1
|
Gao J, Jing J, Shang G, Chen C, Duan M, Yu W, Wang K, Luo J, Song M, Chen K, Chen C, Zhang T, Ding D. TDRD1 phase separation drives intermitochondrial cement assembly to promote piRNA biogenesis and fertility. Dev Cell 2024; 59:2704-2718.e6. [PMID: 39029469 DOI: 10.1016/j.devcel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
The intermitochondrial cement (IMC) is a prominent germ granule that locates among clustered mitochondria in mammalian germ cells. Serving as a key platform for Piwi-interacting RNA (piRNA) biogenesis; however, how the IMC assembles among mitochondria remains elusive. Here, we identify that Tudor domain-containing 1 (TDRD1) triggers IMC assembly via phase separation. TDRD1 phase separation is driven by the cooperation of its tetramerized coiled-coil domain and dimethylarginine-binding Tudor domains but is independent of its intrinsically disordered region. TDRD1 is recruited to mitochondria by MILI and sequentially enhances mitochondrial clustering and triggers IMC assembly via phase separation to promote piRNA processing. TDRD1 phase separation deficiency in mice disrupts IMC assembly and piRNA biogenesis, leading to transposon de-repression and spermatogenic arrest. Moreover, TDRD1 phase separation is conserved in vertebrates but not in invertebrates. Collectively, our findings demonstrate a role of phase separation in germ granule formation and establish a link between membrane-bound organelles and membrane-less organelles.
Collapse
Affiliation(s)
- Jie Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China
| | - Guanyi Shang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Canmei Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Maoping Duan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenyang Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ke Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Luo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Manxiu Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Barré-Villeneuve C, Azevedo-Favory J. R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment. Int J Mol Sci 2024; 25:9937. [PMID: 39337424 PMCID: PMC11432338 DOI: 10.3390/ijms25189937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.
Collapse
Affiliation(s)
- Clément Barré-Villeneuve
- Crop Biotechnics, Department of Biosystems, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3000 Leuven, Belgium
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, UMR 5096, 66860 Perpignan, France
| |
Collapse
|
3
|
Bi X, Jin H, Wan F, Xia Y, Guo H, Chen S, Wang B. Loss-of-function variant in TDRD6 cause male infertility with severe oligo-astheno-teratozoospermia in human and mice. J Cell Mol Med 2024; 28:e18580. [PMID: 39331689 PMCID: PMC11431060 DOI: 10.1111/jcmm.18580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 09/29/2024] Open
Abstract
Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, but the genetic basis of most OAT cases is still unknown. Here, one homozygous loss-of-function (LOF) variant in TDRD6, c.G1825T/p.Gly609X, was identified in an infertile patient with severe OAT by whole-exome sequencing (WES) and Sanger confirmation. Furthermore, Tdrd6-mutant mice (p.Gly615X; equivalent to p.Gly609X in human TDRD6) were generated. Remarkably, the Tdrd6-mutated mice mimicked the severe OAT symptoms of the patient. In addition, the architecture of chromatoid bodies (CBs) were disrupted in round spermatids from Tdrd6-mutant mice, leading to blocked spermatogenesis in the round spermatids. The assembly of PIWIL1, TDRD1, TDRD7 and DDX25 in CBs was disturbed in the Tdrd6-mutant mice. Applying immunoprecipitation-mass spectrometry (IP-MS), we identified some TDRD6-interacting partners, including CB proteins TDRD7, MAEL and PCBP1. Moreover, we described the assisted reproductive technology (ART) outcomes of the infertile patient and his partner. Altogether, our findings provide necessary evidences to support the idea that the homozygous LOF variant in TDRD6 induces male infertility with severe OAT, suggesting that TDRD6 could be a useful genetic diagnostic target for male infertility.
Collapse
Affiliation(s)
- Xinying Bi
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huijuan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Department of Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Feng Wan
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yanqing Xia
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Haibin Guo
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Suren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Department of Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Binbin Wang
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Stallmeyer B, Bühlmann C, Stakaitis R, Dicke AK, Ghieh F, Meier L, Zoch A, MacKenzie MacLeod D, Steingröver J, Okutman Ö, Fietz D, Pilatz A, Riera-Escamilla A, Xavier MJ, Ruckert C, Di Persio S, Neuhaus N, Gurbuz AS, Şalvarci A, Le May N, McEleny K, Friedrich C, van der Heijden G, Wyrwoll MJ, Kliesch S, Veltman JA, Krausz C, Viville S, Conrad DF, O'Carroll D, Tüttelmann F. Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility. Nat Commun 2024; 15:6637. [PMID: 39122675 PMCID: PMC11316121 DOI: 10.1038/s41467-024-50930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Clara Bühlmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Rytis Stakaitis
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Farah Ghieh
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Luisa Meier
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - David MacKenzie MacLeod
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Johanna Steingröver
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Özlem Okutman
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Hôpital Universitaire de Bruxelles, Hôpital Erasme, Service de Gynécologie-Obstétrique, Clinique de Fertilité, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Adrian Pilatz
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University Gießen, Gießen, Germany
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
| | - Miguel J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Ruckert
- Centre of Medical Genetics, Department of Medical Genetics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Ali Sami Gurbuz
- Department of Gynecology and Obstetrics Novafertil IVF Center, Konya, Turkey
| | - Ahmet Şalvarci
- Department of Andrology Novafertil IVF Center, Konya, Turkey
| | - Nicolas Le May
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
| | - Kevin McEleny
- Newcastle Fertility Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Corinna Friedrich
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Godfried van der Heijden
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot J Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Barre-Villeneuve C, Laudié M, Carpentier MC, Kuhn L, Lagrange T, Azevedo-Favory J. The unique dual targeting of AGO1 by two types of PRMT enzymes promotes phasiRNA loading in Arabidopsis thaliana. Nucleic Acids Res 2024; 52:2480-2497. [PMID: 38321923 PMCID: PMC10954461 DOI: 10.1093/nar/gkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Arginine/R methylation (R-met) of proteins is a widespread post-translational modification (PTM), deposited by a family of protein arginine/R methyl transferase enzymes (PRMT). Regulations by R-met are involved in key biological processes deeply studied in metazoan. Among those, post-transcriptional gene silencing (PTGS) can be regulated by R-met in animals and in plants. It mainly contributes to safeguard processes as protection of genome integrity in germlines through the regulation of piRNA pathway in metazoan, or response to bacterial infection through the control of AGO2 in plants. So far, only PRMT5 has been identified as the AGO/PIWI R-met writer in higher eukaryotes. We uncovered that AGO1, the main PTGS effector regulating plant development, contains unique R-met features among the AGO/PIWI superfamily, and outstanding in eukaryotes. Indeed, AGO1 contains both symmetric (sDMA) and asymmetric (aDMA) R-dimethylations and is dually targeted by PRMT5 and by another type I PRMT in Arabidopsis thaliana. We showed also that loss of sDMA didn't compromise AtAGO1 subcellular trafficking in planta. Interestingly, we underscored that AtPRMT5 specifically promotes the loading of phasiRNA in AtAGO1. All our observations bring to consider this dual regulation of AtAGO1 in plant development and response to environment, and pinpoint the complexity of AGO1 post-translational regulation.
Collapse
Affiliation(s)
- Clément Barre-Villeneuve
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michèle Laudié
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Marie-Christine Carpentier
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg – Esplanade, CNRS FR1589, Université de Strasbourg, IBMC, 2 allée Konrad Roentgen, F-67084 Strasbourg, France
- Fédération de Recherche CNRS FR1589, France
| | - Thierry Lagrange
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
6
|
Nunes FM, Apolónio JD, Mota-Pinto A, Leão R. Epigenetic alterations in urothelial bladder cancer associated with disease outcomes. Int J Urol 2024; 31:220-229. [PMID: 37961796 DOI: 10.1111/iju.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Bladder cancer (BLCA) is a molecular heterogeneous disease with known genetic distinctive signatures. However, DNA methylation is highly prevalent across a wide range of tumors, suggesting its potential in oncogenesis. Here, we aimed to interrogate the role of nine epigenetic alterations as diagnostic and prognostic markers in BLCA. METHODS DNA methylation, gene expression, and clinicopathological information were retrieved from The Cancer Genome Atlas data portal. Methylation values and gene expression were assessed to determine their association with normal and malignant tissue. Additionally, we studied the association between methylation values and clinicopathological variables. For the prognostic model, Kaplan-Meier Survival curves were generated. Lastly, univariate and multivariate analysis were performed to evaluate the simultaneous impact of methylation and clinicopathological variables on the risk of tumor progression and survival. RESULTS Nine CpG sites' methylation β -values involved in our study demonstrated different methylation signatures between normal and malignant urothelium. Hypermethylated CpGs were overrepresented in tumor tissue (p < 0.0001). Opposingly, 4 CpG sites showed lower methylation values in tumor samples (p < 0.0001). Cg12743248high and cg17192862low are risk factors for progression-free survival, whereas cg12374721high (HR:3.003 (1.283-7.030)) also demonstrated to be the most valuable independent risk factor for disease progression and a risk factor for overall survival. CONCLUSIONS We have identified that methylated cg12374721 shows promise as a diagnostic and independent prognostic marker in BLCA progression.
Collapse
Affiliation(s)
| | - Joana Dias Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Faro, Portugal
| | | | - Ricardo Leão
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Zhu T, Kong M, Yu Y, Schartl M, Power DM, Li C, Ma W, Sun Y, Li S, Yue B, Li W, Shao C. Exosome delivery to the testes for dmrt1 suppression: A powerful tool for sex-determining gene studies. J Control Release 2023; 363:275-289. [PMID: 37726035 DOI: 10.1016/j.jconrel.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Exosomes are endosome-derived extracellular vesicles about 100 nm in diameter. They are emerging as promising delivery platforms due to their advantages in biocompatibility and engineerability. However, research into and applications for engineered exosomes are still limited to a few areas of medicine in mammals. Here, we expanded the scope of their applications to sex-determining gene studies in early vertebrates. An integrated strategy for constructing the exosome-based delivery system was developed for efficient regulation of dmrt1, which is one of the most widely used sex-determining genes in metazoans. By combining classical methods in molecular biology and the latest technology in bioinformatics, isomiR-124a was identified as a dmrt1 inhibitor and was loaded into exosomes and a testis-targeting peptide was used to modify exosomal surface for efficient delivery. Results showed that isomiR-124a was efficiently delivered to the testes by engineered exosomes and revealed that dmrt1 played important roles in maintaining the regular structure and function of testis in juvenile fish. This is the first de novo development of an exosome-based delivery system applied in the study of sex-determining gene, which indicates an attractive prospect for the future applications of engineered exosomes in exploring more extensive biological conundrums.
Collapse
Affiliation(s)
- Tengfei Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266003, China
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Guangyun Road 33, Foshan 528225, China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Sanderring 2, Würzburg 97074, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Algarve, Faro 8005-139, Portugal
| | - Chen Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266072, China
| | - Wenxiu Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Weijing Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China.
| |
Collapse
|
8
|
Podvalnaya N, Bronkhorst AW, Lichtenberger R, Hellmann S, Nischwitz E, Falk T, Karaulanov E, Butter F, Falk S, Ketting RF. piRNA processing by a trimeric Schlafen-domain nuclease. Nature 2023; 622:402-409. [PMID: 37758951 PMCID: PMC10567574 DOI: 10.1038/s41586-023-06588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.
Collapse
Affiliation(s)
- Nadezda Podvalnaya
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Alfred W Bronkhorst
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Svenja Hellmann
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Emily Nischwitz
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
- Quantitative Proteomics group, Institute of Molecular Biology, Mainz, Germany
| | - Torben Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Falk Butter
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - René F Ketting
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany.
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Cao L, Duan L, Zhang R, Yang W, Yang N, Huang W, Chen X, Wang N, Niu L, Zhou W, Chen J, Li Y, Zhang Y, Liu J, Fan D, Liu H. Development and validation of an RBP gene signature for prognosis prediction in colorectal cancer based on WGCNA. Hereditas 2023; 160:10. [PMID: 36895014 PMCID: PMC9999506 DOI: 10.1186/s41065-023-00274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) have been implicated in oncogenesis and progression in various cancers. However, the potential value of RBPs as prognostic indicators and therapeutic targets in colorectal cancer (CRC) requires further investigation. METHODS Four thousand eighty two RBPs were collected from literature. The weighted gene co-expression network analysis (WGCNA) was performed to identify prognosis-related RBP gene modules based on the data attained from the TCGA cohorts. LASSO algorithm was conducted to establish a prognostic risk model, and the validity of the proposed model was confirmed by an independent GEO dataset. Functional enrichment analysis was performed to reveal the potential biological functions and pathways of the signature and to estimate tumor immune infiltration. Potential therapeutic compounds were inferred utilizing CMap database. Expressions of hub genes were further verified through the Human Protein Atlas (HPA) database and RT-qPCR. RESULTS One thousand seven hundred thirty four RBPs were differently expressed in CRC samples and 4 gene modules remarkably linked to the prognosis were identified, based on which a 12-gene signature was established for prognosis prediction. Multivariate Cox analysis suggested this signature was an independent predicting factor of overall survival (P < 0.001; HR:3.682; CI:2.377-5.705) and ROC curves indicated it has an effective predictive performance (1-year AUC: 0.653; 3-year AUC:0.673; 5-year AUC: 0.777). GSEA indicated that high risk score was correlated with several cancer-related pathways, including cytokine-cytokine receptor cross talk, ECM receptor cross talk, HEDGEHOG signaling cascade and JAK/STAT signaling cascade. ssGSEA analysis exhibited a significant correlation between immune status and the risk signature. Noscapine and clofazimine were screened as potential drugs for CRC patients with high-risk scores. TDRD5 and GPC1 were identified as hub genes and their expression were validated in 15 pairs of surgically resected CRC tissues. CONCLUSION Our research provides a depth insight of RBPs' role in CRC and the proposed signature are helpful to the personalized treatment and prognostic judgement.
Collapse
Affiliation(s)
- Lu Cao
- Department of Biomedical Engineering, Air Force Hospital of Eastern Theater Command, 210001, Nanjing, Jiangsu Province, China
| | - Lili Duan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Rui Zhang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Wanli Yang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ning Yang
- Department of Biomedical Engineering, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu Province, China
| | - Wenzhe Huang
- Department of Biomedical Engineering, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu Province, China
| | - Xuemin Chen
- College of Otolaryngology and Head and Neck Surgery, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, Ministry of Education, Beijing, China
| | - Nan Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liaoran Niu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Junfeng Chen
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yiding Li
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Jinqiang Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Daiming Fan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Hong Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
10
|
TDRD5 Is Required for Spermatogenesis and Oogenesis in Locusta migratoria. INSECTS 2022; 13:insects13030227. [PMID: 35323525 PMCID: PMC8953433 DOI: 10.3390/insects13030227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/13/2023]
Abstract
Tudor family proteins exist in all eukaryotic organisms and play a role in many cellular processes by recognizing and binding to proteins with methylated arginine or lysine residues. TDRD5, a member of Tudor domain-containing proteins (TDRDs), has been implicated in the P-element-induced wimpy testis-interacting RNA (piRNA) pathway and germ cell development in some model species, but little is known about its function in other species. Therefore, we identified and characterized LmTDRD5, the TDRD5 ortholog in Locusta migratoria, a hemimetabolous pest. The LmTdrd5 gene has 19 exons that encode a protein possessing a single copy of the Tudor domain and three LOTUS domains at its N-terminus. qRT-PCR analysis revealed a high LmTdrd5 expression level in genital glands. Using RNA interference, LmTdrd5 knockdown in males led to a lag in meiosis phase transition, decreased spermatid elongation and sperm production, and downregulated the expression of the two germ cell-specific transcription factors, LmCREM and LmACT, as well as the sperm tail marker gene LmQrich2.LmTdrd5 knockdown in females reduced the expression levels of vitellogenin (Vg) and Vg receptor (VgR) and impaired ovarian development and oocyte maturation, thus decreasing the hatchability rate. These results demonstrate that LmTdrd5 is essential for germ cell development and fertility in locusts, indicating a conserved function for TDRD5.
Collapse
|
11
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
12
|
Mukherjee P, Bhattacharjee S, Mandal DP. PIWI-interacting RNA (piRNA): a narrative review of its biogenesis, function, and emerging role in lung cancer. ASIAN BIOMED 2022; 16:3-14. [PMID: 37551397 PMCID: PMC10321162 DOI: 10.2478/abm-2022-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer remains elusive in many aspects, especially in its causes and control. After protein profiling, genetic screening, and mutation studies, scientists now have turned their attention to epigenetic modulation. This new arena has brought to light the world of noncoding RNA (ncRNA). Although very complicated and often confusing, ncRNA domains are now among the most attractive molecular markers for epigenetic control of cancer. Long ncRNA and microRNA (miRNA) have been studied best among the noncoding genome and huge data have accumulated regarding their inhibitory and promoting effects in cancer. Another sector of ncRNAs is the world of PIWI-interacting RNAs (piRNAs). Initially discovered with the asymmetric division of germline stem cells in the Drosophila ovary, piRNAs have a unique capability to associate with mammalian proteins analogous to P-element induced wimpy testis (PIWI) in Drosophila and are capable of silencing transposons. After a brief introduction to its discovery timelines, the present narrative review covers the biogenesis, function, and role of piRNAs in lung cancer. The effects on lung cancer are highlighted under sections of cell proliferation, stemness maintenance, metastasis, and overall survival, and the review concludes with a discussion of recent discoveries of another class of small ncRNAs, the piRNA-like RNAs (piR-Ls).
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| |
Collapse
|
13
|
Liu Z, Liu S, Guo S, Lu W, Zhang Q, Cheng J. Evolutionary dynamics and conserved function of the Tudor domain-containing (TDRD) proteins in teleost fish. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:18-30. [PMID: 37073353 PMCID: PMC10077171 DOI: 10.1007/s42995-021-00118-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
Tudor domain-containing (TDRD) proteins, the germline enriched protein family, play essential roles in the process of gametogenesis and genome stability through their interaction with the PIWI-interacting RNA (piRNA) pathway. Several studies have suggested the rapid evolution of the piRNA pathway in teleost lineages with striking reproductive diversity. However, there is still limited information about the function and evolution of Tdrd genes in teleost species. In this study, through genome wide screening, 13 Tdrd family genes were identified in economically important aquaculture fish, including spotted sea bass (Lateolabrax maculatus), Asian sea bass (Lates calcarifer), and tongue sole (Cynoglossus semilaevis). With copy number, structure, phylogeny, and synteny analysis, duplication of Tdrd6 and Tdrd7, as well as loss of Stk31 and Tdrd10, were characterized in teleost lineages. Codon based molecular evolution analysis indicated faster evolution of teleost Tdrd genes than that in mammals, potentially associated with the accelerated evolution of the piRNA pathway in teleost lineages. The evolutionary diversity of Tdrd genes was also detected between different teleost lineages. RNA-seq analysis showed that most teleost Tdrd genes were dominantly expressed in gonads, particularly highly expressed in testis, such as Tdrd6, Tdrd7a, Tdrd9, Ecat8, and Tdrd15. The varied expression and evolutionary pattern between the duplicated Tdrd6 and Tdrd7 in teleosts may indicate their functional diversification. All these results suggest a conserved function of teleost Tdrd family in gametogenesis and the piRNA pathway, which could lay a foundation for the evolution of Tdrd genes and be helpful for further deciphering of Tdrd functions in teleosts. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00118-7.
Collapse
Affiliation(s)
- Zeyu Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Saisai Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Shiyang Guo
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000 China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000 China
| |
Collapse
|
14
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
15
|
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm Genome 2021; 33:293-311. [PMID: 34724117 PMCID: PMC9114089 DOI: 10.1007/s00335-021-09927-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24–35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.
Collapse
|
16
|
Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell 2021; 184:3612-3625.e17. [PMID: 34115980 DOI: 10.1016/j.cell.2021.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Collapse
Affiliation(s)
- Edward M Courchaine
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Andrew E S Barentine
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Joerg Bewersdorf
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Tu C, Li H, Liu X, Wang Y, Li W, Meng L, Wang W, Li Y, Li D, Du J, Lu G, Lin G, Tan YQ. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation. Autophagy 2021; 17:3848-3864. [PMID: 33618632 DOI: 10.1080/15548627.2021.1894058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In humans, TDRD7 (tudor domain containing 7) mutations lead to a syndrome combining congenital cataracts (CCs) and non-obstructive azoospermia (NOA), characterized by abnormal lens development and spermiogenesis. However, the molecular mechanism underlying TDRD7's functions in eye and testicular development are still largely unknown. Here, we show that the depletion of this gene in mice and humans resulted in the accumulation of autophagosomes and the disruption of macroautophagic/autophagic flux. The disrupted autophagic flux in tdrd7-deficient mouse embryonic fibroblasts (MEFs) was caused by a failure of autophagosome fusion with lysosomes. Furthermore, transcriptome analysis and biochemical assays showed that TDRD7 might directly bind to Tbc1d20 mRNAs and downregulate its expression, which is a key regulator of autophagosome maturation, resulting in the disruption of autophagosome maturation. In addition, we provide evidence to show that TDRD7-mediated autophagosome maturation maintains lens transparency by facilitating the removal of damaged proteins and organelles from lens fiber cells and the biogenesis of acrosome. Altogether, our results showed that TDRD7 plays an essential role in the maturation of autophagosomes and that tdrd7 deletion results in eye defects and testicular abnormalities in mice, implicating disrupted autophagy might be the mechanism that contributes to lens development and spermiogenesis defects in human.Abbreviations: CB: chromatoid bodies; CC: congenital cataract; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; LAMP1: lysosomal-associated membrane protein 1; LECs: lens epithelial cells; MAP1LC3/LC3/Atg8: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; NOA: non-obstructive azoospermia; OFZ: organelle-free zone; RG: RNA granules; SQSTM1/p62: sequestosome 1; TBC1D20: TBC1 domain family member 20; TDRD7: tudor domain containing 7; TEM: transmission electron microscopy; WT: wild type.
Collapse
Affiliation(s)
- Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Haiyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xuyang Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
18
|
Vrettos N, Maragkakis M, Alexiou P, Sgourdou P, Ibrahim F, Palmieri D, Kirino Y, Mourelatos Z. Modulation of Aub-TDRD interactions elucidates piRNA amplification and germplasm formation. Life Sci Alliance 2021; 4:e202000912. [PMID: 33376130 PMCID: PMC7772777 DOI: 10.26508/lsa.202000912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Aub guided by piRNAs ensures genome integrity by cleaving retrotransposons, and genome propagation by trapping mRNAs to form the germplasm that instructs germ cell formation. Arginines at the N-terminus of Aub (Aub-NTRs) interact with Tudor and other Tudor domain-containing proteins (TDRDs). Aub-TDRD interactions suppress active retrotransposons via piRNA amplification and form germplasm via generation of Aub-Tudor ribonucleoproteins. Here, we show that Aub-NTRs are dispensable for primary piRNA biogenesis but essential for piRNA amplification and that their symmetric dimethylation is required for germplasm formation and germ cell specification but largely redundant for piRNA amplification.
Collapse
Affiliation(s)
- Nicholas Vrettos
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Paraskevi Sgourdou
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fadia Ibrahim
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Palmieri
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zissimos Mourelatos
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Anand D, Al Saai S, Shrestha SK, Barnum CE, Chuma S, Lachke SA. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Front Cell Dev Biol 2021; 9:615761. [PMID: 33665188 PMCID: PMC7921330 DOI: 10.3389/fcell.2021.615761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations/deficiency of TDRD7, encoding a tudor domain protein involved in post-transcriptional gene expression control, causes early onset cataract in humans. While Tdrd7 is implicated in the control of key lens mRNAs, the impact of Tdrd7 deficiency on microRNAs (miRNAs) and how this contributes to transcriptome misexpression and to cataracts, is undefined. We address this critical knowledge-gap by investigating Tdrd7-targeted knockout (Tdrd7-/-) mice that exhibit fully penetrant juvenile cataracts. We performed Affymetrix miRNA 3.0 microarray analysis on Tdrd7-/- mouse lenses at postnatal day (P) 4, a stage preceding cataract formation. This analysis identifies 22 miRNAs [14 over-expressed (miR-15a, miR-19a, miR-138, miR-328, miR-339, miR-345, miR-378b, miR-384, miR-467a, miR-1224, miR-1935, miR-1946a, miR-3102, miR-3107), 8 reduced (let-7b, miR-34c, miR-298, miR-382, miR-409, miR-1198, miR-1947, miR-3092)] to be significantly misexpressed (fold-change ≥ ± 1.2, p-value < 0.05) in Tdrd7-/- lenses. To understand how these misexpressed miRNAs impact Tdrd7-/- cataract, we predicted their mRNA targets and examined their misexpression upon Tdrd7-deficiency by performing comparative transcriptomics analysis on P4 and P30 Tdrd7-/- lens. To prioritize these target mRNAs, we used various stringency filters (e.g., fold-change in Tdrd7-/- lens, iSyTE-based lens-enriched expression) and identified 98 reduced and 89 elevated mRNA targets for overexpressed and reduced miRNAs, respectively, which were classified as “top-priority” “high-priority,” and “promising” candidates. For Tdrd7-/- lens overexpressed miRNAs, this approach identified 18 top-priority reduced target mRNAs: Alad, Ankrd46, Ceacam10, Dgat2, Ednrb, H2-Eb1, Klhl22, Lin7a, Loxl1, Lpin1, Npc1, Olfm1, Ppm1e, Ppp1r1a, Rgs8, Shisa4, Snx22 and Wnk2. Majority of these targets were also altered in other gene-specific perturbation mouse models (e.g., Brg1, E2f1/E2f2/E2f3, Foxe3, Hsf4, Klf4, Mafg/Mafk, Notch) of lens defects/cataract, suggesting their importance to lens biology. Gene ontology (GO) provided further insight into their relevance to lens pathology. For example, the Tdrd7-deficient lens capsule defect may be explained by reduced mRNA targets (e.g., Col4a3, Loxl1, Timp2, Timp3) associated with “basement membrane”. GO analysis also identified new genes (e.g., Casz1, Rasgrp1) recently linked to lens biology/pathology. Together, these analyses define a new Tdrd7-downstream miRNA-mRNA network, in turn, uncovering several new mRNA targets and their associated pathways relevant to lens biology and offering molecular insights into the pathology of congenital cataract.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Salma Al Saai
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| | - Sanjaya K Shrestha
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.,Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States
| |
Collapse
|
20
|
Placentino M, de Jesus Domingues AM, Schreier J, Dietz S, Hellmann S, de Albuquerque BFM, Butter F, Ketting RF. Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo. EMBO J 2021; 40:e105280. [PMID: 33231880 PMCID: PMC7849312 DOI: 10.15252/embj.2020105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In Caenorhabditis elegans, the piRNA (21U RNA) pathway is required to establish proper gene regulation and an immortal germline. To achieve this, PRG-1-bound 21U RNAs trigger silencing mechanisms mediated by RNA-dependent RNA polymerase (RdRP)-synthetized 22G RNAs. This silencing can become PRG-1-independent and heritable over many generations, a state termed RNA-induced epigenetic gene silencing (RNAe). How and when RNAe is established, and how it is maintained, is not known. We show that maternally provided 21U RNAs can be sufficient for triggering RNAe in embryos. Additionally, we identify PID-2, a protein containing intrinsically disordered regions (IDRs), as a factor required for establishing and maintaining RNAe. PID-2 interacts with two newly identified and partially redundant eTudor domain-containing proteins, PID-4 and PID-5. PID-5 has an additional domain related to the X-prolyl aminopeptidase APP-1, and binds APP-1, implicating potential N-terminal proteolysis in RNAe. All three proteins are required for germline immortality, localize to perinuclear foci, affect size and appearance of RNA inheritance-linked Z granules, and are required for balancing of 22G RNA populations. Overall, our study identifies three new proteins with crucial functions in C. elegans small RNA silencing.
Collapse
Affiliation(s)
- Maria Placentino
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | | | - Jan Schreier
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Svenja Hellmann
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Bruno FM de Albuquerque
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Graduate Program in Areas of Basic and Applied BiologyUniversity of PortoPortoPortugal
| | - Falk Butter
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and NeurobiologyJohannses Gutenberg UniversityMainzGermany
| |
Collapse
|
21
|
Morelli P, Gaspari M, Gabriele C, Dastoli S, Bennardo L, Pavel AB, Patruno C, Del Duca E, Nisticò SP. Proteomic analysis from skin swabs reveals a new set of proteins identifying skin impairment in atopic dermatitis. Exp Dermatol 2021; 30:811-819. [PMID: 33394542 DOI: 10.1111/exd.14276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Atopic Dermatitis (AD) is a common inflammatory skin disease characterized by skin and systemic inflammation, and barrier dysfunction. Herein, we investigate the proteomic profile of AD skin barrier to identify a unique signature with an easy-performed sampling approach. We enrolled 8 moderate-to-severe AD patients and 8 age- and gender-matched healthy controls. Swabs were obtained from non-lesional skin of retroauricular area and antecubital fold. Peptide mixtures obtained through protein precipitation and in-solution digestion were analysed using NanoLC-MS/MS. Label-free quantification and statistical analysis were conducted in MaxQuant and Perseus. Bioinformatics analysis was performed using Gene Ontology and STRING. We identified 908 proteins and 35 differentially expressed proteins were selected (fold change 2, FDR < 0.05). Particularly, AD skin showed downregulation of skin hydration factors, structural and epidermal proteins, abnormalities in protease-proteasome complex and lipid metabolism profile. Imbalance of antioxidant and inflammatory processes, along with TDRD15 upregulation was also observed. Our result showed partial overlap with skin biopsy/tape-strips studies, showing the reliability of our sampling approach which could be an easier method of detection of hallmark barrier proteins in AD. Furthermore, we displayed a new differentially expressed set of proteins, not yet explored in AD which can have a potential role in AD pathomechanisms.
Collapse
Affiliation(s)
- Paola Morelli
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Caterina Gabriele
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Stefano Dastoli
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Luigi Bennardo
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Ana Brandusa Pavel
- Department of Biomedical Engineering, University of Mississippi, University, MS, USA
| | - Cataldo Patruno
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Ester Del Duca
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Steven P Nisticò
- Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
23
|
Fan X, Liu L, Shi Y, Guo F, Wang H, Zhao X, Zhong D, Li G. Integrated analysis of RNA-binding proteins in human colorectal cancer. World J Surg Oncol 2020; 18:222. [PMID: 32828126 PMCID: PMC7443297 DOI: 10.1186/s12957-020-01995-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Although RNA-binding proteins play an essential role in a variety of different tumours, there are still limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal cancer (CRC) patients. Methods Analysis of CRC transcriptome data collected from the TCGA database was conducted, and RBPs were extracted from CRC. R software was applied to analyse the differentially expressed genes (DEGs) of RBPs. To identify related pathways and perform functional annotation of RBP DEGs, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the database for annotation, visualization and integrated discovery. Protein-protein interactions (PPIs) of these DEGs were analysed based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Based on the Cox regression analysis of the prognostic value of RBPs (from the PPI network) with survival time, the RBPs related to survival were identified, and a prognostic model was constructed. To verify the model, the data stored in the TCGA database were designated as the training set, while the chip data obtained from the GEO database were treated as the test set. Then, both survival analysis and ROC curve verification were conducted. Finally, the risk curves and nomograms of the two groups were generated to predict the survival period. Results Among RBP DEGs, 314 genes were upregulated while 155 were downregulated, of which twelve RBPs (NOP14, MRPS23, MAK16, TDRD6, POP1, TDRD5, TDRD7, PPARGC1A, LIN28B, CELF4, LRRFIP2, MSI2) with prognostic value were obtained. Conclusions The twelve identified genes may be promising predictors of CRC and play an essential role in the pathogenesis of CRC. However, further investigation of the underlying mechanism is needed.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fanghan Guo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Haining Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xiuli Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
24
|
Amir M, Alam A, Ishrat R, Alajmi MF, Hussain A, Rehman MT, Islam A, Ahmad F, Hassan MI, Dohare R. A Systems View of the Genome Guardians: Mapping the Signaling Circuitry Underlying Oligonucleotide/Oligosaccharide-Binding Fold Proteins. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:518-530. [PMID: 32780668 DOI: 10.1089/omi.2020.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oligonucleotide/oligosaccharide-binding (OB)-fold domain proteins are considered as genome guardians, whose functions are extending beyond genomic stability. The broad functional diversity of the OB-fold proteins is attributed to their protein-DNA, protein-RNA, and protein-protein interactions (PPI). To understand the connectivity of the human OB-fold proteins, we report here a systems-level approach. Specifically, we mapped all human OB-fold PPI networks and evaluated topological features such as network robustness and network hub, among others. We found that the OB-fold network comprised of 227 nodes forming 5523 interactions, and has a scale-free topology having UBA52, ATR, and TP53 as leading hub proteins that control efficient communication within the network. Furthermore, four different clusters and subclusters have been identified, which are implicated in diverse cellular processes, including DNA replication, repair, maintenance of genomic stability, RNA processing, spermatogenesis, complement system, and telomere maintenance. The importance of these clusters is further strengthened by knockout studies, which showed a significant decrease in topological properties. In summary, this study provides new insights on the role of OB-fold protein as genome guardians in regard to the underlying mechanism of signaling pathways, the roles of key regulators, and thus, offers new prospects as potential targets for diagnostics and therapeutics purposes.
Collapse
Affiliation(s)
- Mohd Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. Int J Mol Sci 2020; 21:ijms21145098. [PMID: 32707690 PMCID: PMC7403987 DOI: 10.3390/ijms21145098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan–Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs’ potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.
Collapse
|
26
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
27
|
Biological and chemical approaches to understanding protein arginine methylation. Methods 2020; 175:1-2. [DOI: 10.1016/j.ymeth.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|