1
|
Petrova SL, Jäger E, Jäger A, Höcherl A, Konefał R, Zhigunov A, Pavlova E, Janoušková O, Hrubý M. Development of an Acid-Labile Ketal Linked Amphiphilic Block Copolymer Nanoparticles for pH-Triggered Release of Paclitaxel. Polymers (Basel) 2021; 13:polym13091465. [PMID: 34062772 PMCID: PMC8124141 DOI: 10.3390/polym13091465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabilized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disassemble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0) cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Correspondence: (S.L.P.); (A.J.); Tel.: +420-296-809-296 (S.L.P.); +420-296-809-274 (A.J.)
| | | | - Alessandro Jäger
- Correspondence: (S.L.P.); (A.J.); Tel.: +420-296-809-296 (S.L.P.); +420-296-809-274 (A.J.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Application of Fundamental Techniques for Physicochemical Characterizations to Understand Post-Formulation Performance of Pharmaceutical Nanocrystalline Materials. CRYSTALS 2021. [DOI: 10.3390/cryst11030310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocrystalline materials (NCM, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from drug delivery and electronics to optics. Drug nanocrystals (NC) and nano co-crystals (NCC) are examples of NCM with fascinating physicochemical properties and have attracted significant attention in drug delivery. NCM are categorized by advantageous properties, such as high drug-loading efficiency, good long-term physical stability, steady and predictable drug release, and long systemic circulation time. These properties make them excellent formulations for the efficient delivery of a variety of active pharmaceutical ingredients (API). In this review, we summarize the recent advances in drug NCM-based therapy options. Currently, there are three main methods to synthesize drug NCM, including top-down, bottom-up, and combination methods. The fundamental characterization methods of drug NCM are elaborated. Furthermore, the applications of these characterizations and their implications on the post-formulation performance of NCM are introduced.
Collapse
|
3
|
Le TN, Neralla VR. Evaluation of the best pH-sensitive linker using norbornene-derived polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1858717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | |
Collapse
|
4
|
Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020; 327:641-666. [PMID: 32911014 PMCID: PMC7476894 DOI: 10.1016/j.jconrel.2020.09.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is intimately related to the pathogenesis of numerous acute and chronic diseases like cardiovascular disease, inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore anti-inflammatory therapy is a very promising strategy for the prevention and treatment of these inflammatory diseases. To overcome the shortcomings of existing anti-inflammatory agents and their traditional formulations, such as nonspecific tissue distribution and uncontrolled drug release, bioresponsive drug delivery systems have received much attention in recent years. In this review, we first provide a brief introduction of the pathogenesis of inflammation, with an emphasis on representative inflammatory cells and mediators in inflammatory microenvironments that serve as pathological fundamentals for rational design of bioresponsive carriers. Then we discuss different materials and delivery systems responsive to inflammation-associated biochemical signals, such as pH, reactive oxygen species, and specific enzymes. Also, applications of various bioresponsive drug delivery systems in the treatment of typical acute and chronic inflammatory diseases are described. Finally, crucial challenges in the future development and clinical translation of bioresponsive anti-inflammatory drug delivery systems are highlighted.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
5
|
Karanikolopoulos N, Choinopoulos I, Pitsikalis M. Poly{
dl
‐lactide‐
b
‐[oligo(ethylene glycol) methyl ether (meth)acrylate)]} block copolymers. Synthesis, characterization, micellization behavior in aqueous solutions and encapsulation of model hydrophobic compounds. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nikos Karanikolopoulos
- Industrial Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Ioannis Choinopoulos
- Industrial Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
6
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
7
|
Yi M, Lu Q, Zhao Y, Cheng C, Zhang S. Synthesis and Self-Assembly of the pH-Responsive Anionic Copolymers for Enhanced Doxorubicin-Loading Capacity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7877-7886. [PMID: 29870261 DOI: 10.1021/acs.langmuir.8b01237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyelectrolyte complex micelles self-assembled from an ionic polymer and oppositely charged small molecules are a promising drug delivery system. In this study, the anionic block copolymers composed of poly(ethylene glycol), poly(ε-caprolactone), and carboxyl modified poly(ε-caprolactone), COOH-PCEC, were designed to encapsulate doxorubicin (DOX) via electrostatic and hydrophobic interactions to form spherical micelles with a particle size of 90-140 nm. The higher payload capacity of these micelles than noncharged micelles of PCL-poly(ethylene glycol)-PCL (PCEC) was achieved, and it was strongly dependent on the composition of the micelles. In vitro drug release studies showed that the release of DOX from the micelles was faster at pH 5.5 than at pH 7.4, which was mainly due to the protonation of carboxyl groups and the solubility of DOX. Studies of intracellular uptake demonstrated that the DOX-loaded micelles could be internalized effectively by HeLa cells. In vitro cytotoxicity revealed that the blank COOH-PCEC micelles had a low cytotoxicity against both L929 and HeLa cells. However, the DOX-loaded micelles inhibited the growth of HeLa cells remarkably, demonstrating their potential for use as an efficient carrier for the delivery of DOX.
Collapse
Affiliation(s)
- Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Yuping Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| |
Collapse
|
8
|
Sponchioni M, Palmiero UC, Moscatelli D. HPMA-PEG Surfmers and Their Use in Stabilizing Fully Biodegradable Polymer Nanoparticles. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Umberto Capasso Palmiero
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Davide Moscatelli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
9
|
Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles. Acta Biomater 2017; 51:471-478. [PMID: 28131940 DOI: 10.1016/j.actbio.2017.01.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 01/31/2023]
Abstract
As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to mesoporous silica nanoparticles. Here, by altering the steric bulk of the substituent on the silicon atom, the release rate of a model drug, camptothecin, was controlled. The synthesized drug delivery system was investigated by analytical methods to confirm the functionalization and conjugation of the mesoporous silica nanoparticles. Herein, trimethyl silyl ether and triethyl silyl ether were selected to regulate the release rate. Under normal plasma conditions (pH 7.4), both types of camptothecin-loaded mesoporous silica nanoparticles (i.e., MSN-Me-CPT and MSN-Et-CPT) did not release the model drug. However, under in vitro acidic conditions (pH 4.0), based on a comparison of the release rates, camptothecin was released from MSN-Me-CPT more rapidly than from MSN-Et-CPT. To determine the biocompatibility of the modified mesoporous silica nanoparticles and the in vivo camptothecin uptake behavior, MTT assays with cancer cells and confocal microscopy observations were conducted, with positive results. These functionalized nanoparticles could be useful in clinical treatments requiring controlled drug release. STATEMENT OF SIGNIFICANCE As the release rate of drug from drug-carrier plays important role in therapy effects, trimethyl silyl ether (TMS) and triethyl silyl ether (TES) were selected as acid-sensitive silanes to control the release rates of model drugs conjugated from MSNs by thiol-ene click chemistry. The kinetic profiles of TMS and TES materials have been studied. At pH 4.0, the release of camptothecin from MSN-Et-CPT occurred after 2h, whereas MSN-Me-CPT showed immediate drug release. The results showed that silyl ether could be used to control release rates of drugs from MSNs under acid environment, which could be useful in clinical treatments requiring controlled drug release.
Collapse
|
10
|
Sponchioni M, Morosi L, Lupi M, Capasso Palmiero U. Poly(HPMA)-based copolymers with biodegradable side chains able to self assemble into nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra11179g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible PCL-based nanoparticles able to degrade into completely water soluble poly(HPMA) chains are produced via the inverse macromonomer method.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
- Italy
| | - Lavinia Morosi
- Department of Oncology
- IRCCS
- Istituto di Ricerche Farmacologiche Mario Negri
- 20156 Milano
- Italy
| | - Monica Lupi
- Department of Oncology
- IRCCS
- Istituto di Ricerche Farmacologiche Mario Negri
- 20156 Milano
- Italy
| | - Umberto Capasso Palmiero
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
- Italy
| |
Collapse
|
11
|
Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F, Ferretti C, Zara GP, Gigliotti CL, Ciamporcero ES, Pettazzoni P, Corti D, Pizzimenti S, Barrera G. GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro" and "in vivo" in cancer cells with high antioxidant defenses. Free Radic Biol Med 2016; 97:24-37. [PMID: 27184956 DOI: 10.1016/j.freeradbiomed.2016.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/19/2022]
Abstract
Several reports indicate that chemo-resistant cancer cells become highly adapted to intrinsic oxidative stress by up-regulating their antioxidant systems, which causes an increase of intracellular GSH content. Doxorubicin is one of the most widely used drugs for tumor treatment, able to kill cancer cells through several mechanisms. However, doxorubicin use is limited by its toxicity and cancer resistance. Therefore, new therapeutic strategies able to reduce doses and to overcome chemo-resistance are needed. A new class of glutathione-responsive cyclodextrin nanosponges (GSH-NS), is able to release anticancer drugs preferentially in cells having high GSH content. Doxorubicin-loaded GSH-NS, in the cancer cells with high GSH content, inhibited clonogenic growth, cell viability, topoisomerase II activity and induced DNA damage with higher effectiveness than free drug. Moreover, GSH-NS reduced the development of human tumor in xenograft models more than free drug. These characteristics indicate that GSH-NS can be a suitable drug delivery carrier for future applications in cancer therapy.
Collapse
Affiliation(s)
- Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Chiara Ullio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry - University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Carlo Ferretti
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Gian Paolo Zara
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Casimiro L Gigliotti
- Department of Health Sciences, University of Eastern Piedmont'A Avogadro', Via Solaroli 17, 28100 Novara, Italy
| | - Eric S Ciamporcero
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Piergiorgio Pettazzoni
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Denise Corti
- Department of Experimental and Clinical Biomedical Sciences, Biochemistry, Human Health Medical School University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
12
|
Polymeric micelles based on poly(ethylene oxide) and α-carbon substituted poly(ɛ-caprolactone): An in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity. Colloids Surf B Biointerfaces 2015; 132:161-70. [DOI: 10.1016/j.colsurfb.2015.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/10/2015] [Accepted: 05/08/2015] [Indexed: 12/29/2022]
|
13
|
Leriche G, Nothisen M, Baumlin N, Muller CD, Bagnard D, Remy JS, Jacques SA, Wagner A. Spiro Diorthoester (SpiDo), a Human Plasma Stable Acid-Sensitive Cleavable Linker for Lysosomal Release. Bioconjug Chem 2015; 26:1461-5. [DOI: 10.1021/acs.bioconjchem.5b00280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Nadège Baumlin
- INSERM U1109 − MN3T Lab, University of Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Christian D. Muller
- Laboratoire d’Innovation
Thérapeutique,
UMR 7200, CNRS University of Strasbourg, Faculty of Pharmacy, 74 route du Rhin, 67400 Illkirch, France
| | - Dominique Bagnard
- INSERM U1109 − MN3T Lab, University of Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | | | | | | |
Collapse
|
14
|
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015. [PMID: 26221933 DOI: 10.1039/c5bm00002e] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional chemotherapy for the treatment of cancer has limited specificity when administered systemically and is often associated with toxicity issues. Enhanced accumulation of polymeric nanocarriers at a tumor site may be achieved by passive and active targeting. Incorporation of trigger responsiveness into these polymeric nanocarriers improves the anticancer efficacy of such systems by modulating the release of the drug according to the tumor environment. Triggers used for tumor targeting include internal triggers such as pH, redox and enzymes and external triggers such as temperature, magnetic field, ultrasound and light. While internal triggers are specific cues of the tumor microenvironment, external triggers are those which are applied externally to control the release. This review highlights the various strategies employed for the preparation of such trigger responsive polymeric nanocarriers for cancer therapy and provides an overview of the state of the art in this field.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | | | | | | |
Collapse
|
15
|
Gu L, Faig A, Abdelhamid D, Uhrich K. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Acc Chem Res 2014; 47:2867-77. [PMID: 25141069 DOI: 10.1021/ar4003009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular disease. The atherosclerotic cascade is usually triggered by the unregulated uptake of oxidized low-density lipoprotein, a cholesterol carrier, in macrophages of the blood vessel wall; SBAPs can significantly inhibit oxidized low-density lipoprotein uptake in macrophages and abrogate the atherosclerotic cascade. By modification of various functionalities (e.g., branching, stereochemistry, hydrophobicity, and charge) in the SBAP chemical structure, SBAP bioactivity was optimized, and influential structural components were identified. Despite the potential of SBAPs as atherosclerotic therapies, blood stability of the SBAP micelles was not ideal for in vivo applications, and means to stabilize them were pursued. Using kinetic entrapment via flash nanoprecipitation, SBAPs were formulated into nanoparticles with a hydrophobic solute core and SBAP shell. SBAP nanoparticles exhibited excellent physiological stability and enhanced bioactivity compared with SBAP micelles. Further, this method enables encapsulation of additional hydrophobic drugs (e.g., vitamin E) to yield a stable formulation that releases two bioactives. Both as nanoscale carriers and as polymer therapeutics, SBAPs are promising biomaterials for medical applications.
Collapse
Affiliation(s)
- Li Gu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Allison Faig
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Dalia Abdelhamid
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn Uhrich
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
16
|
Petersen L, York AW, Lewis DR, Ahuja S, Uhrich KE, Prud’homme RK, Moghe PV. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 2014; 11:2815-24. [PMID: 24972372 PMCID: PMC4144725 DOI: 10.1021/mp500188g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics.
Collapse
Affiliation(s)
- Latrisha
K. Petersen
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Adam W. York
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Daniel R. Lewis
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Sonali Ahuja
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department
of Chemistry and Chemical Biology, Rutgers
University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Prabhas V. Moghe
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
17
|
Luo S, Tao Y, Tang R, Wang R, Ji W, Wang C, Zhao Y. Amphiphilic block copolymers bearing six-membered ortho ester ring in side chains as potential drug carriers: synthesis, characterization, andin vivotoxicity evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:965-84. [DOI: 10.1080/09205063.2014.916095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Abstract
Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10-100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors' recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers.
Collapse
|
19
|
Colombo C, Dragoni L, Gatti S, Pesce RM, Rooney TR, Mavroudakis E, Ferrari R, Moscatelli D. Tunable Degradation Behavior of PEGylated Polyester-Based Nanoparticles Obtained Through Emulsion Free Radical Polymerization. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4036077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Claudio Colombo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milano, Italy
| | - Luca Dragoni
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Simone Gatti
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Ruggiero M. Pesce
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Thomas R. Rooney
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
- Department
of Chemical Engineering, Dupuis Hall, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Evangelos Mavroudakis
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Raffaele Ferrari
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Davide Moscatelli
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
20
|
Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2013; 32:693-710. [PMID: 24309541 DOI: 10.1016/j.biotechadv.2013.11.009] [Citation(s) in RCA: 708] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/09/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022]
Abstract
Nanotechnology has been widely used in the development of new strategies for drug delivery and cancer therapy. Compared to traditional drug delivery systems, nano-based drug delivery system have greater potential in a variety of areas, such as multiple targeting functionalization, in vivo imaging, combined drug delivery, extended circulation time, and systemic control release. Nano-systems incorporating stimulus-responsive materials have remarkable properties which allow them to bypass biological barriers and achieve targeted intracellular drug delivery. As a result of the active metabolism of tumor cells, the tumor microenvironment (TME) is highly acidic compared to normal tissues. pH-Sensitive nano-systems have now been developed in which drug release is specifically triggered by the acidic tumor environment. Studies have demonstrated that novel pH-sensitive drug delivery systems are capable of improving the efficiency of cancer treatment. A number of these have been translated from bench to clinical application and have been approved by the Food and Drug Administration (FDA) for treatment of various cancerous diseases. Herein, this review mainly focuses on pH-sensitive nano-systems, including advances in drug delivery, mechanisms of drug release, and possible improvements in drug absorption, with the emphasis on recent research in this field. With deeper understanding of the difference between normal and tumor tissues, it might be possible to design ever more promising pH-responsive nano-systems for drug delivery and cancer therapy in the near future.
Collapse
Affiliation(s)
- Juan Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuran Huang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anil Kumar
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London (UCL), London, United Kingdom
| | - Shubin Jin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anbu Mozhi
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
21
|
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013; 10:2093-110. [PMID: 23461379 DOI: 10.1021/mp300697h] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles have received enormous attention as a promising tool to enhance target-specific drug delivery and diagnosis. Various in vitro and in vivo techniques are used to characterize a new system and predict its clinical efficacy. These techniques enable efficient comparison across nanoparticles and facilitate a product optimization process. On the other hand, we recognize their limitations as a prediction tool, due to inadequate applications and overly simplified test conditions. We provide a critical review of in vitro and in vivo techniques currently used for evaluation of nanoparticles and introduce emerging techniques and models that may be used complementarily.
Collapse
Affiliation(s)
- Eun Jung Cho
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.07.002] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Koshkaryev A, Sawant R, Deshpande M, Torchilin V. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv Drug Deliv Rev 2013; 65:24-35. [PMID: 22964425 DOI: 10.1016/j.addr.2012.08.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/31/2022]
Abstract
Significant progress has been made recently in the area of immunoconjugated drugs and drug delivery systems (DDS). The immuno-modification of either the drug or DDS has proven to be a very promising approach that has significantly improved the targeted accumulation in pathological sites while decreasing its undesirable side effects in healthy tissues. The arrangement for both prolonged life in the circulation and specific target recognition represents another potent strategy in the development of immuno-targeted systems. The longevity of immuno-targeted DDS such as immunoliposomes and immunomicelles improves their targetability even in the presence of the additional passive accumulation in areas with a compromised vasculature. The added use of the immuno-targeted systems takes advantage of the specific microenvironment of pathological sites including lowered pH, increased temperature, and variation in the enzymatic activity. "Smart" stimulus-responsive systems combine different valuable functionalities including PEG-protection, targeting antibody, cell-penetration, and stimulus-sensitive functions. In this review we examined the evolution, current status and future directions in the area of therapeutical immunoconjugates and long-circulating immuno-targeted DDS.
Collapse
Affiliation(s)
- Alexander Koshkaryev
- Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Gombotz WR, Hoffman AS. Polymeric Micelles. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Moon JR, Jeon YS, Zrinyi M, Kim JH. pH-Responsive PEGylated nanoparticles based on amphiphilic polyaspartamide: preparation, physicochemical characterization andin vitroevaluation. POLYM INT 2012. [DOI: 10.1002/pi.4412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jong Rok Moon
- Department of Chemical Engineering; Sungkyunkwan University; 300 Chunchun Jangan, Suwon, Kyunggi 440-746 Korea
| | - Young Sil Jeon
- Department of Chemical Engineering; Sungkyunkwan University; 300 Chunchun Jangan, Suwon, Kyunggi 440-746 Korea
| | - Miklos Zrinyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology; Semmelweis University; Budapest Hungary
| | - Ji-Heung Kim
- Department of Chemical Engineering; Sungkyunkwan University; 300 Chunchun Jangan, Suwon, Kyunggi 440-746 Korea
| |
Collapse
|
26
|
Fan J, Zeng F, Wu S, Wang X. Polymer Micelle with pH-Triggered Hydrophobic–Hydrophilic Transition and De-Cross-Linking Process in the Core and Its Application for Targeted Anticancer Drug Delivery. Biomacromolecules 2012; 13:4126-37. [DOI: 10.1021/bm301424r] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianquan Fan
- College of Materials
Science and Engineering, State Key Laboratory of Luminescent
Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Fang Zeng
- College of Materials
Science and Engineering, State Key Laboratory of Luminescent
Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shuizhu Wu
- College of Materials
Science and Engineering, State Key Laboratory of Luminescent
Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xiaodan Wang
- School of Pharmaceutical
Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
27
|
Wang Y, Byrne JD, Napier ME, DeSimone JM. Engineering nanomedicines using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2012; 64:1021-30. [PMID: 22266128 PMCID: PMC3422739 DOI: 10.1016/j.addr.2012.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 12/24/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
The ability to engineer particles has the potential to shift the paradigm in the creation of new medicines and diagnostics. Complete control over particle characteristics, such as size, shape, mechanical property, and surface chemistry, can enable rapid translation and facilitate the US Food and Drug Administration (FDA) approval of particle technologies for the treatment of cancer, infectious diseases, diabetes, and a host of other major illnesses. The incorporation of natural and artificial external stimuli to trigger the release of drugs enables exquisite control over the release profiles of drugs in a given environment. In this article, we examine several readily scalable top-down methods for the fabrication of shape-specific particles that utilize stimuli-responsive biomaterials for controlled drug delivery. Special attention is given to Particle Replication In Nonwetting Templates (PRINT®) technology and the application of novel triggered-release synthetic and natural polymers.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James D. Byrne
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary E. Napier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Institute for Advanced Materials, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
- Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
28
|
Wu Y, Chen W, Meng F, Wang Z, Cheng R, Deng C, Liu H, Zhong Z. Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J Control Release 2012; 164:338-45. [PMID: 22800578 DOI: 10.1016/j.jconrel.2012.07.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 11/18/2022]
Abstract
The extracellular stability versus intracellular drug release dilemma has been a long challenge for micellar drug delivery systems. Here, core-crosslinked pH-sensitive degradable micelles were developed based on poly(ethylene glycol)-b-poly(mono-2,4,6-trimethoxy benzylidene-pentaerythritol carbonate-co-acryloyl carbonate) (PEG-b-P(TMBPEC-co-AC)) diblock copolymer that contains acid-labile acetal and photo-crossslinkable acryloyl groups in the hydrophobic polycarbonate block for intracellular paclitaxel (PTX) release. The micelles following photo-crosslinking while displaying high stability at pH 7.4 were prone to rapid hydrolysis at mildly acidic pHs of 4.0 and 5.0, with half lives of ca. 12.5 and 38.5h, respectively. Notably, these micelles showed high drug loading efficiencies of 76.0-93.2% at theoretical PTX loading contents of 5-15wt.%. Depending on drug loading contents, PTX-loaded micelles had average sizes varying from 132.2 to 171.6nm, which were decreased by 17-22nm upon photo-crosslinking. The in vitro release studies showed that PTX release at pH 7.4 was greatly inhibited by crosslinking of micelles. Notably, rapid drug release was obtained under mildly acidic conditions, in which 90.0% and 78.1% PTX was released in 23h at pH 4.0 and 5.0, respectively. MTT assays showed that PTX-loaded crosslinked micelles retained high anti-tumor activity with a cell viability of 9.2% observed for RAW 264.7 cells following 72h incubation, which was comparable to PTX-loaded non-crosslinked counterparts (cell viability 7.5%) under otherwise the same conditions, supporting efficient drug release from PTX-loaded crosslinked micelles inside the tumor cells. These core-crosslinked pH-responsive biodegradable micelles with superior extracellular stability and rapid intracellular drug release provide a novel platform for tumor-targeting drug delivery.
Collapse
Affiliation(s)
- Yali Wu
- Biomedical Polymers Laboratory, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Parrott MC, Finniss M, Luft JC, Pandya A, Gullapalli A, Napier ME, DeSimone JM. Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J Am Chem Soc 2012; 134:7978-82. [PMID: 22545784 PMCID: PMC3362319 DOI: 10.1021/ja301710z] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asymmetric bifunctional silyl ether (ABS) prodrugs of chemotherapeutics were synthesized and incorporated within 200 nm × 200 nm particles. ABS prodrugs of gemcitabine were selected as model compounds because of the difficulty to encapsulate a water-soluble drug within a hydrogel. The resulting drug delivery systems were degraded under acidic conditions and were found to release only the parent or active drug. Furthermore, changing the steric bulk of the alkyl substituents on the silicon atom could regulate the rate of drug release and, therefore, the intracellular toxicity of the gemcitabine-loaded particles. This yielded a family of novel nanoparticles that could be tuned to release drug over the course of hours, days, or months.
Collapse
Affiliation(s)
- Matthew C Parrott
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhu S, Lansakara-P DSP, Li X, Cui Z. Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjug Chem 2012; 23:966-80. [PMID: 22471294 DOI: 10.1021/bc2005945] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stimulus-sensitive micelles are attractive anticancer drug delivery systems. Herein, we reported a novel strategy to engineer acid-sensitive micelles using a amphiphilic material synthesized by directly conjugating the hydrophilic poly(ethylene glycol) (PEG) with a hydrophobic stearic acid derivative (C18) using an acid-sensitive hydrazone bond (PHC). An acid-insensitive PEG-amide-C18 (PAC) compound was also synthesized as a control. 4-(N)-Stearoyl gemcitabine (GemC18), a prodrug of the nucleoside analogue gemcitabine, was loaded into the micelles, and they were found to be significantly more cytotoxic to tumor cells than GemC18 solution, likely due to the lysosomal delivery of GemC18 by micelles. Moreover, GemC18 in the acid-sensitive PHC micelles was more cytotoxic than in the acid-insensitive PAC micelles, which may be attributed to the acid-sensitive release of GemC18 from the PHC micelles in lysosomes. In B16-F10 melanoma-bearing mice, GemC18-loaded PHC or PAC micelles showed stronger antitumor activity than GemC18 or gemcitabine solution, likely because of the prolonged circulation time and increased tumor accumulation of the GemC18 by the micelles. Importantly, the in vivo antitumor activity of GemC18-loaded PHC micelles was significantly stronger than that of the PAC micelles, demonstrating the potential of the novel acid-sensitive micelles as an anticancer drug delivery system.
Collapse
Affiliation(s)
- Saijie Zhu
- College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin, Texas, 78712, United States
| | | | | | | |
Collapse
|
31
|
Chytil P, Etrych T, Kostka L, Ulbrich K. Hydrolytically Degradable Polymer Micelles for Anticancer Drug Delivery to Solid Tumors. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201100632] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
York AW, Zablocki KR, Lewis DR, Gu L, Uhrich KE, Prud’homme RK, Moghe PV. Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:733-9. [PMID: 22223224 PMCID: PMC3495129 DOI: 10.1002/adma.201103348] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/10/2011] [Indexed: 05/30/2023]
Abstract
Kinetically assembled nanoparticles are fabricated from an advanced class of bioactive macromolecules that have potential utility in counteracting atherosclerotic plaque development via receptor-level blockage of inflammatory cells. In contrast to micellar analogs that exhibit poor potency and structural integrity under physiologic conditions, these kinetic nanoparticle assemblies maintain structural stability and demonstrate superior bioactivity in mediating oxidized low-density lipoprotein (oxLDL) uptake in inflammatory cells.
Collapse
Affiliation(s)
- Adam W. York
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Kyle R. Zablocki
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Daniel R. Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Li Gu
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA. Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Comparative Investigations on In Vitro Serum Stability of Polymeric Micelle Formulations. Pharm Res 2011; 29:448-59. [DOI: 10.1007/s11095-011-0555-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
34
|
Tang R, Ji W, Wang C. pH-Responsive Micelles Based on Amphiphilic Block Copolymers Bearing Ortho Ester Pendants as Potential Drug Carriers. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Cai L, Qiu N, Li X, Luo K, Chen X, Yang L, He G, Wei Y, Chen L. A novel truncated basic fibroblast growth factor fragment-conjugated poly (ethylene glycol)-cholesterol amphiphilic polymeric drug delivery system for targeting to the FGFR-overexpressing tumor cells. Int J Pharm 2011; 408:173-82. [DOI: 10.1016/j.ijpharm.2011.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
|
36
|
Cui Q, Wu F, Wang E. Novel amphiphilic diblock copolymers bearing acid-labile oxazolidine moieties: Synthesis, self-assembly and responsive behavior in aqueous solution. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Wang D, Su Y, Jin C, Zhu B, Pang Y, Zhu L, Liu J, Tu C, Yan D, Zhu X. Supramolecular Copolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for Drug Delivery. Biomacromolecules 2011; 12:1370-9. [DOI: 10.1021/bm200155t] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dali Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Chengyu Jin
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Bangshang Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Yan Pang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Lijuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Jinyao Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Chunlai Tu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xinyuan Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
38
|
Tang R, Ji W, Panus D, Palumbo RN, Wang C. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells. J Control Release 2010; 151:18-27. [PMID: 21194551 DOI: 10.1016/j.jconrel.2010.12.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results establish the PEG-b-PEYM block copolymer with acid-labile ortho ester side-chains as a novel and effective pH-responsive nano-carrier for enhancing the delivery of drugs to cancer cells.
Collapse
Affiliation(s)
- Rupei Tang
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street S. E., Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
39
|
Parrott MC, Luft JC, Byrne JD, Fain JH, Napier ME, Desimone JM. Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J Am Chem Soc 2010; 132:17928-32. [PMID: 21105720 DOI: 10.1021/ja108568g] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Responsive polymeric biomaterials can be triggered to degrade using localized environments found in vivo. A limited number of biomaterials provide precise control over the rate of degradation and the release rate of entrapped cargo and yield a material that is intrinsically nontoxic. In this work, we designed nontoxic acid-sensitive biomaterials based on silyl ether chemistry. A host of silyl ether cross-linkers were synthesized and molded into relevant medical devices, including Trojan horse particles, sutures, and stents. The resulting devices were engineered to degrade under acidic conditions known to exist in tumor tissue, inflammatory tissue, and diseased cells. The implementation of silyl ether chemistry gave precise control over the rate of degradation and afforded devices that could degrade over the course of hours, days, weeks, or months, depending upon the steric bulk around the silicon atom. These novel materials could be useful for numerous biomedical applications, including drug delivery, tissue repair, and general surgery.
Collapse
Affiliation(s)
- Matthew C Parrott
- Departments of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | |
Collapse
|
40
|
Moon JR, Kim MW, Kim D, Jeong JH, Kim JH. Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery. Colloid Polym Sci 2010. [DOI: 10.1007/s00396-010-2307-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Tang R, Ji W, Wang C. Amphiphilic block copolymers bearing ortho ester side-chains: pH-dependent hydrolysis and self-assembly in water. Macromol Biosci 2010; 10:192-201. [PMID: 19904722 DOI: 10.1002/mabi.200900229] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new type of pH-responsive block copolymer nanoparticle has been synthesized and characterized. The amphiphilic diblock copolymer, PEG-b-PMYM, contains acid-labile ortho ester side-chains in the hydrophobic block and can self-assemble into micelle-like nanoparticles in water at neutral pH. Hydrolysis of the ortho ester side-chains follows a distinct exocyclic mechanism and shows pH-dependent kinetics, which triggers changes in nanoparticle size and morphology. The nanoparticles have been found to be non-toxic to cells in vitro. The ability to tune the size and morphology of biocompatible block copolymer nanoparticles by controlling the pH-sensitive side-chain hydrolysis represents a unique approach that may be exploited to improve the efficacy of nanometer-scale drug delivery.
Collapse
Affiliation(s)
- Rupei Tang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
42
|
Lu J, Li N, Xu Q, Ge J, Lu J, Xia X. Acetals moiety contained pH-sensitive amphiphilic copolymer self-assembly used for drug carrier. POLYMER 2010. [DOI: 10.1016/j.polymer.2009.12.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Abstract
Liposomal nanocarriers anchored with a cell-penetrating peptide and a pH-sensitive PEG-shield where later has ability to provide simultaneously better systemic circulation and site-specific exposure of cell penetrating peptide. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE), while cell-penetrating peptide (TATp) was added as TATp-PEG-PE conjugate. Under normal conditions, liposome-grafted PEG "shielded" liposome-attached TATp moieties, since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes accumulate in targets via the EPR effect, but inside the "acidified" tumor or ischemic tissues lose their PEG coating because of the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. pH-responsive behavior of these constructs is successfully tested in cell cultures in vitro as well as in tumors in experimental mice in vivo. These nanocarriers also showed enhanced pGFP transfection efficiency upon intratumoral administration in mice, compared to control pH nonsensitive counterpart. These results can be considered as an important step in the development of tumor-specific stimuli-sensitive drug and gene delivery systems.
Collapse
Affiliation(s)
- Amit A Kale
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
44
|
Kale AA, Torchilin VP. Environment-Responsive Polymers for Coating of Pharmaceutical Nanocarriers(,). POLYMER SCIENCE SERIES A 2009; 51:730-737. [PMID: 23150741 DOI: 10.1134/s0965545x09060182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyethylene glycol derivatives, such as block copolymers of polyethylene glycol and diacyllipids (for example, phosphatidylethanolamine) are widely used for surface modification of various pharmaceutical carriers in order to impart them longevity in the body. To make polyethylene glycol detachable from the surface of pharmaceutical carrier and facilitate the interaction of the carrier with target cells when in pathological zone, we have prepared a set of polyethylene glycol-phosphatidylethanolamine block copolymers with the pH sensitive hydrazone bond between polyethylene glycol and phosphatidylethanolamine, which destabilizes at lowered pH values typical for tumors and inflammation zones. We have demonstrated that the stability of the hydrazone bond at normal physiological pH (7.4) as well as the rate of its hydrolysis at pH 6 and below strongly depend on the type of substitutions at this bond. Using aliphatic and aromatic aldehydes and ketones, polyethylene glycol-phosphatidylethanolamine block copolymers were prepared with different stabilities and degradation rates, which can be useful in constructing stimuli-sensitive pharmaceutical carriers.
Collapse
Affiliation(s)
- A A Kale
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Chen W, Meng F, Li F, Ji SJ, Zhong Z. pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release. Biomacromolecules 2009; 10:1727-35. [DOI: 10.1021/bm900074d] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Chen
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Organic Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Organic Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Feng Li
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Organic Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shun-Jun Ji
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Organic Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Organic Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
46
|
Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving Penetration in Tumors With Nanoassemblies of Phospholipids and Doxorubicin. J Natl Cancer Inst 2007; 99:1004-15. [PMID: 17596572 DOI: 10.1093/jnci/djm027] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Drug delivery and penetration into neoplastic cells distant from tumor vessels is critical for the effectiveness of solid tumor chemotherapy. We hypothesized that 10- to 20-nm nanoassemblies of phospholipids containing doxorubicin would improve the drug's penetration, accumulation, and antitumor activity. METHODS Doxorubicin was incorporated into polyethylene glycol-phosphatidylethanolamine (PEG-PE) block copolymer micelles by a self-assembly procedure to form nanoassemblies of doxorubicin and PEG-PE. In vitro cytotoxicity of micelle-encapsulated doxorubicin (M-Dox) against A549 human non-small-cell lung carcinoma cells was examined using the methylthiazoletetrazolium assay, and confocal microscopy, total internal reflection fluorescence microscopy, and flow cytometry were used to examine intracellular distribution and the cellular uptake mechanism. C57Bl/6 mice (n = 10-40 per group) bearing subcutaneous or pulmonary Lewis lung carcinoma (LLC) tumors were treated with M-Dox or free doxorubicin, and tumor growth, doxorubicin pharmacokinetics, and mortality were compared. Toxicity was analyzed in tumor-free mice. All statistical tests were two-sided. RESULTS Encapsulation of doxorubicin in PEG-PE micelles increased its internalization by A549 cells into lysosomes and enhanced cytotoxicity. Drug-encapsulated doxorubicin was more effective in inhibiting tumor growth in the subcutaneous LLC tumor model (mean tumor volumes in mice treated with 5 mg/kg M-Dox = 1126 mm3 and in control mice = 3693 mm3, difference = 2567 mm3, 95% confidence interval [CI] = 2190 to 2943 mm3, P<.001) than free doxorubicin (mean tumor volumes in doxorubicin-treated mice = 3021 mm3 and in control mice = 3693 mm3, difference = 672 mm3, 95% CI = 296 to 1049 mm3, P = .0332, Wilcoxon signed rank test). M-Dox treatment prolonged survival in both mouse models and reduced metastases in the pulmonary model; it also reduced toxicity. CONCLUSIONS We have developed a novel PEG-PE-based nanocarrier of doxorubicin that increased cytotoxicity in vitro and enhanced antitumor activity in vivo with low systemic toxicity. This drug packaging technology may provide a new strategy for design of cancer therapies.
Collapse
Affiliation(s)
- Ning Tang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
47
|
Kale AA, Torchilin VP. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 2007; 18:363-70. [PMID: 17309227 PMCID: PMC2538438 DOI: 10.1021/bc060228x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A set of aliphatic and aromatic aldehyde-derived hydrazone (HZ)-based acid-sensitive polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugates was synthesized and evaluated for their hydrolytic stability at neutral and slightly acidic pH values. The micelles formed by aliphatic aldehyde-based PEG-HZ-PE conjugates were found to be highly sensitive to mildly acidic pH and reasonably stable at physiologic pH, while those derived from aromatic aldehydes were highly stable at both pH values. The pH-sensitive PEG-PE conjugates with controlled pH sensitivity may find applications in biological stimuli-mediated drug targeting for building pharmaceutical nanocarriers capable of specific release of their cargo at certain pathological sites in the body (tumors, infarcts) or intracellular compartments (endosomes, cytoplasm) demonstrating decreased pH.
Collapse
Affiliation(s)
| | - Vladimir P. Torchilin
- * Corresponding author: Northeastern University, Mugar Building 312, 360 Huntington Ave, Boston, MA 02115, USA, Tel: 617 373 3206, Fax: 617 373 8886, E-mail:
| |
Collapse
|
48
|
Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2006; 24:1-16. [PMID: 17109211 DOI: 10.1007/s11095-006-9132-0] [Citation(s) in RCA: 1233] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/20/2006] [Indexed: 12/22/2022]
Abstract
Micelles, self-assembling nanosized colloidal particles with a hydrophobic core and hydrophilic shell are currently successfully used as pharmaceutical carriers for water-insoluble drugs and demonstrate a series of attractive properties as drug carriers. Among the micelle-forming compounds, amphiphilic copolymers, i.e., polymers consisting of hydrophobic block and hydrophilic block, are gaining an increasing attention. Polymeric micelles possess high stability both in vitro and in vivo and good biocompatibility, and can solubilize a broad variety of poorly soluble pharmaceuticals many of these drug-loaded micelles are currently at different stages of preclinical and clinical trials. Among polymeric micelles, a special group is formed by lipid-core micelles, i.e., micelles formed by conjugates of soluble copolymers with lipids (such as polyethylene glycol-phosphatidyl ethanolamine conjugate, PEG-PE). Polymeric micelles, including lipid-core micelles, carrying various reporter (contrast) groups may become the imaging agents of choice in different imaging modalities. All these micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention (EPR) effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block-copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. This review will discuss some recent trends in using micelles as pharmaceutical carriers.
Collapse
Affiliation(s)
- V P Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Mugar Building, Room 312, 360 Huntington Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
49
|
Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 2005; 109:169-88. [PMID: 16289422 DOI: 10.1016/j.jconrel.2005.09.034] [Citation(s) in RCA: 1027] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
Block copolymer micelles are generally formed by the self-assembly of either amphiphilic or oppositely charged copolymers in aqueous medium. The hydrophilic and hydrophobic blocks form the corona and the core of the micelles, respectively. The presence of a nonionic water-soluble shell as well as the scale (10-100 nm) of polymeric micelles are expected to restrict their uptake by the mononuclear phagocyte system and allow for passive targeting of cancerous or inflamed tissues through the enhanced permeation and retention effect. Research in the field has been increasingly focused on achieving enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the drug for optimal targeting. With that in mind, our group has developed a range of block copolymers for various applications, including amphiphilic micelles for passive targeting of chemotherapeutic agents and environment-sensitive micelles for the oral delivery of poorly bioavailable compounds. Here, we propose to review the innovations in block copolymer synthesis, polymeric micelle preparation and characterization, as well as the relevance of these developments to the field of biomedical research.
Collapse
Affiliation(s)
- Geneviève Gaucher
- Canada Research Chair in Drug Delivery, Faculty of Pharmacy, University of Montreal, Downtown Station, Canada
| | | | | | | | | | | |
Collapse
|
50
|
|