1
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
2
|
Beloglazova I, Stepanova V, Zubkova E, Dergilev K, Koptelova N, Tyurin-Kuzmin PA, Dyikanov D, Plekhanova O, Cines DB, Mazar AP, Parfyonova Y. Mesenchymal stromal cells enhance self-assembly of a HUVEC tubular network through uPA-uPAR/VEGFR2/integrin/NOTCH crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119157. [PMID: 34619163 DOI: 10.1016/j.bbamcr.2021.119157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFβ1, integrin β3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFβ1, integrin β3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.
Collapse
Affiliation(s)
- Irina Beloglazova
- National Medical Research Center for Cardiology, Moscow, Russian Federation.
| | - Victoria Stepanova
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ekaterina Zubkova
- National Medical Research Center for Cardiology, Moscow, Russian Federation
| | | | - Natalia Koptelova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Daniyar Dyikanov
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Plekhanova
- National Medical Research Center for Cardiology, Moscow, Russian Federation
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Yelena Parfyonova
- National Medical Research Center for Cardiology, Moscow, Russian Federation; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
4
|
Targeting the Acidic Tumor Microenvironment: Unexpected Pro-Neoplastic Effects of Oral NaHCO 3 Therapy in Murine Breast Tissue. Cancers (Basel) 2020; 12:cancers12040891. [PMID: 32268614 PMCID: PMC7226235 DOI: 10.3390/cancers12040891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
The acidic tumor microenvironment modifies malignant cell behavior. Here, we study consequences of the microenvironment in breast carcinomas. Beginning at carcinogen-based breast cancer induction, we supply either regular or NaHCO3-containing drinking water to female C57BL/6j mice. We evaluate urine and blood acid-base status, tumor metabolism (microdialysis sampling), and tumor pH (pH-sensitive microelectrodes) in vivo. Based on freshly isolated epithelial organoids from breast carcinomas and normal breast tissue, we assess protein expression (immunoblotting, mass spectrometry), intracellular pH (fluorescence microscopy), and cell proliferation (bromodeoxyuridine incorporation). Oral NaHCO3 therapy increases breast tumor pH in vivo from 6.68 ± 0.04 to 7.04 ± 0.09 and intracellular pH in breast epithelial organoids by ~0.15. Breast tumors develop with median latency of 85.5 ± 8.2 days in NaHCO3-treated mice vs. 82 ± 7.5 days in control mice. Oral NaHCO3 therapy does not affect tumor growth, histopathology or glycolytic metabolism. The capacity for cellular net acid extrusion is increased in NaHCO3-treated mice and correlates negatively with breast tumor latency. Oral NaHCO3 therapy elevates proliferative activity in organoids from breast carcinomas. Changes in protein expression patterns-observed by high-throughput proteomics analyses-between cancer and normal breast tissue and in response to oral NaHCO3 therapy reveal complex influences on metabolism, cytoskeleton, cell-cell and cell-matrix interaction, and cell signaling pathways. We conclude that oral NaHCO3 therapy neutralizes the microenvironment of breast carcinomas, elevates the cellular net acid extrusion capacity, and accelerates proliferation without net effect on breast cancer development or tumor growth. We demonstrate unexpected pro-neoplastic consequences of oral NaHCO3 therapy that in breast tissue cancel out previously reported anti-neoplastic effects.
Collapse
|
5
|
Abstract
Acidic metabolic waste products accumulate in the tumor microenvironment because of high metabolic activity and insufficient perfusion. In tumors, the acidity of the interstitial space and the relatively well-maintained intracellular pH influence cancer and stromal cell function, their mutual interplay, and their interactions with the extracellular matrix. Tumor pH is spatially and temporally heterogeneous, and the fitness advantage of cancer cells adapted to extracellular acidity is likely particularly evident when they encounter less acidic tumor regions, for instance, during invasion. Through complex effects on genetic stability, epigenetics, cellular metabolism, proliferation, and survival, the compartmentalized pH microenvironment favors cancer development. Cellular selection exacerbates the malignant phenotype, which is further enhanced by acid-induced cell motility, extracellular matrix degradation, attenuated immune responses, and modified cellular and intercellular signaling. In this review, we discuss how the acidity of the tumor microenvironment influences each stage in cancer development, from dysplasia to full-blown metastatic disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Negri A, Ferrari M, Nodari R, Coppa E, Mastrantonio V, Zanzani S, Porretta D, Bandi C, Urbanelli S, Epis S. Gene silencing through RNAi and antisense Vivo-Morpholino increases the efficacy of pyrethroids on larvae of Anopheles stephensi. Malar J 2019; 18:294. [PMID: 31462239 PMCID: PMC6712854 DOI: 10.1186/s12936-019-2925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022] Open
Abstract
Background Insecticides are still at the core of insect pest and vector control programmes. Several lines of evidence indicate that ABC transporters are involved in detoxification processes against insecticides, including permethrin and other pyrethroids. In particular, the ABCG4 gene, a member of the G subfamily, has consistently been shown to be up-regulated in response to insecticide treatments in the mosquito malaria vector Anopheles stephensi (both adults and larvae). Methods To verify the actual involvement of this transmembrane protein in the detoxification process of permethrin, bioassays on larvae of An. stephensi, combining the insecticide with a siRNA, specifically designed for the inhibition of ABCG4 gene expression were performed. Administration to larvae of the same siRNA, labeled with a fluorescent molecule, was effected to investigate the systemic distribution of the inhibitory RNA into the larval bodies. Based on siRNA results, similar experiments using antisense Vivo-Morpholinos (Vivo-MOs) were effected. These molecules, compared to siRNA, are expected to guarantee a higher stability in environmental conditions and in the insect gut, and present thus a higher potential for future in-field applications. Results Bioassays using two different concentrations of siRNA, associated with permethrin, led to an increase of larval mortality, compared with results with permethrin alone. These outcomes confirm that ABCG4 transporter plays a role in the detoxification process against the selected insecticide. Moreover, after fluorescent labelling, it was shown the systemic dissemination of siRNA in different body districts of An. stephensi larvae, which suggest a potential systemic effect of the molecule. At the same time, results of Vivo-MO experiments were congruent with those obtained using siRNA, thus confirming the potential of ABCG4 inhibition as a strategy to increase permethrin susceptibility in mosquitoes. For the first time, Vivo-MOs were administered in water to larvae, with evidence for a biological effect. Conclusions Targeting ABCG4 gene for silencing through both techniques resulted in an increased pyrethroid efficacy. These results open the way toward the possibility to exploit ABCG4 inhibition in the context of integrated programmes for the control An. stephensi mosquitoes and malaria transmission.
Collapse
Affiliation(s)
- Agata Negri
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy.,Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Marco Ferrari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Texas Biomedical Research Institute, San Antonio, 7620 NW Loop 410, San Antonio, TX, 78227-5301, USA
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Edoardo Coppa
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Valentina Mastrantonio
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Sergio Zanzani
- Department of Veterinary Medicine-DIMEVET, Università degli Studi di Milano, Via Celoria, 10, 20133, Milan, Italy
| | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy.
| |
Collapse
|
7
|
Zhang W, Lu X, Yuan Z, Shen M, Song Y, Liu H, Deng J, Zhong X, Zhang X. Establishing an osteoimmunomodulatory coating loaded with aspirin on the surface of titanium primed with phase-transited lysozyme. Int J Nanomedicine 2019; 14:977-991. [PMID: 30787611 PMCID: PMC6368129 DOI: 10.2147/ijn.s190766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To improve osseointegration and enhance the success rate of implanted biomaterials, the surface modification technology of bone implants has developed rapidly. Intensive research on osteoimmunomodulation has shown that the surfaces of implants should possess favorable osteoimmunomodulation to facilitate osteogenesis. METHODS A novel, green and efficient phase-transited lysozyme (PTL) technique was used to prime titanium discs with a positive charge. In addition, sodium hyaluronate (HA) and self-assembled type I collagen containing aspirin (ASA) nanoparticles were decorated on PTL-primed Ti discs via electrostatic interaction. RESULTS The behaviors of bone marrow stromal cells (BMSCs) on the Ti disc surfaces containing ASA were analyzed in different conditioned media (CM) generated by macrophages. Additionally, the secretion of inflammation-related cytokines of macrophages on the surfaces of different Ti discs was investigated in in vitro experiments, which showed that the Ti surface containing ASA not only supported the migration, proliferation and differentiation of BMSCs but also reduced the inflammatory response of macrophages compared with Ti discs without surface modification. After implantation in vivo, the ASA-modified implant can significantly contribute to bone formation around the implant, which mirrors the evaluation in vitro. CONCLUSION This study highlights the significant effects of appropriate surface characteristics on the regulation of osteogenesis and osteoimmunomodulation around an implant. Implant modification with ASA potentially provides superior strategies for the surface modification of biomaterials.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xin Lu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Minjuan Shen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Huanhuan Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Jingjing Deng
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xu Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| |
Collapse
|
8
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
9
|
Voss NCS, Kold-Petersen H, Boedtkjer E. Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. Am J Physiol Heart Circ Physiol 2019; 316:H245-H254. [DOI: 10.1152/ajpheart.00368.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inadequate perfusion of solid cancer tissue results in low local nutrient and oxygen levels and accumulation of acidic waste products. Previous investigations have focused primarily on tumor blood vessel architecture, and we lack information concerning functional differences between arteries that deliver blood to solid cancer tissue versus normal tissue. Here, we use isometric myography to study resistance-sized arteries from human primary colon adenocarcinomas and matched normal colon tissue. Vasocontraction of colon cancer feed arteries in response to endothelin-1 and thromboxane stimulation is attenuated compared with normal colon arteries despite similar wall dimensions and comparable contractions to arginine vasopressin and K+-induced depolarization. Acetylcholine-induced vasorelaxation and endothelial NO synthase expression are increased in colon cancer feed arteries compared with normal colon arteries, whereas vasorelaxation to exogenous NO donors is unaffected. In congruence, the differences in vasorelaxant and vasocontractile function between colon cancer feed arteries and normal colon arteries decrease after NO synthase inhibition. Rhythmic oscillations in vascular tone, known as vasomotion, are of lower amplitude but similar frequency in colon cancer feed arteries compared with normal colon arteries. In conclusion, higher NO synthase expression and elevated NO signaling amplify vasorelaxation and attenuate vasocontraction of human colon cancer feed arteries. We propose that enhanced endothelial function augments tumor perfusion and represents a potential therapeutic target. NEW & NOTEWORTHY Local vascular resistance influences tumor perfusion. Arteries supplying human colonic adenocarcinomas show enhanced vasorelaxation and reduced vasocontraction mainly due to elevated nitric oxide-mediated signaling. Rhythmic oscillations in tone, known as vasomotion, are attenuated in colon cancer feed arteries.
Collapse
Affiliation(s)
- Ninna C. S. Voss
- Research Unit, Regional Hospital Randers, Randers, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Cheong DHJ, Arfuso F, Sethi G, Wang L, Hui KM, Kumar AP, Tran T. Molecular targets and anti-cancer potential of escin. Cancer Lett 2018; 422:1-8. [PMID: 29474858 DOI: 10.1016/j.canlet.2018.02.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
Escin is a mixture of triterpenoid saponins extracted from the horse chestnut tree, Aesculus hippocastanum. Its potent anti-inflammatory and anti-odematous properties makes it a choice of therapy against chronic venous insufficiency and odema. More recently, escin is being actively investigated for its potential activity against diverse cancers. It exhibits anti-cancer effects in many cancer cell models including lung adenocarcinoma, hepatocellular carcinoma and leukemia. Escin also attenuates tumor growth and metastases in various in vivo models. Importantly, escin augments the effects of existing chemotherapeutic drugs, thereby supporting the role of escin as an adjunct or alternative anti-cancer therapy. The beneficial effects of escin can be attributed to its inhibition of proliferation and induction of cell cycle arrest. By regulating transcription factors/growth factors mediated oncogenic pathways, escin also potentially mitigates chronic inflammatory processes that are linked to cancer survival and resistance. This review provides a comprehensive overview of the current knowledge of escin and its potential as an anti-cancer therapy through its anti-proliferative, pro-apoptotic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth WA, Australia; National University Cancer Institute, National University Health System, Singapore.
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
11
|
Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front Physiol 2016; 7:553. [PMID: 27909411 PMCID: PMC5112363 DOI: 10.3389/fphys.2016.00553] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.
Collapse
Affiliation(s)
- Mallikarjuna R Joga
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Moises J Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas Pelotas, Brazil
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| |
Collapse
|
12
|
Subcellular and Dynamic Coordination between Src Activity and Cell Protrusion in Microenvironment. Sci Rep 2015; 5:12963. [PMID: 26261043 PMCID: PMC4531316 DOI: 10.1038/srep12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/11/2015] [Indexed: 01/10/2023] Open
Abstract
Migration of endothelial cells is essential for wound healing and angiogenesis. Src kinase activity plays important roles at the protrusions of migrating endothelial cells. However, the spatiotemporal coordination between Src kinase activity and the protrusion of cell edge remains unclear. Therefore, we investigate these coordinated molecular events at the initiation of cell migration, by integrating microfabrication, fluorescence resonance energy transfer (FRET)-based biosensors, and automated computational image analysis. We demonstrate that the physical release of restrictive micropattern triggered a significant decrease of Src activity at the protrusive edge of endothelial cells. Computational cross-correlation analysis reveals that the decrease of Src activity occurred earlier in time, and was well-coordinated with the protrusion of cell edge in polarized cells, but not in non-polarized cells. These results suggest that the spatiotemporal control of Src kinase activity is well-coordinated with cell polarization and protrusion in endothelial cells upon the release of physical constraint, as that experienced by endothelial cells sprouting from stiff tumor micro-environment during angiogenesis. Therefore, our integrative approach enabled the discovery of a new model where Src is de-activated in coordination with membrane protrusion, providing important insights into the regulation of endothelial migration and angiogenesis.
Collapse
|
13
|
Abstract
Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology, encompasses sex-specific physical, physiological, and behavioral traits related to mosquito reproduction. The study of mosquito sexual dimorphism has largely focused on analysis of the differences between adult female and male mosquitoes, particularly with respect to sex-specific behaviors related to disease transmission. However, sexually dimorphic behaviors are the products of differential gene expression that initiates during development and therefore must also be studied during development. Recent technical advancements are facilitating functional genetic studies in the dengue vector Aedes aegypti, an emerging model for mosquito development. These methodologies, many of which could be extended to other non-model insect species, are facilitating analysis of the development of sexual dimorphism in neural tissues, particularly the olfactory system. These studies are providing insight into the neurodevelopmental genetic basis for sexual dimorphism in vector mosquitoes.
Collapse
Affiliation(s)
- Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zainulabeuddin Syed
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
14
|
Zhu Q, Zang Q, Jiang ZM, Wang W, Cao M, Su GZ, Zhen TC, Zhang XT, Sun NB, Zhao C. Clinical Application of Recombinant Human Endostatin in Postoperative Early Complementary Therapy on Patients with Non-small Cell Lung Cancer in Chinese Mainland. Asian Pac J Cancer Prev 2015; 16:4013-8. [DOI: 10.7314/apjcp.2015.16.9.4013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Zhang X, Mysore K, Flannery E, Michel K, Severson DW, Zhu KY, Duman-Scheel M. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J Vis Exp 2015:52523. [PMID: 25867635 PMCID: PMC4401390 DOI: 10.3791/52523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vector mosquitoes inflict more human suffering than any other organism-and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Biology, Kansas State University
| | - Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Eck Institute for Global Health, University of Notre Dame
| | - Ellen Flannery
- Eck Institute for Global Health, University of Notre Dame; Department of Biological Sciences, University of Notre Dame
| | | | - David W Severson
- Eck Institute for Global Health, University of Notre Dame; Department of Biological Sciences, University of Notre Dame
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Eck Institute for Global Health, University of Notre Dame; Department of Biological Sciences, University of Notre Dame;
| |
Collapse
|
16
|
Chai D, Yue Y, Xu W, Dong C, Xiong S. Mucosal co-immunization with AIM2 enhances protective SIgA response and increases prophylactic efficacy of chitosan-DNA vaccine against coxsackievirus B3-induced myocarditis. Hum Vaccin Immunother 2014; 10:1284-94. [PMID: 24614684 DOI: 10.4161/hv.28333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infection is considered as the most common cause of viral myocarditis with no available vaccine. Considering that CVB3 mainly invades through the gastrointestinal mucosa, the development of CVB3-specific mucosal vaccine, which is the most efficient way to induce mucosal immune responses, gains more and more attention. In this study, we used absent in melanoma 2 (AIM2) as a mucosal adjuvant to enhance the immunogenicity and immunoprotection of CVB3-specific chitosan-pVP1 vaccine. Mice were intranasally co-immunized with 50 μg chitosan-pAIM2 and equal amount of chitosan-pVP1 vaccine 4 times at 2 week-intervals, and then challenged with CVB3 2 weeks after the last immunization. Compared with chitosan-pVP1 vaccine immunization alone, chitosan-pAIM2 co-immunization enhanced resistance to CVB3-induced myocarditis evidenced by significantly enhanced ejection fractions from 55.40 ± 9.35 to 80.31 ± 11.35, improved myocarditis scores from 1.50 ± 0.45 to 0.30 ± 0.15, reduced viral load from 3.33 ± 0.50 to 0.50 ± 0.65, and increased survival rate from 40.0% to 75.5%. This increased immunoprotection might be attributed to the augmented level of CVB3-specific fecal SIgA with high affinity and neutralizing ability. In addition, co-immunization with chitosan-pAIM2 remarkably facilitated dendritic cells (DCs) recruitment to mesenteric lymph nodes (MLN), and promoted the expression of IgA-inducing factors (BAFF, APRIL, iNOS, RALDH1, IL-6, TGF-β), which might account for its mucosal adjuvant effect. This strategy may represent a promising prophylactic vaccine against CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Dafei Chai
- Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University; Suzhou, PR China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University; Suzhou, PR China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University; Suzhou, PR China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University; Suzhou, PR China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity; Institutes of Biology and Medical Sciences; Soochow University; Suzhou, PR China
| |
Collapse
|
17
|
Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, Kumar N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol 2012; 86:232-50. [PMID: 23098684 DOI: 10.1016/j.critrevonc.2012.09.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the leading cause of cancer-related mortality in the western world. It is also the third most common cancer diagnosed in both men and women in the United States with a recent estimate for new cases of colorectal cancer in the year 2012 being around 103,170. Various risk factors for colorectal cancer include life-style, diet, age, personal and family history, and racial and ethnic background. While a few cancers are certainly preventable but this does not hold true for colon cancer as it is often detected in its advanced stage and generally not diagnosed until symptoms become apparent. Despite the fact that several options are available for treating this cancer through surgery, chemotherapy, radiation therapy, immunotherapy, and nutritional-supplement therapy, but the success rates are not very encouraging when used alone where secondary complications appear in almost all these therapies. To maximize the therapeutic-effects in patients, combinatorial approaches are essential. In this review we have discussed the therapies previously and currently available to patients diagnosed with colorectal-cancer, focus on some recent developments in basic research that has shaded lights on new therapeutic-concepts utilizing macrophages/dendritic cells, natural killer cells, gene delivery, siRNA-, and microRNA-technology, and specific-targeting of tyrosine kinases that are either mutated or over-expressed in the cancerous cell to treat these cancer. Potential strategies are discussed where these concepts could be applied to the existing therapies under a comprehensive approach to enhance the therapeutic effects.
Collapse
Affiliation(s)
- Jayshree Mishra
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Khaidakov M, Mitra S, Mehta JL. Adherence junction proteins in angiogenesis: modulation by aspirin and salicylic acid. J Cardiovasc Med (Hagerstown) 2012; 13:187-93. [PMID: 22240749 DOI: 10.2459/jcm.0b013e32834eecdc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of neovasculature correlates with plaque instability and rupture as well as tumor growth and aggressiveness. In recent years, aspirin has emerged as a powerful modality in prophylaxis of cardiovascular events, which may be linked to its inhibitory effects on angiogenesis. METHODS AND RESULTS We studied the role of endothelial adherens junctions in angiogenesis and the modulation of adherens junctions by acetylsalicylic acid (ASA) and salicylic acid as mechanisms of the angiostatic potential of these agents. Exposure of human umbilical cord endothelial cells (HUVECs) to vascular endothelial growth factor (VEGF) significantly enhanced tube formation. The disruption of adherens junctions as well as phosphorylation and cytoplasmic translocation of VE-cadherin and p120 catenin were early consequences of VEGF addition to the medium bathing the HUVECs. Pretreatment with ASA and salicylic acid prevented changes in adherence junction proteins and inhibited VEGF-induced tube formation by HUVECs in a dose-dependent manner. CONCLUSION Angiogenesis is associated with significant alterations in adherens junctions. Both ASA and salicylic acid reduce angiogenesis by modulating adherens junctions.
Collapse
Affiliation(s)
- Magomed Khaidakov
- University of Arkansas for Medical Sciences, Department of Internal Medicine, and the Veterans Affairs Medical Center, Little Rock, Arkansas 72212, USA.
| | | | | |
Collapse
|
19
|
Antiangiogenic and Antimitotic Effects of Aspirin in Hypoxia–Reoxygenation Modulation of the LOX-1-NADPH Oxidase Axis as a Potential Mechanism. J Cardiovasc Pharmacol 2010; 56:635-41. [DOI: 10.1097/fjc.0b013e3181f801e4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Khaidakov M, Szwedo J, Mitra S, Mehta JL. Angiostatic Effects of Aspirin in Hypoxia-Reoxygenation Are Linked to Modulation of TGFβ1 Signaling. J Cardiovasc Pharmacol Ther 2010; 16:105-10. [DOI: 10.1177/1074248410378505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypoxia-reoxygenation (HR) is a major driver for angiogenesis in atherosclerotic plaques and tumors. Angiogenesis is a multistep process requiring stimulation of proliferation and migration of endothelial cells in response to a number of growth factors, including transforming growth factor (TGFβ1). Aspirin (acetylsalicylic acid) has been shown to reduce atherosclerosis-related events as well as development of certain tumors. We examined the role of aspirin in HR-mediated angiogenesis from human umbilical vein endothelial cells (HUVECs). We found that aspirin (0.5 and 1 mmol/L) markedly (by about 30%, P < .01) reduced HR-mediated tube formation. Next, we studied changes in TGFβ1 and its type 1 receptor (TGFβ-R1) as well as in the transcription of p53 and p21 during HR-mediated angiogenesis. Hypoxia-reoxygenation modestly increased TGFβ1 and decreased its type 1 receptor (TGFβ-R1) transcription (both P-NS) and reduced the transcription of p53 and p21 (P < .05). Treatment of HUVECs with aspirin suppressed TGFβ1 and enhanced TGFβ-R1 mRNA expression during HR (both P < .05 vs HR alone) without a change in p53 and p21 (P-NS). In other experiments, treatment of cells with TGFβ1 antibody modestly decreased HR-mediated angiogenesis; however, TGFβ1 antibody treatment significantly enhanced the inhibitory effect of aspirin on tube formation. Based on these data, we suggest that the inhibitory effect of aspirin on HR-mediated angiogenesis involves TGFβ1-TGFβ-R1 pathway.
Collapse
Affiliation(s)
- Magomed Khaidakov
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and VA Medical Center, Little Rock, AR, USA
| | - Jacob Szwedo
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and VA Medical Center, Little Rock, AR, USA
| | - Sona Mitra
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and VA Medical Center, Little Rock, AR, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and VA Medical Center, Little Rock, AR, USA, or
| |
Collapse
|
21
|
Du H, Ge W, Li C, Zhao Z, Xu X, Yang F. [Effects of rh-endostar in combination with radiotherapy on rats with lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:386-90. [PMID: 20677570 PMCID: PMC6000420 DOI: 10.3779/j.issn.1009-3419.2010.04.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Radiation sensitivity is closely related to tissue oxygen, and rh-endostatin can induce the high level of oxygen content in tumor by "normalizing" tumor angiogenesis which is associated with radiotherapy sensitivity. The aim of this study is to observe the effect of combination of radiotherapy with rh-endostatin in the rats with lung cancer. METHODS Immediate lewis cancerous ascetic injection method was used to make rats tumors bearing model, then the rats was divided into four groups randomly: group A was treated with saline; group B was treated with rh-endostatin; group C was treated with irradiation and group D was treated with rh-endostatin and irradiation. After all rats were treated, inhibition rates and the tumor growth curve were calculated. Immunohistochemisty was adopted to check the expressions of vascular endothelial growth factor (VEGF) and microvessel density (MVD). RESULTS Compared with group A, the growth rates of the tumors in the other group were obviously slower, and the tumor weights were significantly different form group A (P < 0.05). Compared with the other groups, the tumor weights of group D were obviously reduced (P < 0.05). Compared with group A, VEGF and MVD of other three groups were reduced (P < 0.05), and group D were significantly cut down. CONCLUSION Combination with radiotherapy and rh-endostatin could inhibit the lung cancer significantly in rats. The possible mechanisms are to decrease the expression ofVEGF and inhibit the production of angiogenesis.
Collapse
Affiliation(s)
- He Du
- Department of Medical Oncology, Remmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | | | |
Collapse
|
22
|
Cavaletti G, Cassetti A, Canta A, Galbiati S, Gilardini A, Oggioni N, Rodriguez-Menendez V, Fasano A, Liuzzi GM, Fattler U, Ries S, Nieland J, Riccio P, Haas H. Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol Pharm 2009; 6:1363-70. [PMID: 19281192 DOI: 10.1021/mp8001478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The binding selectivity of charged liposomes to the spinal cord of rats affected by experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, was investigated. Positively and negatively charged liposomes were injected into the tail vein of rats, and blood/brain barrier (BBB) targeting was determined by confocal microscopy as a function of the temporal evolution of the inflammatory response. Accumulation in spinal cord endoneural vessels was observed for cationic, but not for anionic, liposomes, and only in EAE but not in healthy rats. The overall binding efficacy paralleled the severity of the clinical score, but targeting was observed already before clinical manifestation of inflammation. Preferential binding of positively charged liposomes in the course of acute EAE can be ascribed to subtle changes of BBB morphology and charge distribution in a similar way as for the binding of cationic particles to proliferating vasculature in chronic inflammation and angiogenesis. Our findings suggest that vascular changes related to increased binding affinity for cationic particles are very early events within the inflammatory reaction in acute EAE. Investigation of cationic vascular targeting can help to shed further light on these occurrences, and, potentially, new diagnostic and therapeutic options may become available. In neuroinflammatory diseases, cationic colloidal carrier particles may enable intervention at affected BBB by an approach which is independent from permeability increase.
Collapse
Affiliation(s)
- Guido Cavaletti
- Department of Neurosciences, University of Milan "Bicocca", 20052 Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|