1
|
Zhang T, Ghosh A, Behringer-Pließ L, Chouhan L, Cunha AV, Havenith RWA, Butkevich E, Zhang L, Vázquez O, Debroye E, Enderlein J, Das S. Proton Tunneling Allows a Proton-Coupled Electron Transfer Process in the Cancer Cell. JACS AU 2024; 4:4856-4865. [PMID: 39735908 PMCID: PMC11672552 DOI: 10.1021/jacsau.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/31/2024]
Abstract
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia. To observe this depletion process in the cancer cell, we monitored the oxidative-stress-induced depolarization of mitochondrial inner membrane potential (MMP) using fluorescence lifetime imaging microscopy (FLIM). Typically, increasing metabolic stress of cancer cells is reflected in a nontrivial change in the fluorophore's fluorescence lifetime. After 30 min of irradiation, we observed a shift in the mean lifetime value and a drastic drop in overall fluorescence signal. In addition, our PCET strategy resulted in drastic reorganization of mitochondrial morphology from tubular to vesicle-like and causing an overall depletion of intact mitochondria in the hypodermis of C. elegans. These observations confirmed that PCET promoted ROS-induced oxidative stress. Finally, we gained a clear understanding of the proton tunneling effect in the PCET process through photoluminescence experiments and DFT calculations.
Collapse
Affiliation(s)
- Tong Zhang
- Department
of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Arindam Ghosh
- Third Institute
of Physics - Biophysics, Georg-August-Universität
Göttingen, Göttingen 37077, Germany
- Department
of Biotechnology and Biophysics, University
of Würzburg, Würzburg 97074, Germany
| | - Lisa Behringer-Pließ
- Department
of Biotechnology and Biophysics, University
of Würzburg, Würzburg 97074, Germany
| | - Lata Chouhan
- Department
of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Ana V. Cunha
- Department
of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Remco W. A. Havenith
- Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Groningen, AG 9747, The Netherlands
- Ghent
Quantum
Chemistry Group, Department of Chemistry, Ghent University, Gent 9000, Belgium
| | - Eugenia Butkevich
- Third Institute
of Physics - Biophysics, Georg-August-Universität
Göttingen, Göttingen 37077, Germany
| | - Lei Zhang
- Department
of Chemistry & Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg 35032, Germany
| | - Olalla Vázquez
- Department
of Chemistry & Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg 35032, Germany
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Jörg Enderlein
- Third Institute
of Physics - Biophysics, Georg-August-Universität
Göttingen, Göttingen 37077, Germany
| | - Shoubhik Das
- Department
of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Department
of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
2
|
Mouli K, Liopo AV, Suva LJ, Olson KR, McHugh EA, Tour JM, Derry PJ, Kent TA. SOD1 Is an Integral Yet Insufficient Oxidizer of Hydrogen Sulfide in Trisomy 21 B Lymphocytes and Can Be Augmented by a Pleiotropic Carbon Nanozyme. Antioxidants (Basel) 2024; 13:1361. [PMID: 39594503 PMCID: PMC11591310 DOI: 10.3390/antiox13111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Down syndrome (DS) is a multisystemic disorder that includes accelerated aging caused by trisomy 21. In particular, overexpression of cystathionine-β-synthase (CBS) is linked to excess intracellular hydrogen sulfide (H2S), a mitochondrial toxin at higher concentrations, which impairs cellular viability. Concurrent overexpression of superoxide dismutase 1 (SOD1) may increase oxidative stress by generating excess hydrogen peroxide (H2O2) while also mitigating the toxic H2S burden via a non-canonical sulfide-oxidizing mechanism. We investigated the phenotypic variability in basal H2S levels in relation to DS B lymphocyte cell health and SOD1 in H2S detoxification. The H2S levels were negatively correlated with the DS B lymphocyte growth rates but not with CBS protein. Pharmacological inhibition of SOD1 using LCS-1 significantly increased the H2S levels to a greater extent in DS cells while also decreasing the polysulfide products of H2S oxidation. However, DS cells exhibited elevated H2O2 and lipid peroxidation, representing potential toxic consequences of SOD1 overexpression. Treatment of DS cells with a pleiotropic carbon nanozyme (pleozymes) decreased the total oxidative stress and reduced the levels of the H2S-generating enzymes CBS and 3-mercaptopyruvate sulfurtransferase (MPST). Our results indicate that pleozymes may bridge the protective and deleterious effects of DS SOD1 overexpression on H2S metabolism and oxidative stress, respectively, with cytoprotective benefits.
Collapse
Affiliation(s)
- Karthik Mouli
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (K.M.); (A.V.L.)
| | - Anton V. Liopo
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (K.M.); (A.V.L.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA;
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Emily A. McHugh
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (K.M.); (A.V.L.)
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (K.M.); (A.V.L.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| |
Collapse
|
3
|
Tam E, Nguyen K, Sung HK, Sweeney G. MitoNEET preserves muscle insulin sensitivity during iron overload by regulating mitochondrial iron, reactive oxygen species and fission. FEBS J 2024; 291:4062-4075. [PMID: 38944692 DOI: 10.1111/febs.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Iron overload (IO) is known to contribute to metabolic dysfunctions such as type 2 diabetes and insulin resistance. Using L6 skeletal muscle cells overexpressing the CDGSH iron-sulfur domain-containing protein 1 (CISD1, also known as mitoNEET) (mitoN) protein, we examined the potential role of MitoN in preventing IO-induced insulin resistance. In L6 control cells, IO resulted in insulin resistance which could be prevented by MitoN as demonstrated by western blot of p-Akt and Akt biosensor cells. Mechanistically, IO increased; mitochondrial iron accumulation, mitochondrial reactive oxygen species (ROS), Fis1-dependent mitochondrial fission, mitophagy, FUN14 domain-containing protein 1 (FUNDC1) expression, and decreased Parkin. MitoN overexpression was able to reduce increases in mitochondrial iron accumulation, mitochondrial ROS, mitochondrial fission, mitophagy and FUNDC1 upregulation due to IO. MitoN did not have any effect on the IO-induced downregulation of Parkin. MitoN alone also upregulated peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) protein levels, a master regulator of mitochondrial biogenesis. The use of mitochondrial antioxidant, Skq1, or fission inhibitor, Mdivi-1, prevented IO-induced insulin resistance implying both mitochondrial ROS and fission play a causal role in the development of insulin resistance. Taken together, MitoN is able to confer protection against IO-induced insulin resistance in L6 skeletal muscle cells through regulation of mitochondrial iron content, mitochondrial ROS, and mitochondrial fission.
Collapse
Affiliation(s)
- Eddie Tam
- Department of Biology, York University, Toronto, Canada
| | - Khang Nguyen
- Department of Biology, York University, Toronto, Canada
| | | | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
4
|
Dubey AK, Sardana D, Verma T, Alam P, Chattopadhyay A, Nandini SS, Khamari B, Bulagonda EP, Sen S, Nandi D. Quantifying Membrane Alterations with Tailored Fluorescent Dyes: A Rapid Antibiotic Resistance Profiling Methodology. ACS Infect Dis 2024; 10:2836-2859. [PMID: 39024306 DOI: 10.1021/acsinfecdis.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.
Collapse
Affiliation(s)
- Ashim Kumar Dubey
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Deepika Sardana
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taru Verma
- Centre for BioSystems, Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
5
|
Kaneko S, Okada Y. Revalidation of DNA Fragmentation Analyses for Human Sperm-Measurement Principles, Comparative Standards, Calibration Curve, Required Sensitivity, and Eligibility Criteria for Test Sperm. BIOLOGY 2024; 13:484. [PMID: 39056679 PMCID: PMC11274034 DOI: 10.3390/biology13070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Double-strand breaks (DSBs) in a single nucleus are usually measured using the sperm chromatin structure assay (SCSA), sperm chromatin dispersion (SCD) test, and comet assay (CA). Mono-dimensional single-cell pulsed-field gel electrophoresis (1D-SCPFGE) and angle-modulated two- dimensional single-cell pulsed-field gel electrophoresis (2D-SCPFGE) were developed to observe DNA fragmentation in separated motile sperm. (2) Methods: Comparative standards, calibration curves, required sensitivity levels, and eligibility criteria for test sperm were set up to validate the measurement principles of these tests. (3) Results: The conventional methods overlooked the interference of nucleoproteins in their measurements. In-gel proteolysis improves the measurement accuracies of 1D- and 2D-SCPFGE. Naked DNA is suitable for comparative standards and test specimens. Moreover, several dysfunctions that might induce DNA damage are observed in the separated motile sperm. Overall, the discussion highlights the need to revisit the conventional univariable analyses based on the SCSA, SCD test, and CA. (4) Conclusions: Human infertility is a complex syndrome, and the aim of quality control in intracytoplasmic sperm injection is to identify the underlying dysfunctions remaining in the separated motile sperm that render them ineligible for injection. Multivariable analyses with special consideration to confounding factors are necessary in future cohort studies.
Collapse
Affiliation(s)
- Satoru Kaneko
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan;
- Sperm-Semen-Epididymis-Testis (SSET) Clinic, 1-5 Kanda-Iwamoto, Chiyoda, Tokyo 101-0033, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan;
| |
Collapse
|
6
|
Palacin-Martinez C, Anel-Lopez L, Alvarez M, Neila-Montero M, Montes-Garrido R, Soriano-Úbeda C, de Paz P, Anel L, Riesco MF. The characterization of CellROX™ probes could be a crucial factor in ram sperm quality assessment. Front Vet Sci 2024; 11:1342808. [PMID: 38476170 PMCID: PMC10927726 DOI: 10.3389/fvets.2024.1342808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Several authors have demonstrated that low levels of reactive oxygen species (ROS) are necessary for the physiological functions of sperm, such as capacitation, hyperactivation, acrosomal reaction and fertilization. However, high levels of ROS are associated with oxidative stress and detrimental effects on fertility. Consequently, deep characterization of ROS presence using different fluorescent probes could be crucial. In this sense, the study of intracellular ROS localization and the relationships between ROS and other conventional parameters could improve the characterization of sperm quality for semen preservation protocols in rams. In this work, a multiparametric study was carried out by analyzing four experimental groups of ram sperm with different initial qualities: fresh semen (from both breeding and nonbreeding seasons), frozen-thawed semen and, a positive control group treated with hydrogen peroxide (300 μM) as a marker of extreme damage. Sperm analyses, including viability, apoptosis, lipid peroxidation, motility and kinetic parameters, were applied to compare several experimental groups with different sperm qualities. After that, the signals from two different ROS probes: CellROX™ Deep Red (CRDR) and Green (CRG), were examined by flow cytometry (percentage of cells that express ROS) and fluorescence microscopy (intracellular ROS location). Comparing conventional parameters, fresh samples from the breeding season showed the highest sperm quality, while the positive control samples showed the worst sperm quality. Concerning the ROS probes, the CRDR levels were higher in fresh samples from the breeding season than in the positive control and cryopreserved samples. Surprisingly, CRG presented its highest level (P < 0.05) in the positive control group treated with peroxide by flow cytometry. CRDR and CRG presented opposite labeling patterns that were corroborated by fluorescence microscopy, which determined that the probes localized in different parts of sperm. CRDR was found in the sperm mitochondrial region, while CRG was observed in the cell nucleus, suggesting that ROS localization is an important factor. Finally, our study indicates that CRDR is correlated with proper viability and sperm motility, and could be associated with high mitochondrial activity, while CRG is associated with sperm damage.
Collapse
Affiliation(s)
- Cristina Palacin-Martinez
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Luis Anel-Lopez
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Mercedes Alvarez
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Marta Neila-Montero
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Rafael Montes-Garrido
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Cristina Soriano-Úbeda
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Paulino de Paz
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Celular Biology, Department of Molecular Biology, University of León, León, Spain
| | - Luis Anel
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Marta F. Riesco
- Investigación en Técnicas de Reproducción Asistida (Itra-ULE), Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of León, León, Spain
- Celular Biology, Department of Molecular Biology, University of León, León, Spain
| |
Collapse
|
7
|
Hughes JR, McMorrow KJ, Bovin N, Miller DJ. An oviduct glycan increases sperm lifespan by diminishing the production of ubiquinone and reactive oxygen species†. Biol Reprod 2023; 109:356-366. [PMID: 37427962 PMCID: PMC10502565 DOI: 10.1093/biolre/ioad074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Sperm storage by females after mating for species-dependent periods is used widely among animals with internal fertilization to allow asynchrony between mating and ovulation. Many mammals store sperm in the lower oviduct where specific glycans on oviduct epithelial cells retain sperm to form a reservoir. Binding to oviduct cells suppresses sperm intracellular Ca2+ and increases sperm longevity. We investigated the mechanisms by which a specific oviduct glycan, 3-O-sulfated Lewis X trisaccharide (suLeX), prolongs the lifespan of porcine sperm. Using targeted metabolomics, we found that binding to suLeX diminishes the abundance of 4-hydroxybenzoic acid, the precursor to ubiquinone (also known as Coenzyme Q), 30 min after addition. Ubiquinone functions as an electron acceptor in the electron transport chain (ETC). 3-O-sulfated Lewis X trisaccharide also suppressed the formation of fumarate. A component of the citric acid cycle, fumarate is synthesized by succinate-coenzyme Q reductase, which employs ubiquinone and is also known as Complex II in the ETC. Consistent with the reduced activity of the ETC, the production of harmful reactive oxygen species (ROS) was diminished. The enhanced sperm lifespan in the oviduct may be because of suppressed ROS production because high ROS concentrations have toxic effects on sperm.
Collapse
Affiliation(s)
- Jennifer R Hughes
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katie J McMorrow
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicolai Bovin
- Department of Chemical Biology of Glycans and Lipids, Shemyakin Institute of Bioorganic Chemistry, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Tapia-Monsalves C, Olesen MA, Villavicencio-Tejo F, Quintanilla RA. Cyclosporine A (CsA) prevents synaptic impairment caused by truncated tau by caspase-3. Mol Cell Neurosci 2023; 125:103861. [PMID: 37182572 DOI: 10.1016/j.mcn.2023.103861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
During Alzheimer's (AD), tau protein suffers from abnormal post-translational modifications, including cleaving by caspase-3. These tau forms affect synaptic plasticity contributing to the cognitive decline observed in the early stages of AD. In addition, caspase-3 cleaved tau (TauC3) impairs mitochondrial dynamics and organelles transport, which are both relevant processes for synapse. We recently showed that the absence of tau expression reverts age-associated cognitive and mitochondrial failure by blocking the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial complex involved in calcium regulation and apoptosis. Therefore, we studied the effects of TauC3 against the dendritic spine and synaptic vesicle formation and the possible role of mPTP in these alterations. We used mature hippocampal mice neurons to express a reporter protein (GFP, mCherry), coupled to full-length human tau protein (GFP-T4, mCherry-T4), and coupled to human tau protein cleaved at D421 by caspase-3 (GFP-T4C3, mCherry-T4C3) and synaptic elements were evaluated. Treatment with cyclosporine A (CsA), an immunosuppressive drug with inhibitory activity on mPTP, prevented ROS increase and mitochondrial depolarization induced by TauC3 in hippocampal neurons. These results were corroborated with immortalized cortical neurons in which ROS increase and ATP loss induced by this tau form were prevented by CsA. Interestingly, TauC3 expression significantly reduced dendritic spine density (filopodia type) and synaptic vesicle number in hippocampal neurons. Also, neurons transfected with TauC3 showed a significant accumulation of synaptophysin protein in their soma. More importantly, all these synaptic alterations were prevented by CsA, suggesting an mPTP role in these negative changes derived from TauC3 expression.
Collapse
Affiliation(s)
- Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Hughes JR, McMorrow KJ, Bovin N, Miller DJ. An oviduct glycan increases sperm lifespan by diminishing ubiquinone and production of reactive oxygen species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523174. [PMID: 36712093 PMCID: PMC9881936 DOI: 10.1101/2023.01.08.523174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sperm storage by females after mating for species-dependent periods is used widely among animals with internal fertilization to allow asynchrony between mating and ovulation. Many mammals store sperm in the lower oviduct where specific glycans on epithelial cells retain sperm to form a reservoir. Binding to oviduct cells suppresses sperm intracellular Ca 2+ and increases sperm longevity. We investigated the mechanisms by which a specific oviduct glycan, 3-O-sulfated Lewis X trisaccharide (suLe X ), prolongs the lifespan of porcine sperm. Using targeted metabolomics, we report that binding to suLe X diminishes the abundance of the precursor to ubiquinone and suppresses formation of fumarate, a specific citric acid cycle component, diminishing the activity of the electron transport chain and reducing the production of harmful reactive oxygen species (ROS). The enhanced sperm lifespan in the oviduct may be due to suppressed ROS production as many reports have demonstrated toxic effects of high ROS concentrations on sperm.
Collapse
|
10
|
HslO ameliorates arrested ΔrecA polA cell growth and reduces DNA damage and oxidative stress responses. Sci Rep 2022; 12:22182. [PMID: 36564489 PMCID: PMC9789031 DOI: 10.1038/s41598-022-26703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chromosome damage combined with defective recombinase activity has been widely considered to render cells inviable, owing to deficient double-strand break repair. However, temperature-sensitive recAts polA cells grow well upon induction of DNA damage and supplementation with catalase at restrictive temperatures. These treatments reduce intracellular reactive oxygen species (ROS) levels, which suggests that recAts polA cells are susceptible to ROS, but not chronic chromosome damage. Therefore, we investigated whether polA cells can tolerate a complete lack of recombinase function. We introduced a ΔrecA allele in polA cells in the presence or absence of the hslO-encoding redox molecular chaperon Hsp33 expression plasmid. Induction of the hslO gene with IPTG resulted in increased cell viability in ΔrecA polA cells with the hslO expression plasmid. ΔrecA polA cells in the absence of the hslO expression plasmid showed rich medium sensitivity with increasing ROS levels. Adding catalase to the culture medium considerably rescued growth arrest and decreased ROS. These results suggest that hslO expression manages oxidative stress to an acceptable level in cells with oxidative damage and rescues cell growth. Overall, ROS may regulate several processes, from damage response to cell division, via ROS-sensitive cell metabolism.
Collapse
|
11
|
Stranieri C, Guzzo F, Gambini S, Cominacini L, Fratta Pasini AM. Intracellular Polyphenol Wine Metabolites Oppose Oxidative Stress and Upregulate Nrf2/ARE Pathway. Antioxidants (Basel) 2022; 11:antiox11102055. [PMID: 36290778 PMCID: PMC9598741 DOI: 10.3390/antiox11102055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Moderate wine consumption has been associated with several benefits to human health due to its high polyphenol content. In this study, we investigated whether polyphenols contained in a particular red wine, rich in polyphenols, can pass the cell membrane and switch the oxidant/antioxidant balance toward an antioxidant pattern of THP-1 cells and human cardiomyocytes through a gene regulatory system. First, we identified which metabolite polyphenols present in red wine extract cross cell membranes and may be responsible for antioxidant effects. The results showed that the wine metabolites in treated cells belonged mainly to stilbenes, flavan-3-ols derivatives, and flavonoids. Other metabolites present in cells were not typical wine metabolites. Then, we found that red wine extract dose-dependently lowered reactive oxygen species (ROS) induced by tert-butyl hydroperoxide (TBHP) up to 50 ± 7% in both cell lines (p < 0.01). Furthermore, wine extract increased nuclear Nrf2 of about 35 ± 5% in both cell lines (p < 0.01) and counteracted its reduction induced by TBHP (p < 0.01). The rise in Nrf2 was paralleled by the increase in hemeoxygenase-1 and glutamate-cysteine ligase catalytic subunit gene expression (both mRNA and protein) (p < 0.01). These results could help explain the healthful activity of wine polyphenols within cells.
Collapse
Affiliation(s)
- Chiara Stranieri
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Sofia Gambini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy
| | - Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
12
|
Sifaoui I, Díaz-Rodríguez P, Rodríguez-Expósito RL, Reyes-Batlle M, Lopez-Arencibia A, Salazar Villatoro L, Castelan-Ramírez I, Omaña-Molina M, Oliva A, Piñero JE, Lorenzo-Morales J. Pitavastatin loaded nanoparticles: a suitable ophthalmic treatment for Acanthamoeba Keratitis inducing cell death and autophagy in Acanthamoeba polyphaga. Eur J Pharm Biopharm 2022; 180:11-22. [PMID: 36162636 DOI: 10.1016/j.ejpb.2022.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Statins are effective sterol lowering agents with high amoebicidal activity. Nevertheless, due to their poor aqueous solubility, they remain underused especially in eye drop formulation. The aim of the present study is to develop Pitavastatin loaded nanoparticles suitable for ophthalmic administration and designed for the management of Acanthamoeba Keratitis. These nanocarriers are aimed to solve both the ophthalmic route-associated problems and the limited aqueous drug solubility issues of Pitavastatin. Nanoparticles were obtained by a nanoprecipitation-solvent displacement method and their amoebicidal activity was evaluated against four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. In Acanthamoeba polyphaga, the effect of the present nanoparticles was investigated with respect to the microtubule distribution and several programmed cell death features. Nanoparticles were able to eliminate all the tested strains and Acanthamoeba polyphaga was determined to be the most resistance strain. Nanoparticles induced chromatin condensation, autophagic vacuoles and mitochondria dysfunction.
Collapse
Affiliation(s)
- Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET)
| | - Patricia Díaz-Rodríguez
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320 La Laguna, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET)
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET)
| | - Atteneri Lopez-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET)
| | - Lizbeth Salazar Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Ciudad de México, México
| | - Ismael Castelan-Ramírez
- Facultad de Estudios Superiores Iztacala, Medicina, UNAM, Tlalnepantla, 54090, Estado de México, México
| | - Maritza Omaña-Molina
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Alexis Oliva
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206 La Laguna, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales (RICET); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
13
|
Buck JM, Wünsch M, Schober AF, Kroth PG, Lepetit B. Impact of Lhcx2 on Acclimation to Low Iron Conditions in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2022; 13:841058. [PMID: 35371185 PMCID: PMC8967352 DOI: 10.3389/fpls.2022.841058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Iron is a cofactor of photosystems and electron carriers in the photosynthetic electron transport chain. Low concentrations of dissolved iron are, therefore, the predominant factor that limits the growth of phototrophs in large parts of the open sea like the Southern Ocean and the North Pacific, resulting in "high nutrient-low chlorophyll" (HNLC) areas. Diatoms are among the most abundant microalgae in HNLC zones. Besides efficient iron uptake mechanisms, efficient photoprotection might be one of the key traits enabling them to outcompete other algae in HNLC regions. In diatoms, Lhcx proteins play a crucial role in one of the main photoprotective mechanisms, the energy-dependent fluorescence quenching (qE). The expression of Lhcx proteins is strongly influenced by various environmental triggers. We show that Lhcx2 responds specifically and in a very sensitive manner to iron limitation in the diatom Phaeodactylum tricornutum on the same timescale as the known iron-regulated genes ISIP1 and CCHH11. By comparing Lhcx2 knockout lines with wild type cells, we reveal that a strongly increased qE under iron limitation is based on the upregulation of Lhcx2. Other observed iron acclimation phenotypes in P. tricornutum include a massively reduced chlorophyll a content/cell, a changed ratio of light harvesting and photoprotective pigments per chlorophyll a, a decreased amount of photosystem II and photosystem I cores, an increased functional photosystem II absorption cross section, and decoupled antenna complexes. H2O2 formation at photosystem I induced by high light is lowered in iron-limited cells, while the amount of total reactive oxygen species is rather increased. Our data indicate a possible reduction in singlet oxygen by Lhcx2-based qE, while the other iron acclimation phenotype parameters monitored are not affected by the amount of Lhcx2 and qE.
Collapse
|
14
|
Bai X, Ni J, Beretov J, Wasinger VC, Wang S, Zhu Y, Graham P, Li Y. Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis. Redox Biol 2021; 43:101993. [PMID: 33946018 PMCID: PMC8111851 DOI: 10.1016/j.redox.2021.101993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Radiotherapy is an effective option for the treatment of TNBC; however, acquired radioresistance is a major challenge to the modality. In this study, we show that the integrated stress response (ISR) is the most activated signaling pathway in radioresistant TNBC cells. The constitutive phosphorylation of eIF2α in radioresistant TNBC cells promotes the activation of ATF4 and elicits the transcription of genes implicated in glutathione biosynthesis, including GCLC, SLC7A11, and CTH, which increases the intracellular level of reduced glutathione (GSH) and the scavenging of reactive oxygen species (ROS) after irradiation (IR), leading to a radioresistant phenotype. The cascade is significantly up-regulated in human TNBC tissues and is associated with unfavorable survival in patients. Dephosphorylation of eIF2α increases IR-induced ROS accumulation in radioresistant TNBC cells by disrupting ATF4-mediated GSH biosynthesis and sensitizes them to IR in vitro and in vivo. These findings reveal ISR as a vital mechanism underlying TNBC radioresistance and propose the eIF2α/ATF4 axis as a novel therapeutic target for TNBC treatment. The eIF2α/ATF4 axis is constitutively activated in radioresistant TNBC. Phosphorylated eIF2α increases the expression of ATF4 and GCLC at the translational level in TNBC. The eIF2α/ATF4 axis activation causes radioresistance in TNBC by promoting GSH biosynthesis and ROS scavenging. ATF4 promotes GSH biosynthesis in radioresistant TNBC by triggering the expression of GCLC, CTH, and SLC7A11. Inhibition of the eIF2α/ATF4 axis can improve the sensitivity of TNBC to radiotherapy in vitro and in vivo.
Collapse
Affiliation(s)
- Xupeng Bai
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia; School of Medical Science, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Shanping Wang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Zhu
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia; School of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Berby B, Bichara C, Rives-Feraille A, Jumeau F, Pizio PD, Sétif V, Sibert L, Dumont L, Rondanino C, Rives N. Oxidative Stress Is Associated with Telomere Interaction Impairment and Chromatin Condensation Defects in Spermatozoa of Infertile Males. Antioxidants (Basel) 2021; 10:antiox10040593. [PMID: 33921485 PMCID: PMC8069055 DOI: 10.3390/antiox10040593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere length can be influenced by reactive oxygen species (ROS) generated by lifestyle factors or environmental exposure. We sought to determine whether oxidative stress has an impact on sperm nuclear alterations, especially on chromatin organization and telomere interactions in the spermatozoa of infertile males. We performed an observational and prospective study including fifty-two males, allocated in the "case group" (30 infertile males presenting conventional semen parameter alterations) and the "control group" (22 males with normal conventional semen parameters). ROS detection was determined on spermatozoa using CellROX© probes. Sperm nuclear damage was assessed using quantitative fluorescence in situ hybridization (Q-FISH) for relative telomere length and telomere number, aniline blue staining for chromatin condensation, terminal deoxynucleotidyl transferase dUTP nick-end labeling for DNA fragmentation, and FISH for aneuploidy and 8-hydroxy-2'-deoxyguanosine immunostaining for oxidative DNA damages. Infertile males had significantly increased levels of cytoplasmic ROS and chromatin condensation defects as well as a higher mean number of telomere signals per spermatozoon in comparison with controls. In addition, the mean number of sperm telomere signals were positively correlated with the percentage of spermatozoa with chromatin condensation defect. In infertile males with conventional semen parameter alterations, oxidative stress is associated with telomere interaction impairment and chromatin condensation defects.
Collapse
Affiliation(s)
- Benoit Berby
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Cynthia Bichara
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Aurélie Rives-Feraille
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Fanny Jumeau
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Pierre Di Pizio
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Véronique Sétif
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Louis Sibert
- Department of Urology—Andrology, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France;
| | - Ludovic Dumont
- Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (L.D.); (C.R.)
| | - Chistine Rondanino
- Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (L.D.); (C.R.)
| | - Nathalie Rives
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
- Correspondence: ; Tel.: +33-2-3288-8225
| |
Collapse
|
16
|
Shan HJ, Zhu LQ, Yao C, Zhang ZQ, Liu YY, Jiang Q, Zhou XZ, Wang XD, Cao C. MAFG-driven osteosarcoma cell progression is inhibited by a novel miRNA miR-4660. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:385-402. [PMID: 33868783 PMCID: PMC8039776 DOI: 10.1016/j.omtn.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in the adolescent population. MAFG (v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G) forms a heterodimer with Nrf2 (NF-E2-related factor 2), binding to antioxidant response element (ARE), which is required for Nrf2 signaling activation. We found that MAFG mRNA and protein expression is significantly elevated in human OS tissues as well as in established and primary human OS cells. In human OS cells, MAGF silencing or knockout (KO) largely inhibited OS cell growth, proliferation, and migration, simultaneously inducing oxidative injury and apoptosis activation. Conversely, ectopic overexpression of MAFG augmented OS cell progression in vitro. MicroRNA-4660 (miR-4660) directly binds the 3′ untranslated region (UTR) of MAFG mRNA in the cytoplasm of OS cells. MAFG 3′ UTR luciferase activity and expression as well as OS cell growth were largely inhibited with forced miR-4660 overexpression but augmented with miR-4660 inhibition. In vivo, MAGF short hairpin RNA (shRNA) or forced overexpression of miR-4660 inhibited subcutaneous OS xenograft growth in severe combined immunodeficient mice. Furthermore, MAFG silencing or miR-4660 overexpression inhibited OS xenograft in situ growth in proximal tibia of the nude mice. In summary, MAFG overexpression-driven OS cell progression is inhibited by miR-4660. The miR-4660-MAFG axis could be novel therapeutic target for human OS.
Collapse
Affiliation(s)
- Hua-Jian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215003, China
| | - Lun-Qing Zhu
- Department of Pediatric Orthopedics, The Children's Hospital of Soochow University, Suzhou 215100, China
| | - Chen Yao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Zhi-Qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Liu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215003, China
| | - Xiao-Dong Wang
- Department of Pediatric Orthopedics, The Children's Hospital of Soochow University, Suzhou 215100, China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
17
|
Huang DR, Dai CM, Li SY, Li XF. Obacunone protects retinal pigment epithelium cells from ultra-violet radiation-induced oxidative injury. Aging (Albany NY) 2021; 13:11010-11025. [PMID: 33535179 PMCID: PMC8109142 DOI: 10.18632/aging.202437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/08/2020] [Indexed: 12/22/2022]
Abstract
Ultra-violet (UV) radiation (UVR) causes significant oxidative injury to retinal pigment epithelium (RPE) cells. Obacunone is a highly oxygenated triterpenoid limonoid compound with various pharmacological properties. Its potential effect in RPE cells has not been studied thus far. Here in ARPE-19 cells and primary murine RPE cells, obacunone potently inhibited UVR-induced reactive oxygen species accumulation, mitochondrial depolarization, lipid peroxidation and single strand DNA accumulation. UVR-induced RPE cell death and apoptosis were largely alleviated by obacunone. Obacunone activated Nrf2 signaling cascade in RPE cells, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation. It promoted transcription and expression of antioxidant responsive element-dependent genes. Nrf2 silencing or CRISPR/Cas9-induced Nrf2 knockout almost reversed obacunone-induced RPE cytoprotection against UVR. Forced activation of Nrf2 cascade, by Keap1 knockout, similarly protected RPE cells from UVR. Importantly, obacunone failed to offer further RPE cytoprotection against UVR in Keap1-knockout cells. In vivo, intravitreal injection of obacunone largely inhibited light-induced retinal damage. Collectively, obacunone protects RPE cells from UVR-induced oxidative injury through activation of Nrf2 signaling cascade.
Collapse
Affiliation(s)
- Da-Rui Huang
- Department of Ophthalmology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Chang-Ming Dai
- Department of Ophthalmology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Shu-Yan Li
- Department of Ophthalmology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Xiao-Feng Li
- Department of Ophthalmology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
18
|
Alves MBR, Arruda RPD, Batissaco L, Garcia-Oliveros LN, Gonzaga VHG, Nogueira VJM, Almeida FDS, Pinto SCC, Andrade GM, Perecin F, da Silveira JC, Celeghini ECC. Changes in miRNA levels of sperm and small extracellular vesicles of seminal plasma are associated with transient scrotal heat stress in bulls. Theriogenology 2020; 161:26-40. [PMID: 33278692 DOI: 10.1016/j.theriogenology.2020.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Scrotal heat stress affects spermatogenesis and impairs male fertility by increasing sperm morphological abnormalities, oxidative stress and DNA fragmentation. While sperm morpho-functional changes triggered by scrotal heat stress are well described, sperm molecular alterations remain unknown. Recently, spermatozoa were described as accumulating miRNAs during the last steps of spermatogenesis and through epididymis transit, mainly by communication with small extracellular vesicles (sEVs). Herein, the aim was to investigate the impact of scrotal heat stress in miRNAs profile of sperm, as well as, seminal plasma sEVs. Six Nelore bulls (Bos indicus) were divided into two groups: Control (CON; n = 3) and Scrotal Heat Stress (SHS; n = 3; scrotal heat stressed during 96 h by scrotal bags). The day that the scrotal bags were removed from SHS group was considered as D0 (Day zero). Seminal plasma sEVs were isolated from semen samples collected seven days after heat stress (D+7) to evaluate sEVs diameter, concentration, and 380 miRNA levels. Sperm morpho-functional features and profile of 380 miRNAs were evaluated from semen collected 21 days after heat stress (D+21). As a control, sEVs and sperm were analyzed seven days before heat stress (D-7). Only semen parameters that were not significantly different (P > 0.05) among bulls on D-7 were addressed on D+7 and D+21. While no alterations in diameter and concentration were detected in sEVs on D+7 between CON and SHS groups, three sEVs-miRNAs (miR-23b-5p, -489 and -1248) were down-regulated in SHS bulls compared to CON on D+7; other three (miR-126-5p, -656 and -1307) displayed a tendency (0.05 < P < 0.10) to be altered. Sperm oxidative stress was higher, and the level of 21 sperm miRNAs was altered (18 down-, 3 up-regulated) in SHS bulls compared to CON on D+21. Functional analysis indicated that target genes involved in transcription activation, as well as cell proliferation and differentiation were related to the 18 down-regulated sperm miRNAs (miR-9-5p, -15a, -18a, -20b, -30a-5p, -30b-5p, -30d, -30e-5p -34b, -34c, -106b, -126-5p, -146a, -191, -192, -200b, -335 and -449a). Thus, the scrotal heat stress probably impacted testicular and epididymis functions by reducing the levels of a substantial proportion of sEVs and sperm miRNAs. Our findings suggest that miR-126-5p was possibly trafficked between sEVs and sperm and provide new insights on the mechanism by which sperm acquire miRNAs in the last stages of spermatogenesis and sperm maturation in cattle.
Collapse
Affiliation(s)
- Maíra Bianchi Rodrigues Alves
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Rubens Paes de Arruda
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Leonardo Batissaco
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Laura Nataly Garcia-Oliveros
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Vitor Hugo Guilger Gonzaga
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Vinícius José Moreira Nogueira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Flávia Dos Santos Almeida
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Sâmara Cristine Costa Pinto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Gabriella Mamede Andrade
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Felipe Perecin
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| | - Eneiva Carla Carvalho Celeghini
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
19
|
Zhong S, Xue J, Cao JJ, Sun B, Sun QF, Bian LG, Hu LY, Pan SJ. The therapeutic value of XL388 in human glioma cells. Aging (Albany NY) 2020; 12:22550-22563. [PMID: 33159013 PMCID: PMC7746352 DOI: 10.18632/aging.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022]
Abstract
XL388 is a highly efficient and orally-available ATP-competitive PI3K-mTOR dual inhibitor. Its activity against glioma cells was studied here. In established and primary human glioma cells, XL388 potently inhibited cell survival and proliferation as well as cell migration, invasion and cell cycle progression. The dual inhibitor induced significant apoptosis activation in glioma cells. In A172 cells and primary human glioma cells, XL388 inhibited Akt-mTORC1/2 activation by blocking phosphorylation of Akt and S6K1. XL388-induced glioma cell death was only partially attenuated by a constitutively-active mutant Akt1. Furthermore, it was cytotoxic against Akt1-knockout A172 glioma cells. XL388 downregulated MAF bZIP transcription factor G (MAFG) and inhibited Nrf2 signaling, causing oxidative injury in glioma cells. Conversely, antioxidants, n-acetylcysteine, pyrrolidine dithiocarbamate and AGI-106, alleviated XL388-induced cytotoxicity and apoptosis in glioma cells. Oral administration of XL388 inhibited subcutaneous A172 xenograft growth in severe combined immunodeficient mice. Akt-S6K1 inhibition and MAFG downregulation were detected in XL388-treated A172 xenograft tissues. Collectively, XL388 efficiently inhibits human glioma cell growth, through Akt-mTOR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shan Zhong
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Xue
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao-Jiao Cao
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing-Fang Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liu-Guan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liang-Yun Hu
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
GDC-0349 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2020; 11:951. [PMID: 33154352 PMCID: PMC7644631 DOI: 10.1038/s41419-020-03146-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related human mortality with a clear need for new therapeutic intervention. GDC-0349 is a potent and selective ATP-competitive mTOR inhibitor. In A549 cells and primary human NSCLC cells, GDC-0349 inhibited cell growth, proliferation, cell cycle progression, migration and invasion, while inducing significant apoptosis activation. Although GDC-0349 blocked Akt-mTORC1/2 activation in NSCLC cells, it also exerted cytotoxicity in Akt1-knockout A549 cells. Furthermore, restoring Akt-mTOR activation by a constitutively-active Akt1 only partially attenuated GDC-0349-induced A549 cell apoptosis, indicating the existence of Akt-mTOR-independent mechanisms. In NSCLC cells GDC-0349 induced sphingosine kinase 1 (SphK1) inhibition, ceramide accumulation, JNK activation and oxidative injury. Conversely, N-acetylcysteine, the JNK inhibitor and sphingosine 1-phosphate alleviated GDC-0349-induced NSCLC cell apoptosis. In vivo, daily oral administration of GDC-0349 potently inhibited NSCLC xenograft growth in mice. Akt-mTOR in-activation, SphK1 inhibition, JNK activation and oxidative stress were detected in NSCLC xenograft tissues with GDC-0349 administration. In summary, GDC-0349 inhibits NSCLC cell growth via Akt-mTOR-dependent and Akt-mTOR-independent mechanisms.
Collapse
|
21
|
The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death Dis 2020; 11:805. [PMID: 32978368 PMCID: PMC7519683 DOI: 10.1038/s41419-020-03015-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
A1874 is a novel BRD4-degrading proteolysis targeting chimera (PROTAC). In primary colon cancer cells and established HCT116 cells, A1874 potently inhibited cell viability, proliferation, cell cycle progression, as well as cell migration and invasion. The BRD4-degrading PROTAC was able to induce caspase and apoptosis activation in colon cancer cells. Furthermore, A1874-induced degradation of BRD4 protein and downregulated BRD-dependent genes (c-Myc, Bcl-2, and cyclin D1) in colon cancer cells. Significantly, A1874-induced anti-colon cancer cell activity was more potent than the known BRD4 inhibitors (JQ1, CPI203, and I-BET151). In BRD4-knockout colon cancer cells A1874 remained cytotoxic, indicating the existence of BRD4-independent mechanisms. In addition to BRD4 degradation, A1874 cytotoxicity in colon cancer cells was also associated with p53 protein stabilization and reactive oxygen species production. Importantly, the antioxidant N-acetyl-cysteine and the p53 inhibitor pifithrin-α attenuated A1874-induced cell death and apoptosis in colon cancer cells. In vivo, A1874 oral administration potently inhibited colon cancer xenograft growth in severe combined immuno-deficient mice. BRD4 degradation and p53 protein elevation, as well as apoptosis induction and oxidative stress were detected in A1874-treated colon cancer tissues. Together, A1874 inhibits colon cancer cell growth through both BRD4-dependent and -independent mechanisms.
Collapse
|
22
|
Four-octyl itaconate activates Nrf2 cascade to protect osteoblasts from hydrogen peroxide-induced oxidative injury. Cell Death Dis 2020; 11:772. [PMID: 32943614 PMCID: PMC7499214 DOI: 10.1038/s41419-020-02987-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Four-octyl itaconate (4-OI) is the cell-permeable derivative of itaconate that can activate Nrf2 signaling by alkylating Keap1’s cysteine residues. Here, we tested the potential effect of 4-OI on hydrogen peroxide (H2O2)-induced oxidative injury in osteoblasts. In OB-6 cells and primary murine osteoblasts, 4-OI was able to activate Nrf2 signaling cascade and cause Keap1–Nrf2 disassociation, Nrf2 protein stabilization, cytosol accumulation, and nuclear translocation. 4-OI also augmented antioxidant-response element reporter activity and promoted expression of Nrf2-dependent genes (HO1, NQO1, and GCLC). Pretreatment with 4-OI inhibited H2O2-induced reactive oxygen species production, cell death, and apoptosis in osteoblasts. Furthermore, 4-OI inhibited H2O2-induced programmed necrosis by suppressing mitochondrial depolarization, mitochondrial cyclophilin D-ANT1 (adenine nucleotide translocase 1)-p53 association, and cytosol lactate dehydrogenase release in osteoblasts. Ectopic overexpression of immunoresponsive gene 1 (IRG1) increased endogenous itaconate production and activated Nrf2 signaling cascade, thereby inhibiting H2O2-induced oxidative injury and cell death. In OB-6 cells, Nrf2 silencing or CRISPR/Cas9-induced Nrf2 knockout blocked 4-OI-induced osteoblast cytoprotection against H2O2. Conversely, forced Nrf2 activation, by CRISPR/Cas9-induced Keap1 knockout, mimicked 4-OI-induced actions in OB-6 cells. Importantly, 4-OI was ineffective against H2O2 in Keap1-knockout cells. Collectively, 4-OI efficiently activates Nrf2 signaling to inhibit H2O2-induced oxidative injury and death of osteoblasts.
Collapse
|
23
|
Kelesidis T, Tran E, Arastoo S, Lakhani K, Heymans R, Gornbein J, Middlekauff HR. Elevated Cellular Oxidative Stress in Circulating Immune Cells in Otherwise Healthy Young People Who Use Electronic Cigarettes in a Cross-Sectional Single-Center Study: Implications for Future Cardiovascular Risk. J Am Heart Assoc 2020; 9:e016983. [PMID: 32896211 PMCID: PMC7726977 DOI: 10.1161/jaha.120.016983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Tobacco cigarettes (TCs) increase oxidative stress and inflammation, both instigators of atherosclerotic cardiac disease. It is unknown if electronic cigarettes (ECs) also increase immune cell oxidative stress. We hypothesized an ordered, “dose‐response” relationship, with tobacco‐product type as “dose” (lowest in nonsmokers, intermediate in EC vapers, and highest in TC smokers), and the “response” being cellular oxidative stress (COS) in immune cell subtypes, in otherwise, healthy young people. Methods and Results Using flow cytometry and fluorescent probes, COS was determined in immune cell subtypes in 33 otherwise healthy young people: nonsmokers (n=12), EC vapers (n=12), and TC smokers (n=9). Study groups had similar baseline characteristics, including age, sex, race, and education level. A dose‐response increase in proinflammatory monocytes and lymphocytes, and their COS content among the 3 study groups was found: lowest in nonsmokers, intermediate in EC vapers, and highest in TC smokers. These findings were most striking in CD14dimCD16+ and CD14++CD16+ proinflammatory monocytes and were reproduced with 2 independent fluorescent probes of COS. Conclusions These findings portend the development of premature cardiovascular disease in otherwise healthy young people who chronically vape ECs. On the other hand, that the COS is lower in EC vapers compared with TC smokers warrants additional investigation to determine if switching to ECs may form part of a harm‐reduction strategy. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03823885.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Disease Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Elizabeth Tran
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Sara Arastoo
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Karishma Lakhani
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Rachel Heymans
- Division of Infectious Disease Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Jeffrey Gornbein
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA.,Department of Computational Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Holly R Middlekauff
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
24
|
Alves MBR, Celeghini ECC, Belleannée C. From Sperm Motility to Sperm-Borne microRNA Signatures: New Approaches to Predict Male Fertility Potential. Front Cell Dev Biol 2020; 8:791. [PMID: 32974342 PMCID: PMC7471662 DOI: 10.3389/fcell.2020.00791] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to the paternal genome, spermatozoa carry several intrinsic factors, including organelles (e.g., centrioles and mitochondria) and molecules (e.g., proteins and RNAs), which are involved in important steps of reproductive biology such as spermatogenesis, sperm maturation, oocyte fertilization and embryo development. These factors constitute potential biomarkers of "viable sperm" and male fertility status and may become major assets for diagnosing instances of idiopathic male infertility in both humans and livestock animals. A better understanding of the mechanism of action of these sperm intrinsic factors in the regulation of reproductive and developmental processes still presents a major challenge that must be addressed. This review assembles the main data regarding morpho-functional and intrinsic sperm features that are associated with male infertility, with a particular focus on microRNA (miRNA) molecules.
Collapse
Affiliation(s)
- Maíra Bianchi Rodrigues Alves
- CHU de Québec Research Center (CHUL), Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Department of Animal Reproduction, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Clémence Belleannée
- CHU de Québec Research Center (CHUL), Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
25
|
Habibalahi A, Moghari MD, Campbell JM, Anwer AG, Mahbub SB, Gosnell M, Saad S, Pollock C, Goldys EM. Non-invasive real-time imaging of reactive oxygen species (ROS) using auto-fluorescence multispectral imaging technique: A novel tool for redox biology. Redox Biol 2020; 34:101561. [PMID: 32526699 PMCID: PMC7287272 DOI: 10.1016/j.redox.2020.101561] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Detecting reactive oxygen species (ROS) that play a critical role as redox modulators and signalling molecules in biological systems currently requires invasive methods such as ROS -specific indicators for imaging and quantification. We developed a non-invasive, real-time, label-free imaging technique for assessing the level of ROS in live cells and thawed cryopreserved tissues that is compatible with in-vivo imaging. The technique is based on autofluorescence multispectral imaging (AFMI) carried out in an adapted fluorescence microscope with an expanded number of spectral channels spanning specific excitation (365 nm-495 nm) and emission (420 nm-700 nm) wavelength ranges. We established a strong quantitative correlation between the spectral information obtained from AFMI and the level of ROS obtained from CellROX staining. The results were obtained in several cell types (HeLa, PANC1 and mesenchymal stem cells) and in live kidney tissue. Additioanly,two spectral regimes were considered: with and without UV excitation (wavelengths > 400 nm); the latter being suitable for UV-sensitive systems such as the eye. Data were analyzed by linear regression combined with an optimization method of swarm intelligence. This allowed the calibration of AFMI signals to the level of ROS with excellent correlation (R = 0.84, p = 0.00) in the entire spectral range and very good correlation (R = 0.78, p = 0.00) in the limited, UV-free spectral range. We also developed a strong classifier which allowed us to distinguish moderate and high levels of ROS in these two regimes (AUC = 0.91 in the entire spectral range and AUC = 0.78 for UV-free imaging). These results indicate that ROS in cells and tissues can be imaged non-invasively, which opens the way to future clinical applications in conditions where reactive oxygen species are known to contribute to progressive disease such as in ophthalmology, diabetes, kidney disease, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia.
| | - Mahdieh Dashtbani Moghari
- School of Biomedical Engineering, Faculty of Engineering, Darlington Campus, The University of Sydney, NSW, 2006, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | | | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| |
Collapse
|