjuvants of antibiotics. This study found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens. Mechanism studies have shown that baicalein causes membrane disruption by attaching to phospholipids on the Gram-negative bacterial cytoplasmic membrane and lipopolysaccharides on the outer membrane. This process facilitates the entry of doxycycline into bacteria. Through collaborative strategies, baicalein can also increase the production of reactive oxygen species and inhibit the activities of multidrug efflux pumps and biofilm formation to potentiate antibiotic efficacy. Additionally, baicalein attenuates the lipopolysaccharide-induced inflammatory response in vitro. Finally, baicalein can significantly improve doxycycline efficacy in mouse lung infection models. The present study showed that baicalein might be considered a lead compound, and it should be further optimized and developed as an adjuvant that helps combat antibiotic resistance. IMPORTANCE Doxycycline is an important broad-spectrum tetracycline antibiotic used for treating multiple human infections, but its resistance rates are recently rising globally. Thus, new agents capable of boosting the effectiveness of doxycycline need to be discovered. In this study, it was found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens in vitro and in vivo. Due to its low cytotoxicity and resistance, the combination of baicalein and doxycycline provides a valuable clinical reference for selecting more effective therapeutic strategies for treating infections caused by multidrug-resistant Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Junfeng Su
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ziyan Zhou
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Jie Yang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenjuan Liu
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Yafen Zhang
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Pengyu Zhang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Tingting Guo
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guocai Li
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
40
|
Huang Y, Wang Z, Liu Z, Huan Q, Liu Y, Li R, Wang M, Xiao X. Gigantol restores the sensitivity of mcr carrying multidrug-resistant bacteria to colistin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154886. [PMID: 37269755 DOI: 10.1016/j.phymed.2023.154886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The emergence and wide spread of plasmid-mediated colistin resistance gene (mcr-1) and its mutants have immensely limited the efficacy of colistin in treating multidrug-resistant (MDR) Gram-negative bacterial infections. The development of synergistic combinations of antibiotics with a natural product that coped with the resistance of MDR bacteria was an economic strategy to restore antibiotics activity. Herein, we investigated gigantol, a bibenzyl phytocompound, for restoring in vitro and in vivo, the sensitivity of mcr-positive bacteria to colistin. METHODS The synergistic activity of gigantol and colistin against multidrug-resistant Enterobacterales was studied via checkerboard assay and time-killing curve. Subsequently, the transcription and protein expression levels of mcr-1 gene were determined by RT-PCR and Western blots. The interaction of gigantol and MCR-1 was simulated via molecular docking and verified via site-directed mutagenesis of MCR-1. Hemolytic activity and cytotoxicity assay were used to evaluate the safety of gigantol. Finally, the in vivo synergistic effect was evaluated via two animal infection models. RESULTS Gigantol restored the activity of colistin against mcr-positive bacteria E.coli B2 (MIC from 4 μg/ml to 0.25 μg/ml), Salmonella 15E343 (MIC from 8 μg/ml to 1 μg/ml), K. pneumoniae 19-2-1 (MIC from 32 μg/ml to 2 μg/ml) carrying mcr-1, mcr-3, mcr-8, respectively. Mechanistic studies revealed that gigantol down-regulated the expression of genes involved in LPS-modification, reduced the MCR-1 products and inhibited the activity of MCR-1 by binding to amino acid residues Tyr287 and Pro481 in its D-glucose-binding pocket. Safety evaluation showed that the addition of gigantol relieves the hemolysis caused by colistin. Compared with monotherapy, the combination of gigantol and colistin significantly improved the survival rate of Gallgallella mellonella larvae and mice infected by E.coli B2. Moreover, there was a considerable decrease in the bacterial load present in the viscera of mice. CONCLUSION Our results confirmed that gigantol was a potential colistin adjuvant, and could be used to tackle multi-drug resistant Gram-negative pathogen infections combined with colistin.
Collapse
Affiliation(s)
- Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
41
|
Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207170. [PMID: 36698264 PMCID: PMC10037695 DOI: 10.1002/advs.202207170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/12/2023]
Abstract
Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.
Collapse
Affiliation(s)
- Dan Fang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Tianqi Xu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingyi Sun
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingru Shi
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Fulei Li
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yanqing Yin
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Zhiqiang Wang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yuan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
42
|
Zhou Y, Lei H, Wang M, Shi Y, Wang Z. Potent intrinsic bactericidal activity of novel copper telluride nano-grape clusters with facile preparation. Biomater Sci 2023; 11:1828-1839. [PMID: 36655811 DOI: 10.1039/d2bm01617f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bactericidal nanomedicines often suffer from a complicated design and insufficient intrinsic inhibitory efficacy. Herein, novel anti-bacterial copper telluride (CuTe) nano-clusters are reported, featuring superior bactericidal efficiency, facile preparation, and unique mechanism. These nanoparticles, well dispersable in water, resembled grape clusters with rough surfaces. The CuTe nano-grape clusters exhibited ultra-high sterilization efficacy at ultra-low concentration, particularly for Gram-negative bacteria, and were more potent than conventional anti-microbial nanoparticles. Also, the grape clusters effectively inhibited the bacterial biofilm development. Further investigation revealed the synergized mechanisms of reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Interestingly, electron microscopy revealed that the grape clusters served as bacterial hunters by tightly adhering to bacterial surfaces. The bacteria subsequently suffered from the leakage of various intracellular components including nucleic acid, proteins, and potassium. Most encouragingly, CuTe drastically reduced bacterial number in a mouse model with lethal intraperitoneal infection and increased the mouse survival rate to 90%. This finding could inspire the development of highly potent bactericidal inorganic formulations with simplified structure, multiple antibacterial mechanisms, and promising application potential.
Collapse
Affiliation(s)
- Yanwen Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Haozhuo Lei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Meng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhaohui Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
43
|
Jin Q, Xie X, Zhai Y, Zhang H. Mechanisms of folate metabolism-related substances affecting Staphylococcus aureus infection. Int J Med Microbiol 2023; 313:151577. [PMID: 36841056 DOI: 10.1016/j.ijmm.2023.151577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the critical clinical pathogens which can cause multiple diseases ranging from skin infections to fatal sepsis. S. aureus is generally considered to be an extracellular pathogen. However, more and more evidence has shown that S. aureus can survive inside various cells. Folate plays an essential role in multiple life activities, including the conversion of serine and glycine, the remethylation of homocysteine to methionine, and the de novo synthesis of purine /dTMP, et al. More and more studies reported that S. aureus intracellular infection requires the involvement of folate metabolism. This review focused on the mechanisms of folate metabolism and related substances affecting S. aureus infection. Loss of tetrahydrofolic acid (THF)-dependent dTMP directly inhibits the nucleotide synthesis pathway of the S. aureus due to pabA deficiency. Besides, trimethoprim-sulfamethoxazole (TMP/SMX), a potent antibiotic that treats S. aureus infections, interferes in the process of the folate mechanism and leads to the production of thymidine-dependent small-colony variants (TD-SCVs). In addition, S. aureus is resistant to lysostaphin in the presence of serine hydroxymethyltransferase (SHMT). We provide new insights for understanding the molecular pathogenesis of S. aureus infection.
Collapse
Affiliation(s)
- Qiyuan Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolu Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaxuan Zhai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Fleeman R. Repurposing Inhibitors of Phosphoinositide 3-kinase as Adjuvant Therapeutics for Bacterial Infections. FRONTIERS IN ANTIBIOTICS 2023; 2:1135485. [PMID: 38983593 PMCID: PMC11233138 DOI: 10.3389/frabi.2023.1135485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.
Collapse
Affiliation(s)
- Renee Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida. Orlando, FL 32837
| |
Collapse
|
45
|
Tabcheh J, Vergalli J, Davin-Régli A, Ghanem N, Pages JM, Al-Bayssari C, Brunel JM. Rejuvenating the Activity of Usual Antibiotics on Resistant Gram-Negative Bacteria: Recent Issues and Perspectives. Int J Mol Sci 2023; 24:1515. [PMID: 36675027 PMCID: PMC9864949 DOI: 10.3390/ijms24021515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance continues to evolve and spread beyond all boundaries, resulting in an increase in morbidity and mortality for non-curable infectious diseases. Due to the failure of conventional antimicrobial therapy and the lack of introduction of a novel class of antibiotics, novel strategies have recently emerged to combat these multidrug-resistant infectious microorganisms. In this review, we highlight the development of effective antibiotic combinations and of antibiotics with non-antibiotic activity-enhancing compounds to address the widespread emergence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Jinane Tabcheh
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Julia Vergalli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Anne Davin-Régli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Noha Ghanem
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Jean-Marie Pages
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Charbel Al-Bayssari
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 55251, Lebanon
| | | |
Collapse
|
46
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
47
|
Ma S, Zhang Y, Zhang X, Xie H, Tong Q, Yu K, Yang J. Dynamic Interactions Between Brilliant Green and MscL Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Chemistry 2023; 29:e202202106. [PMID: 36251739 DOI: 10.1002/chem.202202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/22/2022]
Abstract
The mechanosensitive ion channel of large conductance (MscL) is a promising template for the development of new antibiotics due to its high conservation and uniqueness to microbes. Brilliant green (BG), a triarylmethane dye, has been identified as a new antibiotic targeted MscL. However, the detailed binding sites to MscL and the dynamic pathway of BG through the MscL channel remain unknown. Here, the dynamic interactions between BG and MscL were investigated using solid-state NMR spectroscopy and molecule dynamics (MD) simulations. Residue site-specific binding sites of BG to the MscL channel were identified by solid-state NMR. In addition, MD simulations revealed that BG conducts through the MscL channel via residues along the inner surface of the pore sequentially, in which the strong hydrophobic interactions between BG and hydrophobic residues F23 and I27 in the hydrophobic gate region of the MscL channel are major restrictions. Particularly, it was demonstrated that BG activates the MscL channel by reducing the hydrophobicity of the F23 in the gate region by water molecules that are bound to BG. Taken together, these simulations and experimental data provide novel insights into the dynamic interactions between BG and MscL, based on which new hydrophobic antibiotics and adjuvants targeting MscL can be developed.
Collapse
Affiliation(s)
- Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuning Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Qiong Tong
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
48
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
49
|
Li X, Wang Q, Zheng J, Guan Y, Liu C, Han J, Liu S, Liu T, Xiao C, Wang X, Liu Y. PHT427 as an effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Front Microbiol 2023; 14:1168052. [PMID: 37138606 PMCID: PMC10150926 DOI: 10.3389/fmicb.2023.1168052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction With the increasingly serious problem of bacterial drug resistance caused by NDM-1, it is an important strategy to find effective inhibitors to assist β-lactam antibiotic treatment against NDM-1 resistant bacteria. In this study, PHT427 (4-dodecyl-N-1,3,4-thiadiazol-2-yl-benzenesulfonamide) was identified as a novel NDM-1 inhibitor and restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Methods We used a high throughput screening model to find NDM-1 inhibitor in the library of small molecular compounds. The interaction between the hit compound PHT427 and NDM-1 was analyzed by fluorescence quenching, surface plasmon resonance (SPR) assay, and molecular docking analysis. The efficacy of the compound in combination with meropenem was evaluated by determining the FICIs of Escherichia coli BL21(DE3)/pET30a(+)-bla NDM-1 and Klebsiella pneumoniae clinical strain C1928 (producing NDM-1). In addition, the mechanism of the inhibitory effect of PHT427 on NDM-1 was studied by site mutation, SPR, and zinc supplementation assays. Results PHT427 was identified as an inhibitor of NDM-1. It could significantly inhibit the activity of NDM-1 with an IC50 of 1.42 μmol/L, and restored the susceptibility of meropenem against E. coli BL21(DE3)/pET30a(+)-bla NDM-1 and K. pneumoniae clinical strain C1928 (producing NDM-1) in vitro. The mechanism study indicated that PHT427 could act on the zinc ions at the active site of NDM-1 and the catalytic key amino acid residues simultaneously. The mutation of Asn220 and Gln123 abolished the affinity of NDM-1 by PHT427 via SPR assay. Discussion This is the first report that PHT427 is a promising lead compound against carbapenem-resistant bacteria and it merits chemical optimization for drug development.
Collapse
Affiliation(s)
- Xiaohui Li
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ji Zheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yan Guan
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chennan Liu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Jiangxue Han
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sihan Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjun Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chunling Xiao
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Wang
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiao Wang,
| | - Yishuang Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yishuang Liu,
| |
Collapse
|
50
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|