1
|
Abdisa T, Dilbato T. Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review. J Toxicol 2024; 2024:9857933. [PMID: 39723202 PMCID: PMC11669433 DOI: 10.1155/jt/9857933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth. In several developing countries, including Ethiopia, traditional communities have depended on medicinal plants for treating livestock and human diseases. The incidences of livestock poisoning from medicinal and poisonous plants are due to the misuse and lack of dosage standardization. Therefore, this paper aimed to review toxic plants and their effects on livestock health and associated economic losses. Toxic plants contain secondary metabolites that serve as a defense mechanism against predators. The most common secondary metabolites of toxic plants that affect livestock health and the economy include alkaloids (Asteraceae, Convolvulaceae, Lamiaceae, Fabaceae, and Boraginaceae), cyanides (Sorghum spp. and grass spp.), nitrates (Pennisetum purpureum roots, Amaranthus, nightshades, Solanum spp. Chenopodium spp., and weed spp.), oxalates (Poaecea, Amaranthaceae, and Polygonaceae), and glycosides (Pteridium aquiline). The most common effects of toxic plants on livestock health include teratogenic and abortifacient (Locoweeds, Lupines, Poison Hemlock, and Veratrum), hepatoxicity (Crotalaria, Lantana camara, Xanthium, and Senecio), photosensitization (L. camara, Alternanthera philoxeroides, Brachiaria brizantha, and Heracleum sphondylium), and impairing respiratory and circulatory systems (nitrite and cyanide toxic). Toxic plants lead to substantial economic losses, both direct and indirect. Direct losses stem from livestock deaths, abortions, decreased milk quality, and reduced skin and hide production, while indirect losses are associated with the costs of treatment and management of affected animals. Overall, toxic plants negatively impact livestock health and production, resulting in significant economic repercussions. Therefore, it is crucial to prioritize the identification of the most prevalent toxic plants, isolate secondary metabolites, conduct toxicity tests, standardize dosages, and develop effective strategies for managing both the toxic plants and their associated toxicity.
Collapse
Affiliation(s)
- Tagesu Abdisa
- Chelia District Agricultural and Land Office, Animal Health Protection Team, Chelia District, West Shewa, Oromia, Ethiopia
| | - Tegegn Dilbato
- Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia
| |
Collapse
|
2
|
Grosu (Dumitrescu) C, Jîjie AR, Manea HC, Moacă EA, Iftode A, Minda D, Chioibaş R, Dehelean CA, Vlad CS. New Insights Concerning Phytophotodermatitis Induced by Phototoxic Plants. Life (Basel) 2024; 14:1019. [PMID: 39202761 PMCID: PMC11355232 DOI: 10.3390/life14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The present review explores the underlying mechanisms of phytophotodermatitis, a non-immunologic skin reaction triggered by certain plants followed by exposure to ultraviolet radiation emitted by sunlight. Recent research has advanced our understanding of the pathophysiology of phytophotodermatitis, highlighting the interaction between plant-derived photosensitizing compounds (e.g., furanocoumarins and psoralens) and ultraviolet light leading to skin damage (e.g., erythema, fluid blisters, edema, and hyperpigmentation), identifying these compounds as key contributors to the phototoxic reactions causing phytophotodermatitis. Progress in understanding the molecular pathways involved in the skin's response to these compounds has opened avenues for identifying potential therapeutic targets suitable for the management and prevention of this condition. The review emphasizes the importance of identifying the most common phototoxic plant families (e.g., Apiaceae, Rutaceae, and Moraceae) and plant species (e.g., Heracleum mantegazzianum, Ruta graveolens, Ficus carica, and Pastinaca sativa), as well as the specific phytochemical compounds responsible for inducing phytophototoxicity (e.g., limes containing furocoumarin have been linked to lime-induced photodermatitis), underscoring the significance of recognizing the dangerous plant sources. Moreover, the most used approaches and tests for accurate diagnosis such as patch testing, Wood's lamp examination, or skin biopsy are presented. Additionally, preventive measures such as adequate clothing (e.g., long-sleeved garments and gloves) and treatment strategies based on the current knowledge of phytophotodermatitis including topical and systemic therapies are discussed. Overall, the review consolidates recent findings in the field, covering a diverse array of phototoxic compounds in plants, the mechanisms by which they trigger skin reactions, and the implications for clinical management. By synthesizing these insights, we provide a comprehensive understanding of phytophotodermatitis, providing valuable information for both healthcare professionals and researchers working to address this condition.
Collapse
Affiliation(s)
- Cristina Grosu (Dumitrescu)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Horaţiu Cristian Manea
- Faculty of Medicine, “Vasile Goldis” Western University of Arad, 94 Revolutiei Bv., 310025 Arad, Romania
- Timisoara Municipal Emergency Clinical Hospital, 5 Take Ionescu Bv., 300062 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research and Processing Center for Medical and Aromatic Plants (Plant-Med), “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Raul Chioibaş
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- CBS Medcom Hospital, 12th Popa Sapca Street, 300047 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Gabbanini S, Neba JN, Matera R, Valgimigli L. Photochemical and Oxidative Degradation of Chamazulene Contained in Artemisia, Matricaria and Achillea Essential Oils and Setup of Protection Strategies. Molecules 2024; 29:2604. [PMID: 38893479 PMCID: PMC11173868 DOI: 10.3390/molecules29112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Chamazulene (CA) is an intensely blue molecule with a wealth of biological properties. In cosmetics, chamazulene is exploited as a natural coloring and soothing agent. CA is unstable and tends to spontaneously degrade, accelerated by light. We studied the photodegradation of CA upon controlled exposure to UVB-UVA irradiation by multiple techniques, including GC-MS, UHPLC-PDA-ESI-MS/MS and by direct infusion in ESI-MSn, which were matched to in silico mass spectral simulations to identify degradation products. Seven byproducts formed upon UVA exposure for 3 h at 70 mW/cm2 (blue-to-green color change) were identified, including CA dimers and CA benzenoid, which were not found on extended 6 h irradiation (green-to-yellow fading). Photostability tests with reduced irradiance conducted in various solvents in the presence/absence of air indicated highest degradation in acetonitrile in the presence of oxygen, suggesting a photo-oxidative mechanism. Testing in the presence of antioxidants (tocopherol, ascorbyl palmitate, hydroxytyrosol, bakuchiol, γ-terpinene, TEMPO and their combinations) indicated the highest protection by tocopherol and TEMPO. Sunscreens ethylhexyl methoxycinnamate and particularly Tinosorb® S (but not octocrylene) showed good CA photoprotection. Thermal stability tests indicated no degradation of CA in acetonitrile at 50 °C in the dark for 50 days; however, accelerated degradation occurred in the presence of ascorbyl palmitate.
Collapse
Affiliation(s)
- Simone Gabbanini
- R&D Department, BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy;
| | - Jerome Ngwa Neba
- Department of Chemistry “Ciamician”, University of Bologna, Via Gobetti 85, 40129 Bologna, Italy;
| | - Riccardo Matera
- R&D Department, BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy;
| | - Luca Valgimigli
- Department of Chemistry “Ciamician”, University of Bologna, Via Gobetti 85, 40129 Bologna, Italy;
- Tecnopolo di Rimini, Via D. Campana 71, 47922 Rimini, Italy
| |
Collapse
|
4
|
Lippert A, Renner B. Herb-Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J Clin Med 2022; 11:1567. [PMID: 35329893 PMCID: PMC8951360 DOI: 10.3390/jcm11061567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Many people worldwide use plant preparations for medicinal purposes. Even in industrialized regions, such as Europe, where conventional therapies are accessible for the majority of patients, there is a growing interest in and usage of phytomedicine. Plant preparations are not only used as alternative treatment, but also combined with conventional drugs. These combinations deserve careful contemplation, as the complex mixtures of bioactive substances in plants show a potential for interactions. Induction of CYP enzymes and pGP by St John's wort may be the most famous example, but there is much more to consider. In this review, we shed light on what is known about the interactions between botanicals and drugs, in order to make practitioners aware of potential drug-related problems. The main focus of the article is the treatment of inflammatory diseases, accompanied by plant preparations used in Europe. Several of the drugs we discuss here, as basal medication in chronic inflammatory diseases (e.g., methotrexate, janus kinase inhibitors), are also used as oral tumor therapeutics.
Collapse
Affiliation(s)
- Annemarie Lippert
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany;
| | | |
Collapse
|
5
|
Kulikov OA, Ageev VP, Brodovskaya EP, Shlyapkina VI, Petrov PS, Zharkov MN, Yakobson DE, Maev IV, Sukhorukov GB, Pyataev NA. Evaluation of photocytotoxicity liposomal form of furanocoumarins Sosnowsky's hogweed. Chem Biol Interact 2022; 357:109880. [PMID: 35271822 DOI: 10.1016/j.cbi.2022.109880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/10/2023]
Abstract
Sosnovsky's hogweed, Heracleum sosnowskyi has a high photosensitizing ability. Although Sosnovsky's hogweed is known as a poisonous plant, its chemical composition and phototoxicity are poorly studied. We analyzed the chemical composition of the Sosnovsky's hogweed juice that grew in natural conditions. It was found that the content of 8-methoxypsoralen in the juice is 1332.7 mg/L, and that of 5-methoxypsoralen is 34.2 mg/L. We have developed and analyzed liposomes containing furanocoumarins of Sosnovsky's hogweed juice and studied their photocytotoxicity in L929 mouse fibroblast cell culture. It was found that liposomes containing furanocoumarins of Sosnovsky's hogweed juice are more toxic for L929 cells in comparison with liposomal forms of pure substances 8-methoxypsoralen and 5-methoxypsoralen. It was found that when exposed to UV radiation at 365 nm at a dose of 22.2 J/cm2, the liposomal form of furanocoumarins Sosnovsky's hogweed is 3 times more toxic to L929 cells than in the dark. It was found that the photocytotoxic effect of liposomal furanocoumarins Sosnovsky's hogweed is a strongly stimulation of apoptosis.The data obtained suggest that the raw material of Sosnovsky's hogweed claims to be a source of furanocoumarins, and the liposomal form, given the hydrophobic properties of furanocoumarins, is very suitable for creating a phototherapeutic drug.
Collapse
Affiliation(s)
- Oleg A Kulikov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia.
| | - Valentin P Ageev
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Ekaterina P Brodovskaya
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Vasilisa I Shlyapkina
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Pavel S Petrov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Mikhail N Zharkov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Denis E Yakobson
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| | - Igor V Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str. 20, p. 1, 127473, Moscow, Russia
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom
| | - Nikolay A Pyataev
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68, 430005, Saransk, Russia
| |
Collapse
|
6
|
Soria ALG, Ramirez FR, Pliego AB, Guadarrama HRD, Farrera GPM, Angel GY, Chagoyán JCV, Gomaa RMM, Tenorio-Borroto E. Evaluating Hemolytic and Photo Hemolytic Potential of Organophosphorus by In Vitro Method as an Alternative Tool Using Human Erythrocytes. Curr Top Med Chem 2021; 20:738-745. [PMID: 32101124 DOI: 10.2174/1568026620666200226104029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
AIMS The present study aims to determine the phototoxic and haemolytic activity of organophosphorus. The use of alternative in vitro assays with human erythrocytes is suggested to predict the polluting effect of these products on health. METHODOLOGY Human erythrocytes from Toluca Blood Bank were used. Sodium dodecyl sulfate was employed as a positive control. Additionally, the haemolysis percentage of three organophosphate (Acetate, Chlorpyrifos, Malathion, Methamidophos, Methyl Parathion) induced photo haemolysis formulated with surfactants on a concentration of 2 x 109 erythrocytes were evaluated. Finally, the products were classified as irritant or phototoxic. RESULTS Results showed that the HC50 red blood cells were similar for each organophosphate (Malathion and Methamidophos) indicating very irritant action with ratio classification (L/D) of 0.041 and 0.053, respectively. On the other hand, Chlorpyrifos was classified as an irritant with L/D= 0.14. On the other hand, the HC50 obtained photo hemolysis assays irradiated red blood cells was similar for each organophosphate (Acetate, Chlorpyrifos, Malathion, Methamidophos, Methyl Parathion) indicating no phototoxic action. CONCLUSION As a conclusion, it can be said that the parameters of haemolysis and denaturation of proteins are good indicators to classify organophosphorus formulated with surfactants as irritating or phototoxic.
Collapse
Affiliation(s)
- Ana L G Soria
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Fabiola R Ramirez
- Technological University of the Valley of Toluca, Carretera del Distrito Federal Km 7.5 Santa María Atarrasquillo, Lerma, State of Mexico, 52044, Mexico
| | - Alberto B Pliego
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Héctor R D Guadarrama
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Guadalupe P M Farrera
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of Chiapas, Tuxtla Gutierrez, Mexico
| | - Gilberto Y Angel
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of Chiapas, Tuxtla Gutierrez, Mexico
| | - Juan C V Chagoyán
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Raafat M M Gomaa
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Esvieta Tenorio-Borroto
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, Mexico
| |
Collapse
|
7
|
Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2020; 134:111161. [PMID: 33360043 DOI: 10.1016/j.biopha.2020.111161] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
Artificial sunscreens are already gaining traction in order to protect the skin from sunburns, photoaging and photocarcinogenesis. However, the efficacy and safety of most artificial sunscreen constituents are hindered by their photostability, toxicity and damage to marine ecosystems. Natural selection and evolution have ensured that plants and animals have developed effective protective mechanisms against the deleterious side effects of oxidative stress and ultraviolet radiation (UV). Hence, natural antioxidants such as sun blockers are drawing considerable attention. The exact mechanism by which natural components act as sunscreen molecules has not been clearly established. However, conjugated π system is reported to play an important role in protecting the vital genetic material within the organism. Compared to artificial sunscreens, natural sunscreens with strong UV absorptive capacities are largely limited by low specific extinction value and by their inability to spread in large-scale sunscreen cosmetic applications. Previous studies have documented that natural components exert their photoprotective effects (such as improved skin elasticity and hydration, skin texture, and wrinkles) through their antioxidant effects, and through the regulation of UV-induced skin inflammation, barrier impairment and aging. This review focuses on natural antioxidant topical formulations with sun protection factor (SPF). Lignin, melanin, silymarin and other ingredients have been added to high sun protection nature sunscreens without any physical or chemical UV filters. This paper also provides a reference for adopting novel technical measures (extracting high content components, changing the type of solution, optimizing formulation, applying Nano technology, et al) to design and prepare nature sunscreen formulations equated with commercial sunscreen formulations. Another strategy is to add natural antioxidants from plants, animals, microorganisms and marine organisms as special enhancer or modifier ingredients to reinforce SPF values. Although the photoprotective effects of natural components have been established, their deleterious side effects have not been elucidated.
Collapse
|
8
|
Evidence of hypericin photoinactivation of E. faecalis: From planktonic culture to mammalian cells selectivity up to biofilm disruption. Photodiagnosis Photodyn Ther 2020; 31:101759. [PMID: 32380254 DOI: 10.1016/j.pdpdt.2020.101759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) is an alternative for microbiological inactivation. The aPDT is a method that uses a photosensitizer (PS) excited by visible light at the appropriate wavelength and the molecular oxygen present in the tissues resulting in the production of reactive oxygen species, which causes oxidative damage to biological molecules. This study aimed to perform an in vitro experimental sequence for photoinactivation of E. faecalis using Hypericin (HY) from planktonic culture to selectivity assays using mammalian cells up to biofilm. The results show that E. faecalis rapidly absorb HY. The levels of inactivation of E. faecalis reached up to 99% in planktonic culture. Transmission and Scanning Electron Microscopy demonstrate the remarkable morphological alterations resulting from photooxidation being the loss of membrane integrity assessed by fluorescence microscopy combined with a LIVE/DEAD™ kit. HY did not present cytotoxicity to the fibroblasts cell at the used conditions proving to be a selective molecule. Finally, 60% of photoinactivation was observed in the biofilm of E. faecalis when subject to HY-aPDT. These outcomes show the advantages of sequential in vitro experiments besides showing that HY is a potential PS for clinical trials due to its selectivity and photodynamic effect. This study also draws attention to the benefits of using methodologies that can evidence the antimicrobial effect beyond the typical constellation of cell death.
Collapse
|
9
|
Baazaoui I, McEwan J, Anderson R, Brauning R, McCulloch A, Van Stijn T, Bedhiaf-Romdhani S. GBS Data Identify Pigmentation-Specific Genes of Potential Role in Skin-Photosensitization in Two Tunisian Sheep Breeds. Animals (Basel) 2019; 10:ani10010005. [PMID: 31861491 PMCID: PMC7022847 DOI: 10.3390/ani10010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Tunisian Noire de Thibar sheep breed is a composite breed, recently selected to create animals that are uniformly black in order to avoid skin photosensitization after the ingestion of toxic "hypericum perforatum" weeds, which causes a major economic loss to sheep farmers. We assessed genetic differentiation and estimated marker FST using genotyping-by-sequencing (GBS) data in black (Noire de Thibar) and related white-coated (Queue fine de l'ouest) sheep breeds to identify signals of artificial selection. The results revealed the selection signatures within candidate genes related to coat color, which are assumed to be indirectly involved in the mechanism of photosensitization in sheep. The identified genes could provide important information for molecular breeding.
Collapse
Affiliation(s)
- Imen Baazaoui
- Faculty of Science of Bizerte, University of Carthage, Carthage 1054, Tunisia
| | - John McEwan
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Rayna Anderson
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Rudiger Brauning
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Alan McCulloch
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Tracey Van Stijn
- AgResearch Ltd., Invermay Agricultural Centre; Mosgiel 9092, New Zealand
| | - Sonia Bedhiaf-Romdhani
- National Agricultural Research Institute of Tunisia, Laboratory of Animal and forage Production, University of Carthage, Ariana 1004, Tunisia
- Correspondence: ; Tel.: +216-25-113-344
| |
Collapse
|
10
|
Chen Y, Quinn JC, Weston LA, Loukopoulos P. The aetiology, prevalence and morbidity of outbreaks of photosensitisation in livestock: A review. PLoS One 2019; 14:e0211625. [PMID: 30811417 PMCID: PMC6392228 DOI: 10.1371/journal.pone.0211625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Photosensitisation is a clinical condition occurring in both humans and animals that causes significant injury to affected individuals. In livestock, outbreaks of photosensitisation caused by ingestion of toxic plants are relatively common and can be associated with significant economic loss. OBJECTIVES The agents that are most commonly implicated in outbreaks of photosensitisation have not been formally investigated on a global scale. To address this question, a systematic review of the literature was undertaken to determine the most common causative agents implicated in outbreaks of photosensitisation in livestock in Australia and globally, as well as the prevalence and morbidity of such outbreaks. METHODS A systematic database search was conducted to identify peer-reviewed case reports of photosensitisation in livestock published worldwide between 1900 and April 2018. Only case reports with a full abstract in English were included. Non peer-reviewed reports from Australia were also investigated. Case reports were then sorted by plant and animal species, type of photosensitisation by diagnosis, location, morbidity and mortality rate and tabulated for further analysis. RESULTS One hundred and sixty-six reports qualified for inclusion in this study. Outbreaks were reported in 20 countries. Australia (20), Brazil (20) and the United States (11) showed the highest number of peer-reviewed photosensitisation case reports from this analysis. Hepatogenous (Type III) photosensitisation was the most frequently reported diagnosis (68.5%) and resulted in higher morbidity. Panicum spp., Brachiaria spp. and Tribulus terrestris were identified as the most common causes of hepatogenous photosensitisation globally. CONCLUSIONS Hepatogenous photosensitisation in livestock represents a significant risk to livestock production, particularly in Australia, Brazil, and the United States. Management of toxic pastures and common pasture weeds may reduce the economic impact of photosensitisation both at a national and global level.
Collapse
Affiliation(s)
- Yuchi Chen
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
| | - Jane C. Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
- * E-mail:
| | - Leslie A. Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
- School of Agriculture and Wine Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Panayiotis Loukopoulos
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
11
|
Li X, An R, Liang K, Wang X, You L. Phototoxicity of traditional chinese medicine (TCM). Toxicol Res (Camb) 2018; 7:1012-1019. [PMID: 30542599 DOI: 10.1039/c8tx00141c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/25/2018] [Indexed: 01/25/2023] Open
Abstract
Phototoxicity can cause toxic responses such as edemas and lesions, and is one of the severe adverse effects that largely limit the use of these phototoxic drugs. Some traditional Chinese medicines (TCMs) and their constituents have been reported to be phototoxic. However, to date, their phototoxicity information is still very limited, and lacks systemic investigation. This article presents the phototoxicity potential of various types of TCMs and their active components in an effort to provide valuable information for drug research and discovery to mitigate phototoxicity concerns. Some potential mechanisms of action (MoAs) of phototoxicity are discussed. In addition, in vivo and in vitro phototoxicity assays are summarized this review.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Chemistry , College of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China .
| | - Rui An
- Department of Chemistry , College of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China .
| | - Kun Liang
- Department of Chemistry , College of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China .
| | - Xinhong Wang
- Department of Chemistry , College of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China .
| | - Lisha You
- Department of Chemistry , College of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , P.R. China .
| |
Collapse
|
12
|
Li YH, Tai WCS, Khan I, Lu C, Lu Y, Wong WY, Chan WY, Wendy Hsiao WL, Lin G. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:65-83. [PMID: 29667502 DOI: 10.1080/10590501.2018.1450186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yan-Hong Li
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
- b School of Medicine , South China University of Technology , Guangzhou , China
| | - William Chi-Shing Tai
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Imran Khan
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Cheng Lu
- e Institute of Basic Research in Clinical Medicine , China Academic of Chinese Medical Sciences , Beijing , China
| | - Yao Lu
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wing-Yan Wong
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Wood-Yee Chan
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wen-Luan Wendy Hsiao
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Ge Lin
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
13
|
Buglak AA, Kononov AI. Triplet state generation by furocoumarins revisited: a combined QSPR/DFT approach. NEW J CHEM 2018. [DOI: 10.1039/c8nj03002b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a QSPR model for fast virtual screening and prediction of the efficiency of triplet state generation by furocoumarins.
Collapse
|
14
|
Gonçalves JLDS, Bernal C, Imasato H, Perussi JR. Hypericin cytotoxicity in tumor and non-tumor cell lines: A chemometric study. Photodiagnosis Photodyn Ther 2017; 20:86-90. [DOI: 10.1016/j.pdpdt.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/28/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023]
|
15
|
Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L. Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:1-28. [PMID: 28055331 PMCID: PMC6373469 DOI: 10.1080/10590501.2016.1278298] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ginkgo biloba seeds and leaves have been used as a traditional herbal remedy for thousands of years, and its leaf extract has been consumed as a botanical dietary supplement for decades. Ginkgo biloba extract is a complex mixture with numerous components, including flavonol glycosides and terpene lactones, and is one of the most widely sold botanical dietary supplements worldwide. Concerns about potential health risks for the general population have been raised because of the widespread human exposure to Ginkgo biloba and its potential toxic and carcinogenic activities in rodents. The National Toxicology Program conducted 2-year gavage studies on one Ginkgo biloba leaf extract and concluded that there was clear evidence of carcinogenic activity of this extract in mice based on an increased incidence of hepatocellular carcinoma and hepatoblastoma. Recently, Ginkgo biloba leaf extract has been classified as a possible human carcinogen (Group 2B) by the International Agency for Research on Cancer. This review presents updated information on the toxicological effects from experimental studies both in vitro and in vivo to human case reports (caused by ginkgo seeds or leaves), and also summarizes the negative results from relatively large clinical trials.
Collapse
Affiliation(s)
- Nan Mei
- a Division of Genetic and Molecular Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Xiaoqing Guo
- a Division of Genetic and Molecular Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Zhen Ren
- b Division of Biochemical Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Daisuke Kobayashi
- c Department of Food and Chemical Toxicology , Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Hokkaido , Japan
| | - Keiji Wada
- c Department of Food and Chemical Toxicology , Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Hokkaido , Japan
| | - Lei Guo
- b Division of Biochemical Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
16
|
The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 2016; 91:949-965. [PMID: 27125825 DOI: 10.1007/s00204-016-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.
Collapse
|
17
|
Guo X, Mei N. Aloe vera: A review of toxicity and adverse clinical effects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:77-96. [PMID: 26986231 PMCID: PMC6349368 DOI: 10.1080/10590501.2016.1166826] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Aloe plant is employed as a dietary supplement in a variety of foods and as an ingredient in cosmetic products. The widespread human exposure and its potential toxic and carcinogenic activities raise safety concerns. Chemical analysis reveals that the Aloe plant contains various polysaccharides and phenolic chemicals, notably anthraquinones. Ingestion of Aloe preparations is associated with diarrhea, hypokalemia, pseudomelanosis coli, kidney failure, as well as phototoxicity and hypersensitive reactions. Recently, Aloe vera whole leaf extract showed clear evidence of carcinogenic activity in rats, and was classified by the International Agency for Research on Cancer as a possible human carcinogen (Group 2B). This review presents updated information on the toxicological effects, including the cytotoxicity, genotoxicity, carcinogenicity, and adverse clinical effects of Aloe vera whole leaf extract, gel, and latex.
Collapse
Affiliation(s)
- Xiaoqing Guo
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Nan Mei
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
18
|
Tseng CH, Lee KY, Tseng FH. An updated review on cancer risk associated with incretin mimetics and enhancers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:67-124. [PMID: 25803196 DOI: 10.1080/10590501.2015.1003496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Incretin-based therapies, including the use of incretin mimetics of glucagon-like peptide-1 receptor (GLP-1R) agonists and incretin enhancers of dipeptidyl-peptidase 4 (DPP-4) inhibitors, are widely used by clinicians for glucose lowering in patients with type 2 diabetes mellitus. These agents have benefits of a lower risk of hypoglycemia, being neutral for body weight for DPP-4 inhibitors and having a potential for weight reduction with GLP-1R agonists. They may also have a neutral or beneficial cardiovascular effect. Despite these benefits, an increased risk of cancer (especially pancreatic cancer and thyroid cancer) associated with incretin-based therapies has been reported. In this article, we reviewed related literature of experimental animal and observational human studies, clinical trials, and meta-analyses published until December 15, 2014. Current studies suggested a probable role of GLP-1R activation on the development of pancreatic cancer and thyroid cancer in rodents, but such an effect in humans is not remarkable due to the lower or lack of expression of GLP-1R on human pancreatic ductal cells and thyroid tissues. Findings in human studies are controversial and inconclusive. In the analyses of the US Food and Drug Administration adverse events reporting system, a significantly higher risk of pancreatic cancer was observed for GLP-1R agonists and DPP-4 inhibitors, but a significantly higher risk of thyroid cancer was only observed for GLP-1R agonists. Such a higher risk of pancreatic cancer or thyroid cancer could not be similarly demonstrated in other human observational studies or analyses of data from clinical trials. With regards to cancers other than pancreatic cancer and thyroid cancer, available studies supported a neutral association in humans. Some preliminary studies even suggested a potentially beneficial effect on the development of other cancers with the use of incretins. Based on current evidence, continuous monitoring of the cancer issues related to incretin-based therapies is required, even though the benefits may outweigh the potential cancer risk in the general patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- a Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
| | | | | |
Collapse
|
19
|
Tseng CH. A review on thiazolidinediones and bladder cancer in human studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:1-45. [PMID: 24598039 DOI: 10.1080/10590501.2014.877645] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is a concern of an increased risk of bladder cancer associated with the use of thiazolidinediones, a class of oral glucose-lowering drugs commonly used in patients with type 2 diabetes with a mechanism of improving insulin resistance. Human studies on related issues are reviewed, followed by a discussion on potential concerns on the causal inference in current studies. Pioglitazone and rosiglitazone are discussed separately, and findings from different geographical regions are presented. Randomized controlled trials designed for primarily answering such a cancer link are lacking, and evidence from clinical trials with available data for evaluating the association may not be informative. Observational studies have been reported with the use of population-based administrative databases, single-hospital records, drug adverse event reporting system, and case series collection. Meta-analysis has also been performed by six different groups of investigators. These studies showed a signal of higher risk of bladder cancer associated with pioglitazone, especially at a higher cumulative dose or after prolonged exposure; however, a weaker signal or null association is observed with rosiglitazone. In addition, there are some concerns on the causal inference, which may be related to the use of secondary databases, biases in sampling, differential detection, and confounding by indications. Lack of full control of smoking and potential biases related to study designs and statistical approaches such as prevalent user bias and immortal time bias may be major limitations in some studies. Overlapping populations and opposing conclusions in studies using the same databases may be of concern and weaken the reported conclusions of the studies. Because randomized controlled trials are expensive and unethical in providing an answer to this cancer issue, observational studies are expected to be the main source in providing an answer in the future. Furthermore, international comparison studies using well-designed and uniform methodology to clarify the risk in specific sexes, ethnicities, and other subgroups and to evaluate the interaction with other environmental risk factors or medications will be helpful to identify patients at risk.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- a Department of Internal Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|